As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309643 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309249 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309043 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309032 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308821 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308803 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308559 91177308-0d34-0410-b5e6-96231b3b80d8
A PE COFF spec compliant import library generator.
Intended to be used with mingw-w64.
Supports:
PE COFF spec (section 8, Import Library Format)
PE COFF spec (Aux Format 3: Weak Externals)
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D29892
This reapplies rL308329, which was reverted in rL308374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308379 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first patch towards creating the llvm-mt tool for merging
Windows manifests. This is a reimplementation of mt.exe.
Reviewers: zturner, ruiu, rnk
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D35333
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308224 91177308-0d34-0410-b5e6-96231b3b80d8
Modify the --system-libs option in llvm-config to print system libs only
when using static linking. The system libraries are irrelevant when
linking to a shared library since the library has appropriate library
dependencies embedded.
Modify the --system-libs test appropriately to force static linking, and
disable it if static libs are not available (i.e. BUILD_SHARED_LIBS is
enabled).
Differential Revision: https://reviews.llvm.org/D27805
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291285 91177308-0d34-0410-b5e6-96231b3b80d8
Canonicalize all CMake booleans to 0/1 before passing them to lit, to
ensure that the Python side handles all of them consistently
and correctly. 0/1 is a safe choice of values that trigger the same
boolean interpretation in CMake, Python and C++.
Furthermore, using them without quotes improves the chance Python will
explicitly fail when an incorrect value (such as ON/OFF, TRUE/FALSE,
YES/NO) is accidentally passed, rather than silently misinterpreting
the value.
This replaces a lot of different logics spread around lit site files,
attempting to partially reproduce the boolean logic used in CMake
and usually silently failing when an uncommon value was used instead.
In fact, some of them were never working correctly since different
values were assigned in CMake and checked in Python.
The alternative solution could be to create a common parser for CMake
booleans in lit and use it consistently throughout the site files.
However, it does not seem like the best idea to create redundant
implementation of the same logic and have to follow upstream if it ever
is extended to handle more values.
Differential Revision: https://reviews.llvm.org/D28294
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291284 91177308-0d34-0410-b5e6-96231b3b80d8
This program is for testing features that rely on multi-module bitcode files.
It takes a multi-module bitcode file, extracts one of the modules and writes
it to the output file.
Differential Revision: https://reviews.llvm.org/D26778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288201 91177308-0d34-0410-b5e6-96231b3b80d8
This interface allows clients to write multiple modules to a single
bitcode file. Also introduce the llvm-cat utility which can be used
to create a bitcode file containing multiple modules.
Differential Revision: https://reviews.llvm.org/D26179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288195 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM now has the ability to record information from optimization remarks in a
machine-consumable YAML file for later analysis. This can be enabled in opt
(see r282539), and D25225 adds a Clang flag to do the same. This patch adds
llvm-opt-report, a tool to generate basic optimization "listing" files
(annotated sources with information about what optimizations were performed)
from one of these YAML inputs.
D19678 proposed to add this capability directly to Clang, but this more-general
YAML-based infrastructure was the direction we decided upon in that review
thread.
For this optimization report, I focused on making the output as succinct as
possible while providing information on inlining and loop transformations. The
goal here is that the source code should still be easily readable in the
report. My primary inspiration here is the reports generated by Cray's tools
(http://docs.cray.com/books/S-2496-4101/html-S-2496-4101/z1112823641oswald.html).
These reports are highly regarded within the HPC community. Intel's compiler,
for example, also has an optimization-report capability
(https://software.intel.com/sites/default/files/managed/55/b1/new-compiler-optimization-reports.pdf).
$ cat /tmp/v.c
void bar();
void foo() { bar(); }
void Test(int *res, int *c, int *d, int *p, int n) {
int i;
#pragma clang loop vectorize(assume_safety)
for (i = 0; i < 1600; i++) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
for (i = 0; i < 16; i++) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
foo();
foo(); bar(); foo();
}
D25225 adds -fsave-optimization-record (and
-fsave-optimization-record=filename), and this would be used as follows:
$ clang -O3 -o /tmp/v.o -c /tmp/v.c -fsave-optimization-record
$ llvm-opt-report /tmp/v.yaml > /tmp/v.lst
$ cat /tmp/v.lst
< /tmp/v.c
2 | void bar();
3 | void foo() { bar(); }
4 |
5 | void Test(int *res, int *c, int *d, int *p, int n) {
6 | int i;
7 |
8 | #pragma clang loop vectorize(assume_safety)
9 V4,2 | for (i = 0; i < 1600; i++) {
10 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
11 | }
12 |
13 U16 | for (i = 0; i < 16; i++) {
14 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
15 | }
16 |
17 I | foo();
18 |
19 | foo(); bar(); foo();
I | ^
I | ^
20 | }
Each source line gets a prefix giving the line number, and a few columns for
important optimizations: inlining, loop unrolling and loop vectorization. An
'I' is printed next to a line where a function was inlined, a 'U' next to an
unrolled loop, and 'V' next to a vectorized loop. These are printed on the
relevant code line when that seems unambiguous, or on subsequent lines when
multiple potential options exist (messages, both positive and negative, from
the same optimization with different column numbers are taken to indicate
potential ambiguity). When on subsequent lines, a '^' is output in the relevant
column.
Annotated source for all relevant input files are put into the listing file
(each starting with '<' and then the file name).
You can disable having the unrolling/vectorization factors appear by using the
-s flag.
Differential Revision: https://reviews.llvm.org/D25262
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283398 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a copy of the demangler in libcxxabi.
The code also has no dependencies on anything else in LLVM. To enforce
that I added it as another library. That way a BUILD_SHARED_LIBS will
fail if anyone adds an use of StringRef for example.
The no llvm dependency combined with the fact that this has to build
on linux, OS X and Windows required a few changes to the code. In
particular:
No constexpr.
No alignas
On OS X at least this library has only one global symbol:
__ZN4llvm16itanium_demangleEPKcPcPmPi
My current plan is:
Commit something like this
Change lld to use it
Change lldb to use it as the fallback
Add a few #ifdefs so that exactly the same file can be used in
libcxxabi to export abi::__cxa_demangle.
Once the fast demangler in lldb can handle any names this
implementation can be replaced with it and we will have the one true
demangler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280732 91177308-0d34-0410-b5e6-96231b3b80d8
This restores commit r278330, with fixes for a few bot failures:
- Fix a late change I had made to the save temps output file that I
missed due to existing files sitting on my disk
- Fix a bunch of Windows bot failures with "ambiguous call to overloaded
function" due to confusion between llvm::make_unique vs
std::make_unique (preface the new make_unique calls with "llvm::")
- Attempt to fix a modules bot failure by adding a missing include
to LTO/Config.h.
Original change:
Resolution-based LTO API.
Summary:
This introduces a resolution-based LTO API. The main advantage of this API over
existing APIs is that it allows the linker to supply a resolution for each
symbol in each object, rather than the combined object as a whole. This will
become increasingly important for use cases such as ThinLTO which require us
to process symbol resolutions in a more complicated way than just adjusting
linkage.
Patch by Peter Collingbourne.
Reviewers: rafael, tejohnson, mehdi_amini
Subscribers: lhames, tejohnson, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D20268
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278338 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r278330.
I made a change to the save temps output that is causing issues with the
bots. Didn't realize this because I had older output files sitting on
disk in my test output directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278331 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This introduces a resolution-based LTO API. The main advantage of this API over
existing APIs is that it allows the linker to supply a resolution for each
symbol in each object, rather than the combined object as a whole. This will
become increasingly important for use cases such as ThinLTO which require us
to process symbol resolutions in a more complicated way than just adjusting
linkage.
Patch by Peter Collingbourne.
Reviewers: rafael, tejohnson, mehdi_amini
Subscribers: lhames, tejohnson, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D20268
Address review comments
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278330 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When this flag is specified, the target llvm-lto is not built, but is still
used as a dependency of the test targets. cmake 2.8 silently ignored this
situation, but with cmake_minimum_required(3.4) it becomes an error. Fix this
by avoiding the inclusion of the target as a dependency.
Reviewers: beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20882
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271530 91177308-0d34-0410-b5e6-96231b3b80d8
The module splitter splits a module into linkable partitions. It will
be used to implement parallel LTO code generation.
This initial version of the splitter does not attempt to deal with the
somewhat subtle symbol visibility issues around module splitting. These
will be dealt with in a future change.
Differential Revision: http://reviews.llvm.org/D12132
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245662 91177308-0d34-0410-b5e6-96231b3b80d8