//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Armv6 introduced instructions to perform 32-bit SIMD operations. The /// purpose of this pass is do some IR pattern matching to create ACLE /// DSP intrinsics, which map on these 32-bit SIMD operations. /// This pass runs only when unaligned accesses is supported/enabled. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/NoFolder.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/PassSupport.h" #include "llvm/Support/Debug.h" #include "llvm/IR/PatternMatch.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "ARM.h" #include "ARMSubtarget.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "arm-parallel-dsp" STATISTIC(NumSMLAD , "Number of smlad instructions generated"); static cl::opt DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), cl::desc("Disable the ARM Parallel DSP pass")); namespace { struct OpChain; struct BinOpChain; struct Reduction; using OpChainList = SmallVector, 8>; using ReductionList = SmallVector; using ValueList = SmallVector; using MemInstList = SmallVector; using PMACPair = std::pair; using PMACPairList = SmallVector; using Instructions = SmallVector; using MemLocList = SmallVector; struct OpChain { Instruction *Root; ValueList AllValues; MemInstList VecLd; // List of all load instructions. MemLocList MemLocs; // All memory locations read by this tree. bool ReadOnly = true; OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } virtual ~OpChain() = default; void SetMemoryLocations() { const auto Size = LocationSize::unknown(); for (auto *V : AllValues) { if (auto *I = dyn_cast(V)) { if (I->mayWriteToMemory()) ReadOnly = false; if (auto *Ld = dyn_cast(V)) MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); } } } unsigned size() const { return AllValues.size(); } }; // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. // 'Reduction' contains the phi-node and accumulator statement from where we // start pattern matching, and 'BinOpChain' the multiplication // instructions that are candidates for parallel execution. struct BinOpChain : public OpChain { ValueList LHS; // List of all (narrow) left hand operands. ValueList RHS; // List of all (narrow) right hand operands. bool Exchange = false; BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : OpChain(I, lhs), LHS(lhs), RHS(rhs) { for (auto *V : RHS) AllValues.push_back(V); } bool AreSymmetrical(BinOpChain *Other); }; struct Reduction { PHINode *Phi; // The Phi-node from where we start // pattern matching. Instruction *AccIntAdd; // The accumulating integer add statement, // i.e, the reduction statement. OpChainList MACCandidates; // The MAC candidates associated with // this reduction statement. PMACPairList PMACPairs; Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; }; class WidenedLoad { LoadInst *NewLd = nullptr; SmallVector Loads; public: WidenedLoad(SmallVectorImpl &Lds, LoadInst *Wide) : NewLd(Wide) { for (auto *I : Lds) Loads.push_back(I); } LoadInst *getLoad() { return NewLd; } }; class ARMParallelDSP : public LoopPass { ScalarEvolution *SE; AliasAnalysis *AA; TargetLibraryInfo *TLI; DominatorTree *DT; LoopInfo *LI; Loop *L; const DataLayout *DL; Module *M; std::map LoadPairs; std::map> WideLoads; bool RecordSequentialLoads(BasicBlock *BB); bool InsertParallelMACs(Reduction &Reduction); bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); LoadInst* CreateLoadIns(IRBuilder &IRB, SmallVectorImpl &Loads, IntegerType *LoadTy); void CreateParallelMACPairs(Reduction &R); Instruction *CreateSMLADCall(SmallVectorImpl &VecLd0, SmallVectorImpl &VecLd1, Instruction *Acc, bool Exchange, Instruction *InsertAfter); /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate /// Dual performs two signed 16x16-bit multiplications. It adds the /// products to a 32-bit accumulate operand. Optionally, the instruction can /// exchange the halfwords of the second operand before performing the /// arithmetic. bool MatchSMLAD(Function &F); public: static char ID; ARMParallelDSP() : LoopPass(ID) { } void getAnalysisUsage(AnalysisUsage &AU) const override { LoopPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.setPreservesCFG(); } bool runOnLoop(Loop *TheLoop, LPPassManager &) override { if (DisableParallelDSP) return false; L = TheLoop; SE = &getAnalysis().getSE(); AA = &getAnalysis().getAAResults(); TLI = &getAnalysis().getTLI(); DT = &getAnalysis().getDomTree(); LI = &getAnalysis().getLoopInfo(); auto &TPC = getAnalysis(); BasicBlock *Header = TheLoop->getHeader(); if (!Header) return false; // TODO: We assume the loop header and latch to be the same block. // This is not a fundamental restriction, but lifting this would just // require more work to do the transformation and then patch up the CFG. if (Header != TheLoop->getLoopLatch()) { LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " "running pass ARMParallelDSP\n"); return false; } // We need a preheader as getIncomingValueForBlock assumes there is one. if (!TheLoop->getLoopPreheader()) { LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); return false; } Function &F = *Header->getParent(); M = F.getParent(); DL = &M->getDataLayout(); auto &TM = TPC.getTM(); auto *ST = &TM.getSubtarget(F); if (!ST->allowsUnalignedMem()) { LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " "running pass ARMParallelDSP\n"); return false; } if (!ST->hasDSP()) { LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " "ARMParallelDSP\n"); return false; } if (!ST->isLittle()) { LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " "ARMParallelDSP\n"); return false; } LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); if (!RecordSequentialLoads(Header)) { LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); return false; } bool Changes = MatchSMLAD(F); return Changes; } }; } // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP // instructions, which is set to 16. So here we should collect all i8 and i16 // narrow operations. // TODO: we currently only collect i16, and will support i8 later, so that's // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. template static bool IsNarrowSequence(Value *V, ValueList &VL) { ConstantInt *CInt; if (match(V, m_ConstantInt(CInt))) { // TODO: if a constant is used, it needs to fit within the bit width. return false; } auto *I = dyn_cast(V); if (!I) return false; Value *Val, *LHS, *RHS; if (match(V, m_Trunc(m_Value(Val)))) { if (cast(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) return IsNarrowSequence(Val, VL); } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { // TODO: we need to implement sadd16/sadd8 for this, which enables to // also do the rewrite for smlad8.ll, but it is unsupported for now. return false; } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { if (cast(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) return false; if (match(Val, m_Load(m_Value()))) { VL.push_back(Val); VL.push_back(I); return true; } } return false; } template static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, const DataLayout &DL, ScalarEvolution &SE) { if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) return true; return false; } bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem) { if (!Ld0 || !Ld1) return false; if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) return false; LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; dbgs() << "Ld0:"; Ld0->dump(); dbgs() << "Ld1:"; Ld1->dump(); ); VecMem.clear(); VecMem.push_back(Ld0); VecMem.push_back(Ld1); return true; } /// Iterate through the block and record base, offset pairs of loads as well as /// maximal sequences of sequential loads. bool ARMParallelDSP::RecordSequentialLoads(BasicBlock *BB) { SmallVector Loads; for (auto &I : *BB) { auto *Ld = dyn_cast(&I); if (!Ld || !Ld->isSimple() || !Ld->hasOneUse() || !isa(Ld->user_back())) continue; Loads.push_back(Ld); } for (auto *Ld0 : Loads) { for (auto *Ld1 : Loads) { if (Ld0 == Ld1) continue; if (AreSequentialAccesses(Ld0, Ld1, *DL, *SE)) { LoadPairs[Ld0] = Ld1; break; } } } LLVM_DEBUG(if (!LoadPairs.empty()) { dbgs() << "Consecutive load pairs:\n"; for (auto &MapIt : LoadPairs) { LLVM_DEBUG(dbgs() << *MapIt.first << ", " << *MapIt.second << "\n"); } }); return LoadPairs.size() > 1; } void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { OpChainList &Candidates = R.MACCandidates; PMACPairList &PMACPairs = R.PMACPairs; const unsigned Elems = Candidates.size(); if (Elems < 2) return; auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { if (!PMul0->AreSymmetrical(PMul1)) return false; // The first elements of each vector should be loads with sexts. If we // find that its two pairs of consecutive loads, then these can be // transformed into two wider loads and the users can be replaced with // DSP intrinsics. for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { auto *Ld0 = dyn_cast(PMul0->LHS[x]); auto *Ld1 = dyn_cast(PMul1->LHS[x]); auto *Ld2 = dyn_cast(PMul0->RHS[x]); auto *Ld3 = dyn_cast(PMul1->RHS[x]); if (!Ld0 || !Ld1 || !Ld2 || !Ld3) return false; LLVM_DEBUG(dbgs() << "Loads:\n" << " - " << *Ld0 << "\n" << " - " << *Ld1 << "\n" << " - " << *Ld2 << "\n" << " - " << *Ld3 << "\n"); if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); PMACPairs.push_back(std::make_pair(PMul0, PMul1)); return true; } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); PMul1->Exchange = true; PMACPairs.push_back(std::make_pair(PMul0, PMul1)); return true; } } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); LLVM_DEBUG(dbgs() << " and swapping muls\n"); PMul0->Exchange = true; // Only the second operand can be exchanged, so swap the muls. PMACPairs.push_back(std::make_pair(PMul1, PMul0)); return true; } } return false; }; SmallPtrSet Paired; for (unsigned i = 0; i < Elems; ++i) { BinOpChain *PMul0 = static_cast(Candidates[i].get()); if (Paired.count(PMul0->Root)) continue; for (unsigned j = 0; j < Elems; ++j) { if (i == j) continue; BinOpChain *PMul1 = static_cast(Candidates[j].get()); if (Paired.count(PMul1->Root)) continue; const Instruction *Mul0 = PMul0->Root; const Instruction *Mul1 = PMul1->Root; if (Mul0 == Mul1) continue; assert(PMul0 != PMul1 && "expected different chains"); if (CanPair(PMul0, PMul1)) { Paired.insert(Mul0); Paired.insert(Mul1); break; } } } } bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { Instruction *Acc = Reduction.Phi; Instruction *InsertAfter = Reduction.AccIntAdd; for (auto &Pair : Reduction.PMACPairs) { BinOpChain *PMul0 = Pair.first; BinOpChain *PMul1 = Pair.second; LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; dbgs() << "- "; PMul0->Root->dump(); dbgs() << "- "; PMul1->Root->dump()); Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, InsertAfter); InsertAfter = Acc; } if (Acc != Reduction.Phi) { LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); Reduction.AccIntAdd->replaceAllUsesWith(Acc); return true; } return false; } static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, ReductionList &Reductions) { RecurrenceDescriptor RecDesc; const bool HasFnNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; const BasicBlock *Latch = TheLoop->getLoopLatch(); for (PHINode &Phi : Header->phis()) { const auto *Ty = Phi.getType(); if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) continue; const bool IsReduction = RecurrenceDescriptor::AddReductionVar(&Phi, RecurrenceDescriptor::RK_IntegerAdd, TheLoop, HasFnNoNaNAttr, RecDesc); if (!IsReduction) continue; Instruction *Acc = dyn_cast(Phi.getIncomingValueForBlock(Latch)); if (!Acc) continue; Reductions.push_back(Reduction(&Phi, Acc)); } LLVM_DEBUG( dbgs() << "\nAccumulating integer additions (reductions) found:\n"; for (auto &R : Reductions) { dbgs() << "- "; R.Phi->dump(); dbgs() << "-> "; R.AccIntAdd->dump(); } ); } static void AddMACCandidate(OpChainList &Candidates, Instruction *Mul, Value *MulOp0, Value *MulOp1) { assert(Mul->getOpcode() == Instruction::Mul && "expected mul instruction"); ValueList LHS; ValueList RHS; if (IsNarrowSequence<16>(MulOp0, LHS) && IsNarrowSequence<16>(MulOp1, RHS)) { Candidates.push_back(make_unique(Mul, LHS, RHS)); } } static void MatchParallelMACSequences(Reduction &R, OpChainList &Candidates) { Instruction *Acc = R.AccIntAdd; LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n"); // Returns false to signal the search should be stopped. std::function Match = [&Candidates, &Match](Value *V) -> bool { auto *I = dyn_cast(V); if (!I) return false; switch (I->getOpcode()) { case Instruction::Add: if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) return true; break; case Instruction::Mul: { Value *MulOp0 = I->getOperand(0); Value *MulOp1 = I->getOperand(1); if (isa(MulOp0) && isa(MulOp1)) AddMACCandidate(Candidates, I, MulOp0, MulOp1); return false; } case Instruction::SExt: return Match(I->getOperand(0)); } return false; }; while (Match (Acc)); LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " << Candidates.size() << " candidates.\n"); } // Collects all instructions that are not part of the MAC chains, which is the // set of instructions that can potentially alias with the MAC operands. static void AliasCandidates(BasicBlock *Header, Instructions &Reads, Instructions &Writes) { for (auto &I : *Header) { if (I.mayReadFromMemory()) Reads.push_back(&I); if (I.mayWriteToMemory()) Writes.push_back(&I); } } // Check whether statements in the basic block that write to memory alias with // the memory locations accessed by the MAC-chains. // TODO: we need the read statements when we accept more complicated chains. static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, Instructions &Writes, OpChainList &MACCandidates) { LLVM_DEBUG(dbgs() << "Alias checks:\n"); for (auto &MAC : MACCandidates) { LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); // At the moment, we allow only simple chains that only consist of reads, // accumulate their result with an integer add, and thus that don't write // memory, and simply bail if they do. if (!MAC->ReadOnly) return true; // Now for all writes in the basic block, check that they don't alias with // the memory locations accessed by our MAC-chain: for (auto *I : Writes) { LLVM_DEBUG(dbgs() << "- "; I->dump()); assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); for (auto &MemLoc : MAC->MemLocs) { if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), ModRefInfo::ModRef))) { LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); return true; } } } } LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); return false; } static bool CheckMACMemory(OpChainList &Candidates) { for (auto &C : Candidates) { // A mul has 2 operands, and a narrow op consist of sext and a load; thus // we expect at least 4 items in this operand value list. if (C->size() < 4) { LLVM_DEBUG(dbgs() << "Operand list too short.\n"); return false; } C->SetMemoryLocations(); ValueList &LHS = static_cast(C.get())->LHS; ValueList &RHS = static_cast(C.get())->RHS; // Use +=2 to skip over the expected extend instructions. for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { if (!isa(LHS[i]) || !isa(RHS[i])) return false; } } return true; } // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector // multiplications. // To use SMLAD: // 1) we first need to find integer add reduction PHIs, // 2) then from the PHI, look for this pattern: // // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] // ld0 = load i16 // sext0 = sext i16 %ld0 to i32 // ld1 = load i16 // sext1 = sext i16 %ld1 to i32 // mul0 = mul %sext0, %sext1 // ld2 = load i16 // sext2 = sext i16 %ld2 to i32 // ld3 = load i16 // sext3 = sext i16 %ld3 to i32 // mul1 = mul i32 %sext2, %sext3 // add0 = add i32 %mul0, %acc0 // acc1 = add i32 %add0, %mul1 // // Which can be selected to: // // ldr.h r0 // ldr.h r1 // smlad r2, r0, r1, r2 // // If constants are used instead of loads, these will need to be hoisted // out and into a register. // // If loop invariants are used instead of loads, these need to be packed // before the loop begins. // bool ARMParallelDSP::MatchSMLAD(Function &F) { BasicBlock *Header = L->getHeader(); LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; dbgs() << "Header block:\n"; Header->dump(); dbgs() << "Loop info:\n\n"; L->dump()); bool Changed = false; ReductionList Reductions; MatchReductions(F, L, Header, Reductions); for (auto &R : Reductions) { OpChainList MACCandidates; MatchParallelMACSequences(R, MACCandidates); if (!CheckMACMemory(MACCandidates)) continue; R.MACCandidates = std::move(MACCandidates); LLVM_DEBUG(dbgs() << "MAC candidates:\n"; for (auto &M : R.MACCandidates) M->Root->dump(); dbgs() << "\n";); } // Collect all instructions that may read or write memory. Our alias // analysis checks bail out if any of these instructions aliases with an // instruction from the MAC-chain. Instructions Reads, Writes; AliasCandidates(Header, Reads, Writes); for (auto &R : Reductions) { if (AreAliased(AA, Reads, Writes, R.MACCandidates)) return false; CreateParallelMACPairs(R); Changed |= InsertParallelMACs(R); } LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); return Changed; } LoadInst* ARMParallelDSP::CreateLoadIns(IRBuilder &IRB, SmallVectorImpl &Loads, IntegerType *LoadTy) { assert(Loads.size() == 2 && "currently only support widening two loads"); const unsigned AddrSpace = Loads[0]->getPointerAddressSpace(); Value *VecPtr = IRB.CreateBitCast(Loads[0]->getPointerOperand(), LoadTy->getPointerTo(AddrSpace)); LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Loads[0]->getAlignment()); // Fix up users, Loads[0] needs trunc while Loads[1] needs a lshr and trunc. Instruction *SExt0 = dyn_cast(Loads[0]->user_back()); Instruction *SExt1 = dyn_cast(Loads[1]->user_back()); assert((Loads[0]->hasOneUse() && Loads[1]->hasOneUse() && SExt0 && SExt1) && "Loads should have a single, extending, user"); std::function MoveAfter = [&](Instruction* Source, Instruction* Sink) -> void { if (DT->dominates(Source, Sink) || Source->getParent() != Sink->getParent() || isa(Source) || isa(Sink)) return; Sink->moveAfter(Source); for (auto &U : Sink->uses()) MoveAfter(Sink, cast(U.getUser())); }; // From the wide load, create two values that equal the original two loads. Value *Bottom = IRB.CreateTrunc(WideLoad, Loads[0]->getType()); SExt0->setOperand(0, Bottom); if (auto *I = dyn_cast(Bottom)) { I->moveAfter(WideLoad); MoveAfter(I, SExt0); } IntegerType *Ld1Ty = cast(Loads[1]->getType()); Value *ShiftVal = ConstantInt::get(LoadTy, Ld1Ty->getBitWidth()); Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); if (auto *I = dyn_cast(Top)) MoveAfter(WideLoad, I); Value *Trunc = IRB.CreateTrunc(Top, Ld1Ty); SExt1->setOperand(0, Trunc); if (auto *I = dyn_cast(Trunc)) MoveAfter(I, SExt1); WideLoads.emplace(std::make_pair(Loads[0], make_unique(Loads, WideLoad))); return WideLoad; } Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl &VecLd0, SmallVectorImpl &VecLd1, Instruction *Acc, bool Exchange, Instruction *InsertAfter) { LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" << "- " << *VecLd0[0] << "\n" << "- " << *VecLd0[1] << "\n" << "- " << *VecLd1[0] << "\n" << "- " << *VecLd1[1] << "\n" << "- " << *Acc << "\n" << "- Exchange: " << Exchange << "\n"); IRBuilder Builder(InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); // Replace the reduction chain with an intrinsic call IntegerType *Ty = IntegerType::get(M->getContext(), 32); LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? WideLoads[VecLd0[0]]->getLoad() : CreateLoadIns(Builder, VecLd0, Ty); LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? WideLoads[VecLd1[0]]->getLoad() : CreateLoadIns(Builder, VecLd1, Ty); Value* Args[] = { WideLd0, WideLd1, Acc }; Function *SMLAD = nullptr; if (Exchange) SMLAD = Acc->getType()->isIntegerTy(32) ? Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); else SMLAD = Acc->getType()->isIntegerTy(32) ? Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); CallInst *Call = Builder.CreateCall(SMLAD, Args); NumSMLAD++; return Call; } // Compare the value lists in Other to this chain. bool BinOpChain::AreSymmetrical(BinOpChain *Other) { // Element-by-element comparison of Value lists returning true if they are // instructions with the same opcode or constants with the same value. auto CompareValueList = [](const ValueList &VL0, const ValueList &VL1) { if (VL0.size() != VL1.size()) { LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " << VL0.size() << " != " << VL1.size() << "\n"); return false; } const unsigned Pairs = VL0.size(); for (unsigned i = 0; i < Pairs; ++i) { const Value *V0 = VL0[i]; const Value *V1 = VL1[i]; const auto *Inst0 = dyn_cast(V0); const auto *Inst1 = dyn_cast(V1); if (!Inst0 || !Inst1) return false; if (Inst0->isSameOperationAs(Inst1)) continue; const APInt *C0, *C1; if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) return false; } return true; }; return CompareValueList(LHS, Other->LHS) && CompareValueList(RHS, Other->RHS); } Pass *llvm::createARMParallelDSPPass() { return new ARMParallelDSP(); } char ARMParallelDSP::ID = 0; INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false) INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false)