926 Commits

Author SHA1 Message Date
Joerg Sonnenberger
ef8c4cd636 Revert r303763, results in asserts i.e. while building Ruby.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304179 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-29 22:52:17 +00:00
Matthew Simpson
9e8c6339d7 [LV] Update type in cost model for scalarization
For non-uniform instructions marked for scalarization, we should update
`VectorTy` when computing instruction costs to reflect the scalar type. In
addition to determining instruction costs, this type is also used to signal
that all instructions in the loop will be scalarized. This currently affects
memory instructions and non-pointer induction variables and their updates. (We
also mark GEPs scalar after vectorization, but their cost is computed together
with memory instructions.) For scalarized induction updates, this patch also
scales the scalar cost by the vectorization factor, corresponding to each
induction step.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303763 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-24 15:26:15 +00:00
Jonas Paulsson
a551a28baa [LoopVectorizer] Let target prefer scalar addressing computations.
The loop vectorizer usually vectorizes any instruction it can and then
extracts the elements for a scalarized use. On SystemZ, all elements
containing addresses must be extracted into address registers (GRs). Since
this extraction is not free, it is better to have the address in a suitable
register to begin with. By forcing address arithmetic instructions and loads
of addresses to be scalar after vectorization, two benefits result:

* No need to extract the register
* LSR optimizations trigger (LSR isn't handling vector addresses currently)

Benchmarking show improvements on SystemZ with this new behaviour.

Any other target could try this by returning false in the new hook
prefersVectorizedAddressing().

Review: Renato Golin, Elena Demikhovsky, Ulrich Weigand
https://reviews.llvm.org/D32422

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303744 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-24 13:42:56 +00:00
Ayal Zaks
f93293ef42 [LV] Report multiple reasons for not vectorizing under allowExtraAnalysis
The default behavior of -Rpass-analysis=loop-vectorizer is to report only the
first reason encountered for not vectorizing, if one is found, at which time the
vectorizer aborts its handling of the loop. This patch allows multiple reasons
for not vectorizing to be identified and reported, at the potential expense of
additional compile-time, under allowExtraAnalysis which can currently be turned
on by Clang's -fsave-optimization-record and opt's -pass-remarks-missed.

Removed from LoopVectorizationLegality::canVectorize() the redundant checking
and reporting if we CantComputeNumberOfIterations, as LAI::canAnalyzeLoop() also
does that. This redundancy is caught by a lit test once multiple reasons are
reported.

Patch initially developed by Dror Barak.

Differential Revision: https://reviews.llvm.org/D33396


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303613 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-23 07:08:02 +00:00
Amara Emerson
fc4cf8d86e Fix vector pass-through value being unused in IRBuilder::CreateMaskedGather
Also s/0/nullptr in the call site in LV.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303416 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-19 10:40:18 +00:00
Matthew Simpson
61c3d36e2e Revert 303174, 303176, and 303178
These commits are breaking the bots. Reverting to investigate.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303182 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-16 15:50:30 +00:00
Matthew Simpson
d9ed77b3ad [LV] Avoid potentential division by zero when selecting IC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303174 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-16 14:43:55 +00:00
Simon Pilgrim
07ac640d6c [LoopOptimizer][Fix]PR32859, PR24738
The Loop vectorizer pass introduced undef value while it is fixing output of LCSSA form.
Here it is:

before: %e.0.ph = phi i32 [ 0, %for.inc.2.i ]
after: %e.0.ph = phi i32 [ 0, %for.inc.2.i ], [ undef, %middle.block ]

and after this change we have:

%e.0.ph = phi i32 [ 0, %for.inc.2.i ]
%e.0.ph = phi i32 [ 0, %for.inc.2.i ], [ 0, %middle.block ]

Committed on behalf of @dtemirbulatov

Differential Revision: https://reviews.llvm.org/D33055

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302988 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-13 13:25:57 +00:00
Ayal Zaks
7a3330e101 [LV] Refactor ILV.vectorize{Loop}() by introducing LVP.executePlan(); NFC
Introduce LoopVectorizationPlanner.executePlan(), replacing ILV.vectorize() and
refactoring ILV.vectorizeLoop(). Method collectDeadInstructions() is moved from
ILV to LVP. These changes facilitate building VPlans and using them to generate
code, following https://reviews.llvm.org/D28975 and its tentative breakdown.

Method ILV.createEmptyLoop() is renamed ILV.createVectorizedLoopSkeleton() to
improve clarity; it's contents remain intact.

Differential Revision: https://reviews.llvm.org/D32200


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302790 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-11 11:36:33 +00:00
Anna Thomas
1fbed43c3e [LV] Fix insertion point for shuffle vectors in first order recurrence
Summary:
In first order recurrence vectorization, when the previous value is a phi node, we need to
set the insertion point to the first non-phi node.
We can have the previous value being a phi node, due to the generation of new
IVs as part of trunc optimization [1].

[1] https://reviews.llvm.org/rL294967

Reviewers: mssimpso, mkuper

Subscribers: mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32969

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302532 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-09 14:29:33 +00:00
Amara Emerson
8f1f7ce9d1 Introduce experimental generic intrinsics for horizontal vector reductions.
- This change allows targets to opt-in to using them instead of the log2
  shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
  factored out into LoopUtils, and now have a unified interface for generating
  reductions regardless of the preference of the target. LoopUtils now uses TTI
  to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.

Differential Revision: https://reviews.llvm.org/D30086



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302514 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-09 10:43:25 +00:00
Jonas Paulsson
245084ed3c Use right function in LoopVectorize.
-    unsigned AS = getMemInstAlignment(I);
+    unsigned AS = getMemInstAddressSpace(I);

Review: Hal Finkel

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302114 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-04 05:31:56 +00:00
Matthew Simpson
86197951a0 [LV] Handle external uses of floating-point induction variables
Reference: https://bugs.llvm.org/show_bug.cgi?id=32758
Differential Revision: https://reviews.llvm.org/D32445

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301428 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-26 16:23:02 +00:00
Gil Rapaport
e9d7fd8bfe [LV] Remove redundant basic block split
This patch is part of D28975's breakdown.

Genreating the control-flow to guard predicated instructions modified to
only use SplitBlockAndInsertIfThen() for producing the if-then construct.

Differential Revision: https://reviews.llvm.org/D32224


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301293 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-25 05:57:22 +00:00
Matthew Simpson
915a4bc0f9 [LV] Model if-converted phi node costs
Phi nodes in non-header blocks are converted to select instructions after
if-conversion. This patch updates the cost model to account for the selects.

Differential Revision: https://reviews.llvm.org/D31906

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300980 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-21 14:14:54 +00:00
Gil Rapaport
e9d7070f01 [LV] Cache block mask values
This patch is part of D28975's breakdown.

Add caching for block masks similar to the cache already used for edge masks,
replacing generation per user with reusing the first generated value which
dominates all uses.

Differential Revision: https://reviews.llvm.org/D32054


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300557 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-18 14:43:43 +00:00
Gil Rapaport
e92557c930 [LV] Remove implicit single basic block assumption
This patch is part of D28975's breakdown - no change in output intended.

LV's code currently assumes the vectorized loop is a single basic block up
until predicateInstructions() is called. This patch removes two manifestations
of this assumption (loop phi incoming values, dominator tree update) by
replacing the use of vectorLoopBody with the vectorized loop's latch/header.

Differential Revision: https://reviews.llvm.org/D32040


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300310 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-14 07:30:23 +00:00
Anna Thomas
0bd00d7d97 [LV] Fix the vector code generation for first order recurrence
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.

Reviewers: mssimpso, mkuper, anemet

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D31979

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300238 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-13 18:59:25 +00:00
Ayal Zaks
17f2fca608 [LV] Refactor ILV to provide vectorizeInstruction(); NFC
Refactoring InnerLoopVectorizer's vectorizeBlockInLoop() to provide
vectorizeInstruction(). Aligning DeadInstructions with its only user.
Facilitates driving the transformation by VPlan - follows
https://reviews.llvm.org/D28975 and its tentative breakdown.

Differential Revision: https://reviews.llvm.org/D31997


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300183 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-13 09:07:23 +00:00
Jonas Paulsson
16b23e95d5 [LoopVectorizer] Improve handling of branches during cost estimation.
The cost for a branch after vectorization is very different depending on if
the vectorizer will if-convert the block (branch is eliminated), or if
scalarized and predicated blocks will be produced (branch duplicated before
each block). There is also the case of remaining scalar branches, such as the
back-edge branch.

This patch handles these cases differently with TTI based cost estimates.

Review: Matthew Simpson
https://reviews.llvm.org/D31175

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300058 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-12 13:13:15 +00:00
Jonas Paulsson
43d439da88 [LoopVectorizer, TTI] New method supportsEfficientVectorElementLoadStore()
Since SystemZ supports vector element load/store instructions, there is no
need for extracts/inserts if a vector load/store gets scalarized.

This patch lets Target specify that it supports such instructions by means of
a new TTI hook that defaults to false.

The use for this is in the LoopVectorizer getScalarizationOverhead() method,
which will with this patch produce a smaller sum for a vector load/store on
SystemZ.

New test: test/Transforms/LoopVectorize/SystemZ/load-store-scalarization-cost.ll

Review: Adam Nemet
https://reviews.llvm.org/D30680

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300056 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-12 12:41:37 +00:00
Jonas Paulsson
c33bdfa7b1 [SystemZ] TargetTransformInfo cost functions implemented.
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.

Interleaved access vectorization enabled.

BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.

Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300052 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-12 11:49:08 +00:00
Anna Thomas
3d57035bd9 [LV] Avoid vectorizing first order recurrence when phi uses are outside loop
In the vectorization of first order recurrence, we vectorize such
that the last element in the vector will be the one extracted to pass into the
scalar remainder loop. However, this is not true when there is a phi (other
than the primary induction variable) is used outside the loop.
In such a case, we need the value from the second last iteration (i.e.
the phi value), not the last iteration (which would be the phi update).
I've added a test case for this. Also see PR32396.

A follow up patch would generate the correct code gen for such cases,
and turn this vectorization on.

Differential Revision: https://reviews.llvm.org/D31910

Reviewers: mssimpso

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299985 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-11 21:02:00 +00:00
Matthew Simpson
ccc38cc5e7 Reapply r298620: [LV] Vectorize GEPs
This patch reapplies r298620. The original patch was reverted because of two
issues. First, the patch exposed a bug in InstCombine that caused the Chromium
builds to fail (PR32414). This issue was fixed in r299017. Second, the patch
introduced a bug in the vectorizer's scalars analysis that caused test suite
builds to fail on SystemZ. The scalars analysis was too aggressive and marked a
memory instruction scalar, even though it was going to be vectorized. This
issue has been fixed in the current patch and several new test cases for the
scalars analysis have been added.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299770 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-07 14:15:34 +00:00
Matthew Simpson
fcdf36fabb [LV] Transform truncations of non-primary induction variables
The vectorizer tries to replace truncations of induction variables with new
induction variables having the smaller type. After r295063, this optimization
was applied to all integer induction variables, including non-primary ones.
When optimizing the truncation of a non-primary induction variable, we still
need to transform the new induction so that it has the correct start value.
This should fix PR32419.

Reference: https://bugs.llvm.org/show_bug.cgi?id=32419

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298882 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-27 20:07:38 +00:00
Ivan Krasin
76f79b8934 Revert r298620: [LV] Vectorize GEPs
Reason: breaks linking Chromium with LLD + ThinLTO (a pass crashes)
LLVM bug: https://bugs.llvm.org//show_bug.cgi?id=32413

Original change description:

[LV] Vectorize GEPs

This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.

With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.

The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.

Original Differential Revision: https://reviews.llvm.org/D30710



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298735 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-24 20:49:43 +00:00
Matthew Simpson
77a842c0a2 [LV] Vectorize GEPs
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.

With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.

The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.

Differential Revision: https://reviews.llvm.org/D30710

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298620 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-23 16:29:58 +00:00
Matthew Simpson
49901e7a48 [LV] Delete unneeded scalar GEP creation code
The code for generating scalar base pointers in vectorizeMemoryInstruction is
not needed. We currently scalarize all GEPs and maintain the scalarized values
in VectorLoopValueMap. The GEP cloning in this unneeded code is the same as
that in scalarizeInstruction. The test cases that changed as a result of this
patch changed because we were able to reuse the scalarized GEP that we
previously generated instead of cloning a new one.

Differential Revision: https://reviews.llvm.org/D30587

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298615 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-23 16:07:21 +00:00
Gil Rapaport
a27a1f7795 [LV] Refactor cross-iteration phi's back-patching; NFC
This patch refactors the PHisToFix loop as follows:

- The loop itself now resides in its own method.
- The new method iterates on scalar-loop's header; the PHIsToFix map formerly
  propagated as an output parameter and filled during phi widening is removed.
- The code handling reductions is moved into its own method, similar to the
  existing fixFirstOrderRecurrence().

Differential Revision: https://reviews.llvm.org/D30755


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297740 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-14 13:50:47 +00:00
Ayal Zaks
1a739b3383 [LV] Refactor Cost Model's selectVectorizationFactor(); NFC
Refactoring Cost Model's selectVectorizationFactor() so that it handles only the
selection of the best VF from a pre-computed range of candidate VF's, extracting
early-exit criteria and the computation of a MaxVF upper-bound to other methods,
all driven by a newly introduced LoopVectorizationPlanner.

Differential Revision: https://reviews.llvm.org/D30653


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297737 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-14 13:07:04 +00:00
Jonas Paulsson
85dd82a95b [TargetTransformInfo] getIntrinsicInstrCost() scalarization estimation improved
getIntrinsicInstrCost() used to only compute scalarization cost based on types.
This patch improves this so that the actual arguments are checked when they are
available, in order to handle only unique non-constant operands.

Tests updates:

Analysis/CostModel/X86/arith-fp.ll
Transforms/LoopVectorize/AArch64/interleaved_cost.ll
Transforms/LoopVectorize/ARM/interleaved_cost.ll

The improvement in getOperandsScalarizationOverhead() to differentiate on
constants made it necessary to update the interleaved_cost.ll tests even
though they do not relate to intrinsics.

Review: Hal Finkel
https://reviews.llvm.org/D29540

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297705 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-14 06:35:36 +00:00
Gil Rapaport
710c3a271b [LV] Set memcheck metadata also for VF==1
This commit is a follow-up on r297580. It fixes the FIXME added temporarily
by that commit to keep the removal of Unroller's specialized version of
scalarizeInstruction() an NFC. See https://reviews.llvm.org/D30715 for details.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297610 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-13 10:23:46 +00:00
Gil Rapaport
dd86c5c182 [LV] A unified scalarizeInstruction() for Vectorizer and Unroller; NFC
Unroller's specialized scalarizeInstruction() is mostly duplicating Vectorizer's
variant. OTOH Vectorizer's scalarizeInstruction() already supports the special
case of VF==1 except for avoiding mask-bit extraction in that case. This patch
removes Unroller's specialized version in favor of a unified method.

The only functional difference between the two variants seems to be setting
memcheck metadata for loads and stores only in Vectorizer's variant, which is a
bug in Unroller. To keep this patch an NFC the unified method doesn't set
memcheck metadata for VF==1.

Differential Revision: https://reviews.llvm.org/D30715


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297580 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-12 12:31:38 +00:00
Ayal Zaks
33175e7038 Test commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297579 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-12 09:48:06 +00:00
Daniel Berlin
5e2cfa2e2d Add support for DenseMap/DenseSet count and find using const pointers
Summary:
Similar to SmallPtrSet, this makes find and count work with both const
referneces and const pointers.

Reviewers: dblaikie

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D30713

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297424 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-10 00:25:26 +00:00
Matthew Simpson
8ca15c2f22 [LV] Select legal insert point when fixing first-order recurrences
Because IRBuilder performs constant-folding, it's not guaranteed that an
instruction in the original loop map to an instruction in the vector loop. It
could map to a constant vector instead. The handling of first-order recurrences
was incorrectly making this assumption when setting the IRBuilder's insert
point.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297302 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-08 18:18:20 +00:00
Matthew Simpson
30bc56bd3c [LV] Consider users that are memory accesses in uniforms expansion step
When expanding the set of uniform instructions beyond the seed instructions
(e.g., consecutive pointers), we mark a new instruction uniform if all its
loop-varying users are uniform. We should also allow users that are consecutive
or interleaved memory accesses. This fixes cases where we have an instruction
that is used as the pointer operand of a consecutive access but also used by a
non-memory instruction that later becomes uniform as part of the expansion.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297179 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-07 18:47:30 +00:00
Matthew Simpson
465f5a16f9 [LV] Considier non-consecutive but vectorizable accesses for VF selection
When computing the smallest and largest types for selecting the maximum
vectorization factor, we currently ignore loads and stores of pointer types if
the memory access is non-consecutive. We do this because such accesses must be
scalarized regardless of vectorization factor, and thus shouldn't be considered
when determining the factor. This patch makes this check less aggressive by
also considering non-consecutive accesses that may be vectorized, such as
interleaved accesses. Because we don't know at the time of the check if an
accesses will certainly be vectorized (this is a cost model decision given a
particular VF), we consider all accesses that can potentially be vectorized.

Differential Revision: https://reviews.llvm.org/D30305

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296747 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-02 13:55:05 +00:00
Adam Nemet
90c4f1ee16 [LV] These remark should have been missed remarks
The practice in LV is that we emit analysis remarks and then finally report
either a missed or applied remark on the final decision whether vectorization
is taking place.  On this code path, we were closing with an analysis remark.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296578 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-01 04:31:15 +00:00
Adam Nemet
d2478aa1d8 Revert "(HEAD, origin/master, origin/HEAD, master) [LV] These should missed remarks"
This reverts commit r296544.

This got committed by accident.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296546 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-28 23:54:27 +00:00
Adam Nemet
2a73470ef0 [LV] These should missed remarks
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296544 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-28 23:48:58 +00:00
Matthew Simpson
aceef6fa37 [LV] Merge floating-point and integer induction widening code
This patch merges the existing floating-point induction variable widening code
into the integer induction variable widening code, creating a single set of
functions for both kinds of inductions. The primary motivation for doing this
is to enable vector phi node creation for floating-point induction variables.

Differential Revision: https://reviews.llvm.org/D30211

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296145 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-24 18:20:12 +00:00
Adam Nemet
d7e57f0502 [LAA] Remove unused LoopAccessReport
The need for this removed when I converted everything to use the opt-remark
classes directly with the streaming interface.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296017 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-23 21:17:36 +00:00
Adam Nemet
66f6b76187 [LV] Remove unused VectorizationReport
The need for this removed when I converted everything to use the opt-remark
classes directly with the streaming interface.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296016 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-23 21:17:31 +00:00
Karl-Johan Karlsson
29fec22c97 [LoopVectorize] Added address space check when analysing interleaved accesses
Prevent memory objects of different address spaces to be part of
the same load/store groups when analysing interleaved accesses.

This is fixing pr31900.

Reviewers: HaoLiu, mssimpso, mkuper

Reviewed By: mssimpso, mkuper

Subscribers: llvm-commits, efriedma, mzolotukhin

Differential Revision: https://reviews.llvm.org/D29717

This reverts r295042 (re-applies r295038) with an additional fix for the
buildbot problem.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295858 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-22 18:37:36 +00:00
Matthew Simpson
132a62ceff [LV] Remove constant restriction for vector phi creation
We previously only created a vector phi node for an induction variable if its
step had a constant integer type. However, the step actually only needs to be
loop-invariant. We only handle inductions having loop-invariant steps, so this
patch should enable vector phi node creation for all integer induction
variables that will be vectorized.

Differential Revision: https://reviews.llvm.org/D29956

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295456 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-17 16:09:07 +00:00
Michael Kuperstein
ea31069c22 [LV] Rename Induction to PrimaryInduction. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295111 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-14 22:14:01 +00:00
Matthew Simpson
06f1a4b52b Reapply "[LV] Extend trunc optimization to all IVs with constant integer steps"
This reapplies commit r294967 with a fix for the execution time regressions
caught by the clang-cmake-aarch64-quick bot. We now extend the truncate
optimization to non-primary induction variables only if the truncate isn't
already free.

Differential Revision: https://reviews.llvm.org/D29847

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295063 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-14 16:28:32 +00:00
Karl-Johan Karlsson
ad0908f33b Revert "[LoopVectorize] Added address space check when analysing interleaved accesses"
This reverts r295038. The buildbot clang-with-thin-lto-ubuntu failed.
I'm reverting to investigate.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295042 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-14 10:06:16 +00:00
Karl-Johan Karlsson
26a008fb2f [LoopVectorize] Added address space check when analysing interleaved accesses
Prevent memory objects of different address spaces to be part of
the same load/store groups when analysing interleaved accesses.

This is fixing pr31900.

Reviewers: HaoLiu, mssimpso, mkuper

Reviewed By: mssimpso, mkuper

Subscribers: llvm-commits, efriedma, mzolotukhin

Differential Revision: https://reviews.llvm.org/D29717

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295038 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-14 08:14:06 +00:00