mirror of
https://github.com/RPCS3/llvm.git
synced 2025-02-02 00:35:27 +00:00
[X86] New pass to change byte and word instructions to zero-extending versions.
Differential Revision: http://reviews.llvm.org/D17032 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@260572 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
6d97a8c749
commit
fa502aa703
@ -36,6 +36,7 @@ set(sources
|
||||
X86FixupLEAs.cpp
|
||||
X86WinEHState.cpp
|
||||
X86OptimizeLEAs.cpp
|
||||
X86FixupBWInsts.cpp
|
||||
)
|
||||
|
||||
add_llvm_target(X86CodeGen ${sources})
|
||||
|
@ -72,6 +72,12 @@ FunctionPass *createX86WinEHStatePass();
|
||||
/// must run after prologue/epilogue insertion and before lowering
|
||||
/// the MachineInstr to MC.
|
||||
FunctionPass *createX86ExpandPseudoPass();
|
||||
|
||||
/// Return a Machine IR pass that selectively replaces
|
||||
/// certain byte and word instructions by equivalent 32 bit instructions,
|
||||
/// in order to eliminate partial register usage, false dependences on
|
||||
/// the upper portions of registers, and to save code size.
|
||||
FunctionPass *createX86FixupBWInsts();
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
||||
|
282
lib/Target/X86/X86FixupBWInsts.cpp
Normal file
282
lib/Target/X86/X86FixupBWInsts.cpp
Normal file
@ -0,0 +1,282 @@
|
||||
//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// \file
|
||||
/// This file defines the pass that looks through the machine instructions
|
||||
/// late in the compilation, and finds byte or word instructions that
|
||||
/// can be profitably replaced with 32 bit instructions that give equivalent
|
||||
/// results for the bits of the results that are used. There are two possible
|
||||
/// reasons to do this.
|
||||
///
|
||||
/// One reason is to avoid false-dependences on the upper portions
|
||||
/// of the registers. Only instructions that have a destination register
|
||||
/// which is not in any of the source registers can be affected by this.
|
||||
/// Any instruction where one of the source registers is also the destination
|
||||
/// register is unaffected, because it has a true dependence on the source
|
||||
/// register already. So, this consideration primarily affects load
|
||||
/// instructions and register-to-register moves. It would
|
||||
/// seem like cmov(s) would also be affected, but because of the way cmov is
|
||||
/// really implemented by most machines as reading both the destination and
|
||||
/// and source regsters, and then "merging" the two based on a condition,
|
||||
/// it really already should be considered as having a true dependence on the
|
||||
/// destination register as well.
|
||||
///
|
||||
/// The other reason to do this is for potential code size savings. Word
|
||||
/// operations need an extra override byte compared to their 32 bit
|
||||
/// versions. So this can convert many word operations to their larger
|
||||
/// size, saving a byte in encoding. This could introduce partial register
|
||||
/// dependences where none existed however. As an example take:
|
||||
/// orw ax, $0x1000
|
||||
/// addw ax, $3
|
||||
/// now if this were to get transformed into
|
||||
/// orw ax, $1000
|
||||
/// addl eax, $3
|
||||
/// because the addl encodes shorter than the addw, this would introduce
|
||||
/// a use of a register that was only partially written earlier. On older
|
||||
/// Intel processors this can be quite a performance penalty, so this should
|
||||
/// probably only be done when it can be proven that a new partial dependence
|
||||
/// wouldn't be created, or when your know a newer processor is being
|
||||
/// targeted, or when optimizing for minimum code size.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "X86.h"
|
||||
#include "X86InstrInfo.h"
|
||||
#include "X86Subtarget.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/CodeGen/LiveVariables.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/MachineLoopInfo.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/CodeGen/Passes.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "x86-fixup-bw-insts"
|
||||
|
||||
// Option to allow this optimization pass to have fine-grained control.
|
||||
// This is turned off by default so as not to affect a large number of
|
||||
// existing lit tests.
|
||||
static cl::opt<bool>
|
||||
FixupBWInsts("fixup-byte-word-insts",
|
||||
cl::desc("Change byte and word instructions to larger sizes"),
|
||||
cl::init(false), cl::Hidden);
|
||||
|
||||
namespace {
|
||||
class FixupBWInstPass : public MachineFunctionPass {
|
||||
static char ID;
|
||||
|
||||
const char *getPassName() const override {
|
||||
return "X86 Byte/Word Instruction Fixup";
|
||||
}
|
||||
|
||||
/// \brief Loop over all of the instructions in the basic block
|
||||
/// replacing applicable byte or word instructions with better
|
||||
/// alternatives.
|
||||
void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB) const;
|
||||
|
||||
/// \brief This sets the \p SuperDestReg to the 32 bit super reg
|
||||
/// of the original destination register of the MachineInstr
|
||||
/// passed in. It returns true if that super register is dead
|
||||
/// just prior to \p OrigMI, and false if not.
|
||||
/// \pre OrigDestSize must be 8 or 16.
|
||||
bool getSuperRegDestIfDead(MachineInstr *OrigMI, unsigned OrigDestSize,
|
||||
unsigned &SuperDestReg) const;
|
||||
|
||||
/// \brief Change the MachineInstr \p MI into the equivalent extending load
|
||||
/// to 32 bit register if it is safe to do so. Return the replacement
|
||||
/// instruction if OK, otherwise return nullptr.
|
||||
/// \pre OrigDestSize must be 8 or 16.
|
||||
MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, unsigned OrigDestSize,
|
||||
MachineInstr *MI) const;
|
||||
|
||||
public:
|
||||
FixupBWInstPass() : MachineFunctionPass(ID) {}
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
|
||||
// guide some heuristics.
|
||||
MachineFunctionPass::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
/// \brief Loop over all of the basic blocks,
|
||||
/// replacing byte and word instructions by equivalent 32 bit instructions
|
||||
/// where performance or code size can be improved.
|
||||
bool runOnMachineFunction(MachineFunction &MF) override;
|
||||
|
||||
private:
|
||||
MachineFunction *MF;
|
||||
|
||||
/// Machine instruction info used throughout the class.
|
||||
const X86InstrInfo *TII;
|
||||
|
||||
/// Local member for function's OptForSize attribute.
|
||||
bool OptForSize;
|
||||
|
||||
/// Machine loop info used for guiding some heruistics.
|
||||
MachineLoopInfo *MLI;
|
||||
};
|
||||
char FixupBWInstPass::ID = 0;
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
|
||||
|
||||
bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
|
||||
if (!FixupBWInsts)
|
||||
return false;
|
||||
|
||||
this->MF = &MF;
|
||||
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
|
||||
OptForSize = MF.getFunction()->optForSize();
|
||||
MLI = &getAnalysis<MachineLoopInfo>();
|
||||
|
||||
DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
|
||||
|
||||
// Process all basic blocks.
|
||||
for (auto &MBB : MF)
|
||||
processBasicBlock(MF, MBB);
|
||||
|
||||
DEBUG(dbgs() << "End X86FixupBWInsts\n";);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO: This method of analysis can miss some legal cases, because the
|
||||
// super-register could be live into the address expression for a memory
|
||||
// reference for the instruction, and still be killed/last used by the
|
||||
// instruction. However, the existing query interfaces don't seem to
|
||||
// easily allow that to be checked.
|
||||
//
|
||||
// What we'd really like to know is whether after OrigMI, the
|
||||
// only portion of SuperDestReg that is alive is the portion that
|
||||
// was the destination register of OrigMI.
|
||||
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
|
||||
unsigned OrigDestSize,
|
||||
unsigned &SuperDestReg) const {
|
||||
|
||||
unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
|
||||
SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
|
||||
|
||||
// Make sure that the sub-register that this instruction has as its
|
||||
// destination is the lowest order sub-register of the super-register.
|
||||
// If it isn't, then the register isn't really dead even if the
|
||||
// super-register is considered dead.
|
||||
// This test works because getX86SubSuperRegister returns the low portion
|
||||
// register by default when getting a sub-register, so if that doesn't
|
||||
// match the original destination register, then the original destination
|
||||
// register must not have been the low register portion of that size.
|
||||
if (getX86SubSuperRegister(SuperDestReg, OrigDestSize) != OrigDestReg)
|
||||
return false;
|
||||
|
||||
MachineBasicBlock::LivenessQueryResult LQR =
|
||||
OrigMI->getParent()->computeRegisterLiveness(&TII->getRegisterInfo(),
|
||||
SuperDestReg, OrigMI);
|
||||
|
||||
if (LQR != MachineBasicBlock::LQR_Dead)
|
||||
return false;
|
||||
|
||||
if (OrigDestSize == 8) {
|
||||
// In the case of byte registers, we also have to check that the upper
|
||||
// byte register is also dead. That is considered to be independent of
|
||||
// whether the super-register is dead.
|
||||
unsigned UpperByteReg = getX86SubSuperRegister(SuperDestReg, 8, true);
|
||||
|
||||
LQR = OrigMI->getParent()->computeRegisterLiveness(&TII->getRegisterInfo(),
|
||||
UpperByteReg, OrigMI);
|
||||
if (LQR != MachineBasicBlock::LQR_Dead)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
|
||||
unsigned OrigDestSize,
|
||||
MachineInstr *MI) const {
|
||||
unsigned NewDestReg;
|
||||
|
||||
// We are going to try to rewrite this load to a larger zero-extending
|
||||
// load. This is safe if all portions of the 32 bit super-register
|
||||
// of the original destination register, except for the original destination
|
||||
// register are dead. getSuperRegDestIfDead checks that.
|
||||
if (!getSuperRegDestIfDead(MI, OrigDestSize, NewDestReg))
|
||||
return nullptr;
|
||||
|
||||
// Safe to change the instruction.
|
||||
MachineInstrBuilder MIB =
|
||||
BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
|
||||
|
||||
unsigned NumArgs = MI->getNumOperands();
|
||||
for (unsigned i = 1; i < NumArgs; ++i)
|
||||
MIB.addOperand(MI->getOperand(i));
|
||||
|
||||
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
||||
|
||||
return MIB;
|
||||
}
|
||||
|
||||
void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
|
||||
MachineBasicBlock &MBB) const {
|
||||
|
||||
// This algorithm doesn't delete the instructions it is replacing
|
||||
// right away. By leaving the existing instructions in place, the
|
||||
// register liveness information doesn't change, and this makes the
|
||||
// analysis that goes on be better than if the replaced instructions
|
||||
// were immediately removed.
|
||||
//
|
||||
// This algorithm always creates a replacement instruction
|
||||
// and notes that and the original in a data structure, until the
|
||||
// whole BB has been analyzed. This keeps the replacement instructions
|
||||
// from making it seem as if the larger register might be live.
|
||||
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
|
||||
|
||||
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
|
||||
MachineInstr *NewMI = nullptr;
|
||||
MachineInstr *MI = I;
|
||||
|
||||
// See if this is an instruction of the type we are currently looking for.
|
||||
switch (MI->getOpcode()) {
|
||||
|
||||
case X86::MOV8rm:
|
||||
// Only replace 8 bit loads with the zero extending versions if
|
||||
// in an inner most loop and not optimizing for size. This takes
|
||||
// an extra byte to encode, and provides limited performance upside.
|
||||
if (MachineLoop *ML = MLI->getLoopFor(&MBB)) {
|
||||
if (ML->begin() == ML->end() && !OptForSize)
|
||||
NewMI = tryReplaceLoad(X86::MOVZX32rm8, 8, MI);
|
||||
}
|
||||
break;
|
||||
|
||||
case X86::MOV16rm:
|
||||
// Always try to replace 16 bit load with 32 bit zero extending.
|
||||
// Code size is the same, and there is sometimes a perf advantage
|
||||
// from eliminating a false dependence on the upper portion of
|
||||
// the register.
|
||||
NewMI = tryReplaceLoad(X86::MOVZX32rm16, 16, MI);
|
||||
break;
|
||||
|
||||
default:
|
||||
// nothing to do here.
|
||||
break;
|
||||
}
|
||||
|
||||
if (NewMI)
|
||||
MIReplacements.push_back(std::make_pair(MI, NewMI));
|
||||
}
|
||||
|
||||
while (!MIReplacements.empty()) {
|
||||
MachineInstr *MI = MIReplacements.back().first;
|
||||
MachineInstr *NewMI = MIReplacements.back().second;
|
||||
MIReplacements.pop_back();
|
||||
MBB.insert(MI, NewMI);
|
||||
MBB.erase(MI);
|
||||
}
|
||||
}
|
@ -279,6 +279,7 @@ void X86PassConfig::addPreEmitPass() {
|
||||
addPass(createX86IssueVZeroUpperPass());
|
||||
|
||||
if (getOptLevel() != CodeGenOpt::None) {
|
||||
addPass(createX86FixupBWInsts());
|
||||
addPass(createX86PadShortFunctions());
|
||||
addPass(createX86FixupLEAs());
|
||||
}
|
||||
|
122
test/CodeGen/X86/fixup-bw-inst.ll
Normal file
122
test/CodeGen/X86/fixup-bw-inst.ll
Normal file
@ -0,0 +1,122 @@
|
||||
; RUN: llc -fixup-byte-word-insts -march=x86-64 < %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-apple-macosx10.8.0"
|
||||
|
||||
%struct.A = type { i8, i8, i8, i8, i8, i8, i8, i8 }
|
||||
|
||||
; This has byte loads interspersed with byte stores, in a single
|
||||
; basic-block loop. The upper portion should be dead, so the movb loads
|
||||
; should have been changed into movzbl instead.
|
||||
; TODO: The second movb load doesn't get fixed due to register liveness
|
||||
; not being accurate enough.
|
||||
; CHECK-LABEL: foo1
|
||||
; load:
|
||||
; CHECK: movzbl
|
||||
; store:
|
||||
; CHECK: movb
|
||||
; load:
|
||||
; CHECK: movb
|
||||
; store:
|
||||
; CHECK: movb
|
||||
; CHECK: ret
|
||||
define void @foo1(i32 %count,
|
||||
%struct.A* noalias nocapture %q,
|
||||
%struct.A* noalias nocapture %p)
|
||||
nounwind uwtable noinline ssp {
|
||||
%1 = icmp sgt i32 %count, 0
|
||||
br i1 %1, label %.lr.ph, label %._crit_edge
|
||||
|
||||
.lr.ph: ; preds = %0
|
||||
%2 = getelementptr inbounds %struct.A, %struct.A* %q, i64 0, i32 0
|
||||
%3 = getelementptr inbounds %struct.A, %struct.A* %q, i64 0, i32 1
|
||||
br label %a4
|
||||
|
||||
a4: ; preds = %4, %.lr.ph
|
||||
%i.02 = phi i32 [ 0, %.lr.ph ], [ %a9, %a4 ]
|
||||
%.01 = phi %struct.A* [ %p, %.lr.ph ], [ %a10, %a4 ]
|
||||
%a5 = load i8, i8* %2, align 1
|
||||
%a7 = getelementptr inbounds %struct.A, %struct.A* %.01, i64 0, i32 0
|
||||
store i8 %a5, i8* %a7, align 1
|
||||
%a8 = getelementptr inbounds %struct.A, %struct.A* %.01, i64 0, i32 1
|
||||
%a6 = load i8, i8* %3, align 1
|
||||
store i8 %a6, i8* %a8, align 1
|
||||
%a9 = add nsw i32 %i.02, 1
|
||||
%a10 = getelementptr inbounds %struct.A, %struct.A* %.01, i64 1
|
||||
%exitcond = icmp eq i32 %a9, %count
|
||||
br i1 %exitcond, label %._crit_edge, label %a4
|
||||
|
||||
._crit_edge: ; preds = %4, %0
|
||||
ret void
|
||||
}
|
||||
|
||||
%struct.B = type { i16, i16, i16, i16, i16, i16, i16, i16 }
|
||||
|
||||
; This has word loads interspersed with word stores.
|
||||
; The upper portion should be dead, so the movw loads should have
|
||||
; been changed into movzwl instead.
|
||||
; TODO: The second movw load doesn't get fixed due to register liveness
|
||||
; not being accurate enough.
|
||||
; CHECK-LABEL: foo2
|
||||
; load:
|
||||
; CHECK: movzwl
|
||||
; store:
|
||||
; CHECK: movw
|
||||
; load:
|
||||
; CHECK: movw
|
||||
; store:
|
||||
; CHECK: movw
|
||||
; CHECK: ret
|
||||
define void @foo2(i32 %count,
|
||||
%struct.B* noalias nocapture %q,
|
||||
%struct.B* noalias nocapture %p)
|
||||
nounwind uwtable noinline ssp {
|
||||
%1 = icmp sgt i32 %count, 0
|
||||
br i1 %1, label %.lr.ph, label %._crit_edge
|
||||
|
||||
.lr.ph: ; preds = %0
|
||||
%2 = getelementptr inbounds %struct.B, %struct.B* %q, i64 0, i32 0
|
||||
%3 = getelementptr inbounds %struct.B, %struct.B* %q, i64 0, i32 1
|
||||
br label %a4
|
||||
|
||||
a4: ; preds = %4, %.lr.ph
|
||||
%i.02 = phi i32 [ 0, %.lr.ph ], [ %a9, %a4 ]
|
||||
%.01 = phi %struct.B* [ %p, %.lr.ph ], [ %a10, %a4 ]
|
||||
%a5 = load i16, i16* %2, align 2
|
||||
%a7 = getelementptr inbounds %struct.B, %struct.B* %.01, i64 0, i32 0
|
||||
store i16 %a5, i16* %a7, align 2
|
||||
%a8 = getelementptr inbounds %struct.B, %struct.B* %.01, i64 0, i32 1
|
||||
%a6 = load i16, i16* %3, align 2
|
||||
store i16 %a6, i16* %a8, align 2
|
||||
%a9 = add nsw i32 %i.02, 1
|
||||
%a10 = getelementptr inbounds %struct.B, %struct.B* %.01, i64 1
|
||||
%exitcond = icmp eq i32 %a9, %count
|
||||
br i1 %exitcond, label %._crit_edge, label %a4
|
||||
|
||||
._crit_edge: ; preds = %4, %0
|
||||
ret void
|
||||
}
|
||||
|
||||
; This test contains nothing but a simple byte load and store. Since
|
||||
; movb encodes smaller, we do not want to use movzbl unless in a tight loop.
|
||||
; So this test checks that movb is used.
|
||||
; CHECK-LABEL: foo3:
|
||||
; CHECK: movb
|
||||
; CHECK: movb
|
||||
define void @foo3(i8 *%dst, i8 *%src) {
|
||||
%t0 = load i8, i8 *%src, align 1
|
||||
store i8 %t0, i8 *%dst, align 1
|
||||
ret void
|
||||
}
|
||||
|
||||
; This test contains nothing but a simple word load and store. Since
|
||||
; movw and movzwl are the same size, we should always choose to use
|
||||
; movzwl instead.
|
||||
; CHECK-LABEL: foo4:
|
||||
; CHECK: movzwl
|
||||
; CHECK: movw
|
||||
define void @foo4(i16 *%dst, i16 *%src) {
|
||||
%t0 = load i16, i16 *%src, align 2
|
||||
store i16 %t0, i16 *%dst, align 2
|
||||
ret void
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user