The static analyzer is warning about potential null dereferences of dyn_cast<> results, we can use cast<> directly as we know that these cases should all be CastInst, which is why its working atm and anyway cast<> will assert if they aren't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372116 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371284 91177308-0d34-0410-b5e6-96231b3b80d8
Allow vectorizing loops that have reductions when tail is folded by masking.
A select is introduced in VPlan, choosing between the last value carried by the
loop-exit/live-out instruction of the reduction, and the penultimate value
carried by the reduction phi, according to the "i < n" mask of fold-tail.
This select replaces the last value as the live-out value of the loop.
Differential Revision: https://reviews.llvm.org/D66720
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@370173 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369013 91177308-0d34-0410-b5e6-96231b3b80d8
assume_safety implies that loads under "if's" can be safely executed
speculatively (unguarded, unmasked). However this assumption holds only for the
original user "if's", not those introduced by the compiler, such as the
fold-tail "if" that guards us from loading beyond the original loop trip-count.
Currently the combination of fold-tail and assume-safety pragmas results in
ignoring the fold-tail predicate that guards the loads, generating unmasked
loads. This patch fixes this behavior.
Differential Revision: https://reviews.llvm.org/D66106
Reviewers: Ayal, hsaito, fhahn
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368973 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit fc33e33776b7a7ce22e539f0ec2e3bfdb09ad361.
This commit depends on the rolled back commit rL367901, and thus needs
to be rolled back.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368109 91177308-0d34-0410-b5e6-96231b3b80d8
With the switch to widening legalization, we need to a better
job of costing extractions of less than 128-bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368081 91177308-0d34-0410-b5e6-96231b3b80d8
This allows folding of the scalar epilogue loop (the tail) into the main
vectorised loop body when the loop is annotated with a "vector predicate"
metadata hint. To fold the tail, instructions need to be predicated (masked),
enabling/disabling lanes for the remainder iterations.
Differential Revision: https://reviews.llvm.org/D65197
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@367592 91177308-0d34-0410-b5e6-96231b3b80d8
This refactors boolean 'OptForSize' that was passed around in a lot of places.
It controlled folding of the tail loop, the scalar epilogue, into the main loop
but code-size reasons may not be the only reason to do this. Thus, this is a
first step to generalise the concept of tail-loop folding, and hence OptForSize
has been renamed and is using an enum ScalarEpilogueStatus that holds the
status how the epilogue should be lowered.
This will be followed up by D65197, that picks up the predicate loop hint and
performs the tail-loop folding.
Differential Revision: https://reviews.llvm.org/D64916
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@366993 91177308-0d34-0410-b5e6-96231b3b80d8
We do not compute the scalarization overhead in getVectorIntrinsicCost
and TTI::getIntrinsicInstrCost requires the full arguments list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@366049 91177308-0d34-0410-b5e6-96231b3b80d8
Loop invariant operands do not need to be scalarized, as we are using
the values outside the loop. We should ignore them when computing the
scalarization overhead.
Fixes PR41294
Reviewers: hsaito, rengolin, dcaballe, Ayal
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D59995
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@366030 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 363046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363786 91177308-0d34-0410-b5e6-96231b3b80d8
When considering a loop containing nontemporal stores or loads for
vectorization, suppress the vectorization if the corresponding
vectorized store or load with the aligment of the original scaler
memory op is not supported with the nontemporal hint on the target.
This adds two new functions:
bool isLegalNTStore(Type *DataType, unsigned Alignment) const;
bool isLegalNTLoad(Type *DataType, unsigned Alignment) const;
to TTI, leaving the target independent default implementation as
returning true, but with overriding implementations for X86 that
check the legality based on available Subtarget features.
This fixes https://llvm.org/PR40759
Differential Revision: https://reviews.llvm.org/D61764
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363581 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There is PHINode::getBasicBlockIndex() and PHINode::setIncomingValue()
but no function to replace incoming value for a specified BasicBlock*
predecessor.
Clearly, there are a lot of places that could use that functionality.
Reviewer: craig.topper, lebedev.ri, Meinersbur, kbarton, fhahn
Reviewed By: Meinersbur, fhahn
Subscribers: fhahn, hiraditya, zzheng, jsji, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363566 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Avoid that loop vectorizer creates loads/stores of vectors
with "irregular" types when interleaving. An example of
an irregular type is x86_fp80 that is 80 bits, but that
may have an allocation size that is 96 bits. So an array
of x86_fp80 is not bitcast compatible with a vector
of the same type.
Not sure if interleavedAccessCanBeWidened is the best
place for this check, but it solves the problem seen
in the added test case. And it is the same kind of check
that already exists in memoryInstructionCanBeWidened.
Reviewers: fhahn, Ayal, craig.topper
Reviewed By: fhahn
Subscribers: hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63386
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363547 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363046 91177308-0d34-0410-b5e6-96231b3b80d8
VPlan.h already contains the declaration of VPlanPtr type alias:
using VPlanPtr = std::unique_ptr<VPlan>;
The LoopVectorizationPlanner class also contains the same declaration
of VPlanPtr and therefore LoopVectorize requires a long wording when
its methods return VPlanPtr:
LoopVectorizationPlanner::VPlanPtr
LoopVectorizationPlanner::buildVPlanWithVPRecipes(...)
but LoopVectorize.cpp includes VPlan.h (via LoopVectorizationPlanner.h)
and can use VPlanPtr from that header.
Patch by Pavel Samolysov.
Reviewers: hsaito, rengolin, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D62576
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362126 91177308-0d34-0410-b5e6-96231b3b80d8
The input LoopCost value can be zero, but if so it should be recalculated with the current VF. After that it should always be non-zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361387 91177308-0d34-0410-b5e6-96231b3b80d8
This reduces the number of parameters we need to pass in and they seem a
natural fit in LoopVectorizationCostModel. Also simplifies things for
D59995.
As a follow up refactoring, we could only expose a expose a
shouldUseVectorIntrinsic() helper in LoopVectorizationCostModel, instead
of calling getVectorCallCost/getVectorIntrinsicCost in
InnerLoopVectorizer/VPRecipeBuilder.
Reviewers: Ayal, hsaito, dcaballe, rengolin
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D61638
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360758 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Preserve MemorySSA in LoopSimplify, in the old pass manager, if the analysis is available.
Do not preserve it in the new pass manager.
Update tests.
Subscribers: nemanjai, jlebar, javed.absar, Prazek, kbarton, zzheng, jsji, llvm-commits, george.burgess.iv, chandlerc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60833
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360270 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel
Reviewed By: hfinkel
Subscribers: bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360162 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When refactoring vectorization flags, vectorization was disabled by default in the new pass manager.
This patch re-enables is for both managers, and changes the assumptions opt makes, based on the new defaults.
Comments in opt.cpp should clarify the intended use of all flags to enable/disable vectorization.
Reviewers: chandlerc, jgorbe
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61091
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@359167 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Trying to add the plumbing necessary to add tuning options to the new pass manager.
Testing with the flags for loop vectorize.
Reviewers: chandlerc
Subscribers: sanjoy, mehdi_amini, jlebar, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59723
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358763 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358422 91177308-0d34-0410-b5e6-96231b3b80d8
1. Use computed VF for stress testing.
2. If the computed VF does not produce vector code (VF smaller than 2), force VF to be 4.
3. Test vectorization of i64 data on AArch64 to make sure we generate VF != 4 (on X86 that was already tested on AVX).
Patch by Francesco Petrogalli <francesco.petrogalli@arm.com>
Differential Revision: https://reviews.llvm.org/D59952
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358056 91177308-0d34-0410-b5e6-96231b3b80d8
Bug: https://bugs.llvm.org/show_bug.cgi?id=41180
In the bug test case the debug location was missing for the cmp instruction in
the "middle block" BB. This patch fixes the bug by copying the debug location
from the cmp of the scalar loop's terminator branch, if it exists.
The patch also fixes the debug location on the subsequent branch instruction.
It was previously using the location of the of the original loop's pre-header
block terminator. Both of these instructions will now map to the source line of
the conditional branch in the original loop.
A regression test has been added that covers these issues.
Patch by Orlando Cazalet-Hyams!
Differential Revision: https://reviews.llvm.org/D59944
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357499 91177308-0d34-0410-b5e6-96231b3b80d8
With this change, the VPlan native path is triggered with the directive:
#pragma clang loop vectorize(enable)
There is no need to specify the vectorize_width(N) clause.
Patch by Francesco Petrogalli <francesco.petrogalli@arm.com>
Differential Revision: https://reviews.llvm.org/D57598
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357156 91177308-0d34-0410-b5e6-96231b3b80d8
Change from original commit: move test (that uses an X86 triple) into the X86
subdirectory.
Original description:
Gating vectorizing reductions on *all* fastmath flags seems unnecessary;
`reassoc` should be sufficient.
Reviewers: tvvikram, mkuper, kristof.beyls, sdesmalen, Ayal
Reviewed By: sdesmalen
Subscribers: dcaballe, huntergr, jmolloy, mcrosier, jlebar, bixia, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57728
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@355889 91177308-0d34-0410-b5e6-96231b3b80d8
Add plumbing to get MemorySSA in the remaining loop passes.
Also update unit test to add the dependency.
[EnableMSSALoopDependency remains disabled].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353901 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Renamed setBaseDiscriminator to cloneWithBaseDiscriminator, to match
similar APIs. Also changed its behavior to copy over the other
discriminator components, instead of eliding them.
Renamed cloneWithDuplicationFactor to
cloneByMultiplyingDuplicationFactor, which more closely matches what
this API does.
Reviewers: dblaikie, wmi
Reviewed By: dblaikie
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D56220
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351996 91177308-0d34-0410-b5e6-96231b3b80d8
VPlan-native path
Context: Patch Series #2 for outer loop vectorization support in LV
using VPlan. (RFC:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
Patch series #2 checks that inner loops are still trivially lock-step
among all vector elements. Non-loop branches are blindly assumed as
divergent.
Changes here implement VPlan based predication algorithm to compute
predicates for blocks that need predication. Predicates are computed
for the VPLoop region in reverse post order. A block's predicate is
computed as OR of the masks of all incoming edges. The mask for an
incoming edge is computed as AND of predecessor block's predicate and
either predecessor's Condition bit or NOT(Condition bit) depending on
whether the edge from predecessor block to the current block is true
or false edge.
Reviewers: fhahn, rengolin, hsaito, dcaballe
Reviewed By: fhahn
Patch by Satish Guggilla, thanks!
Differential Revision: https://reviews.llvm.org/D53349
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351990 91177308-0d34-0410-b5e6-96231b3b80d8
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Added a pair of APIs for encoding/decoding the 3 components of a DWARF discriminator described in http://lists.llvm.org/pipermail/llvm-dev/2016-October/106532.html: the base discriminator, the duplication factor (useful in profile-guided optimization) and the copy index (used to identify copies of code in cases like loop unrolling)
The encoding packs 3 unsigned values in 32 bits. This CL addresses 2 issues:
- communicates overflow back to the user
- supports encoding all 3 components together. Current APIs assume a sequencing of events. For example, creating a new discriminator based on an existing one by changing the base discriminator was not supported.
Reviewers: davidxl, danielcdh, wmi, dblaikie
Reviewed By: dblaikie
Subscribers: zzheng, dmgreen, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D55681
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@349973 91177308-0d34-0410-b5e6-96231b3b80d8