Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148553 91177308-0d34-0410-b5e6-96231b3b80d8
can't handle. Also don't produce non-zero results for things which won't be
transformed by SROA at all just because we saw the loads/stores before we saw
the use of the address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148536 91177308-0d34-0410-b5e6-96231b3b80d8
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148535 91177308-0d34-0410-b5e6-96231b3b80d8
'insertvalue' instructions that recreate the structure returned by the
'landingpad' instruction. Because the 'insertvalue' instruction isn't supported
by FastISel, this can save a bit of time during -O0 compilation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148520 91177308-0d34-0410-b5e6-96231b3b80d8
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148444 91177308-0d34-0410-b5e6-96231b3b80d8
It adds register mask operands to x86 call instructions. Once all the
backend passes support register mask operands, this will be permanently
enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148438 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to implicit register operands. MC doesn't understand
register liveness and call clobbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148437 91177308-0d34-0410-b5e6-96231b3b80d8
This SelectionDAG node will be attached to call nodes by LowerCall(),
and eventually becomes a MO_RegisterMask MachineOperand on the
MachineInstr representing the call instruction.
LowerCall() will attach a register mask that depends on the calling
convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148436 91177308-0d34-0410-b5e6-96231b3b80d8
If the fixup is out of range for the Thumb1 instruction, relax it
to the Thumb2 encoding instead.
rdar://10711829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148424 91177308-0d34-0410-b5e6-96231b3b80d8
If the two fragments are in the same Atom, then the difference
expression is resolvable at compile time. Previously we were checking
that they were in the same fragment, but that breaks down in the
presence of instruction relaxation which has multiple fragments in the
same atom.
rdar://10711829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148423 91177308-0d34-0410-b5e6-96231b3b80d8