We had already disabled the pattern for SSE4.1 and SSE4.2. But it got re-enabled for AVX and AVX512.
With SSE41 we rely on a separate (v4f32 (X86vzmovl VR128)) pattern to select blendps with a xorps to create zeroess. And a separate (v4f32 (scalar_to_vector FR32X)) to select a COPY_TO_REG_CLASS to move FR32 to VR128
The same thing can happen for AVX with vblendps and those separate patterns already exist.
For AVX512, (v4f32 (X86vzmov VR128)) will select a VMOVSS instruction instead of VBLENDPS due to their not being a EVEX VBLENDPS. This is what we were getting out of the larger pattern anyway. So the larger pattern is unneeded for AVX512 too.
For SSE1-SSSE3 we can rely on (v4f32 (X86vzmov VR128)) selecting a MOVSS similar to AVX512. Again this is what the larger pattern did too.
So the only real change here is that AVX1/2 now properly outputs a VBLENDPS during isel instead of a VMOVSS to match SSE41. Most tests didn't notice because the two address instruction pass knows how to turn VMOVSS into VBLENDPS to get an independent destination register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312564 91177308-0d34-0410-b5e6-96231b3b80d8
If the only call in a function is a tail call, the
function isn't considered to have a call since it's a
type of return.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312561 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have this same pattern for AVX2 so I don't believe we should have it for AVX512. We also didn't have it for v16f32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312543 91177308-0d34-0410-b5e6-96231b3b80d8
Use the STI member of ARMInstructionSelector instead of
TII.getSubtarget() and also make use of STI's methods instead of
checking the object format manually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312522 91177308-0d34-0410-b5e6-96231b3b80d8
In RWPI code, globals that are not read-only are accessed relative to
the SB register (R9). This is achieved by explicitly generating an ADD
instruction between SB and an offset that we either load from a constant
pool or movw + movt into a register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312521 91177308-0d34-0410-b5e6-96231b3b80d8
This is possible if C1 and C2 are both powers of 2. Or if binop is 'and' then ~C2 needs to be a power of 2.
We already support this for 'or', but we should be able to support 'and' and 'xor'. This will be enhanced by D37274.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312519 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of creating a Constant and then calling m_APInt with it (which will always return true). Just create an APInt initially, and use that for the checks in isSelect01 function. If it turns out we do need the Constant, create it from the APInt.
This is a refactor for a future patch that will do some more checks of the constant values here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312517 91177308-0d34-0410-b5e6-96231b3b80d8
builds seem to be having trouble with it.
http://lab.llvm.org:8011/builders/clang-x86_64-linux-selfhost-modules-2/builds/11401
When trying to link lli-child-target, the linker reports missing symbols for
the 'Name' members of 'rpc::Function<OrcRPCNegotiate, FunctionIdT(std::string)>'
(base class for OrcRPCNegotiate) and 'rpc::Function<OrcRPCResponse, void()>'
(base class for OrcRPCResponse), despite there being definitions for these
immediately below the rpc::Function class template.
This looks like the same bug that bit OrcRemoteTargetClient/Server in r286920.
<rdar://problem/34249745>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312515 91177308-0d34-0410-b5e6-96231b3b80d8
If multiple conditional branches are executed based on the same comparison, we can execute multiple conditional branches based on the result of one comparison on PPC. For example,
if (a == 0) { ... }
else if (a < 0) { ... }
can be executed by one compare and two conditional branches instead of two pairs of a compare and a conditional branch.
This patch identifies a code sequence of the two pairs of a compare and a conditional branch and merge the compares if possible.
To maximize the opportunity, we do canonicalization of code sequence before merging compares.
For the above example, the input for this pass looks like:
cmplwi r3, 0
beq 0, .LBB0_3
cmpwi r3, -1
bgt 0, .LBB0_4
So, before merging two compares, we canonicalize it as
cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
beq 0, .LBB0_3
cmpwi r3, 0 ; greather than -1 means greater or equal to 0
bge 0, .LBB0_4
The generated code should be
cmpwi r3, 0
beq 0, .LBB0_3
bge 0, .LBB0_4
Differential Revision: https://reviews.llvm.org/D37211
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312514 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces RemoteObjectClientLayer and RemoteObjectServerLayer,
which can be used to forward ORC object-layer operations from a JIT stack in
the client to a JIT stack (consisting only of object-layers) in the server.
This is a new way to support remote-JITing in LLVM. The previous approach
(supported by OrcRemoteTargetClient and OrcRemoteTargetServer) used a
remote-mapping memory manager that sat "beneath" the JIT stack and sent
fully-relocated binary blobs to the server. The main advantage of the new
approach is that relocatable objects can be cached on the server and re-used
(if the code that they represent hasn't changed), whereas fully-relocated blobs
can not (since the addresses they have been permanently bound to will change
from run to run).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312511 91177308-0d34-0410-b5e6-96231b3b80d8
code duplication in the client, and improve error propagation.
This patch moves the OrcRemoteTarget rpc::Function declarations from
OrcRemoteTargetRPCAPI into their own namespaces under llvm::orc::remote so that
they can be used in new contexts (in particular, a remote-object-file adapter
layer that I will commit shortly).
Code duplication in OrcRemoteTargetClient (especially in loops processing the
code, rw-data and ro-data allocations) is removed by moving the loop bodies
into their own functions.
Error propagation is (slightly) improved by adding an ErrorReporter functor to
the OrcRemoteTargetClient -- Errors that can't be returned (because they occur
in destructors, or behind stable APIs that don't provide error returns) can be
sent to the ErrorReporter instead. Some methods in the Client API are also
changed to make better use of the Expected class: returning Expected<T>s rather
than returning Errors and taking T&s to store the results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312500 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid use of VPERMPS where we don't need it by instead using the variable mask version of VPERMILPS for unary shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312486 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Improve how MaxVF is computed while taking into account that MaxVF should not be larger than the loop's trip count.
Other than saving on compile-time by pruning the possible MaxVF candidates, this patch fixes pr34438 which exposed the following flow:
1. Short trip count identified -> Don't bail out, set OptForSize:=True to avoid tail-loop and runtime checks.
2. Compute MaxVF returned 16 on a target supporting AVX512.
3. OptForSize -> choose VF:=MaxVF.
4. Bail out because TripCount = 8, VF = 16, TripCount % VF !=0 means we need a tail loop.
With this patch step 2. will choose MaxVF=8 based on TripCount.
Reviewers: Ayal, dorit, mkuper, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D37425
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312472 91177308-0d34-0410-b5e6-96231b3b80d8
Debug information can be, and was, corrupted when the runtime
remainder loop was fully unrolled. This is because a !null node can
be created instead of a unique one describing the loop. In this case,
the original node gets incorrectly updated with the NewLoopID
metadata.
In the case when the remainder loop is going to be quickly fully
unrolled, there isn't the need to add loop metadata for it anyway.
Differential Revision: https://reviews.llvm.org/D37338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312471 91177308-0d34-0410-b5e6-96231b3b80d8
This reorders some patterns to get tablegen to detect them as duplicates. Tablegen only detects duplicates when creating variants for commutable operations. It does not detect duplicates between the patterns as written in the td file. So we need to ensure all the FMA patterns in the td file are unique.
This also uses null_frag to remove some other unneeded patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312470 91177308-0d34-0410-b5e6-96231b3b80d8
This uses the capability introduced in r312464 to make SDNode patterns commutable on the first two operands.
This allows us to remove some of the extra FMA patterns that have to put loads and mask operands in different places to cover all cases. This even includes patterns that were missing to support match a load in the first operand with FMA4. Non-broadcast loads with masking for AVX512.
I believe this is causing us to generate some duplicate patterns because tablegen's isomorphism checks don't catch isomorphism between the patterns as written in the td. It only detects isomorphism in the commuted variants it tries to create. The the unmasked 231 and 132 memory forms are isomorphic as written in the td file so we end up keeping both. I think we precommute the 132 pattern to fix this.
We also need a follow up patch to go back to the legacy FMA3 instructions and add patterns to the 231 and 132 forms which we currently don't have.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312469 91177308-0d34-0410-b5e6-96231b3b80d8