//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for PowerPC, // converting from a legalized dag to a PPC dag. // //===----------------------------------------------------------------------===// #include "PPC.h" #include "PPCTargetMachine.h" #include "PPCISelLowering.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/Statistic.h" #include "llvm/Constants.h" #include "llvm/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" using namespace llvm; namespace { Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations"); Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); //===--------------------------------------------------------------------===// /// PPCDAGToDAGISel - PPC specific code to select PPC machine /// instructions for SelectionDAG operations. /// class PPCDAGToDAGISel : public SelectionDAGISel { PPCTargetLowering PPCLowering; unsigned GlobalBaseReg; public: PPCDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(PPCLowering), PPCLowering(TM) {} virtual bool runOnFunction(Function &Fn) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseReg = 0; return SelectionDAGISel::runOnFunction(Fn); } /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDOperand getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC /// base register. Return the virtual register that holds this value. SDOperand getGlobalBaseReg(); // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDOperand Select(SDOperand Op); SDNode *SelectBitfieldInsert(SDNode *N); /// SelectCC - Select a comparison of the specified values with the /// specified condition code, returning the CR# of the expression. SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); /// SelectAddr - Given the specified address, return the two operands for a /// load/store instruction, and return true if it should be an indexed [r+r] /// operation. bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2); SDOperand BuildSDIVSequence(SDNode *N); SDOperand BuildUDIVSequence(SDNode *N); /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); virtual const char *getPassName() const { return "PowerPC DAG->DAG Pattern Instruction Selection"; } // Include the pieces autogenerated from the target description. #include "PPCGenDAGISel.inc" private: SDOperand SelectDYNAMIC_STACKALLOC(SDOperand Op); SDOperand SelectADD_PARTS(SDOperand Op); SDOperand SelectSUB_PARTS(SDOperand Op); SDOperand SelectSETCC(SDOperand Op); SDOperand SelectCALL(SDOperand Op); }; } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // The selection process is inherently a bottom-up recursive process (users // select their uses before themselves). Given infinite stack space, we // could just start selecting on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, select the entry node, then all its uses, // iteratively instead of recursively. std::vector Worklist; Worklist.push_back(DAG.getEntryNode()); // Note that we can do this in the PPC target (scanning forward across token // chain edges) because no nodes ever get folded across these edges. On a // target like X86 which supports load/modify/store operations, this would // have to be more careful. while (!Worklist.empty()) { SDOperand Node = Worklist.back(); Worklist.pop_back(); // Chose from the least deep of the top two nodes. if (!Worklist.empty() && Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth()) std::swap(Worklist.back(), Node); if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END && Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) || CodeGenMap.count(Node)) continue; for (SDNode::use_iterator UI = Node.Val->use_begin(), E = Node.Val->use_end(); UI != E; ++UI) { // Scan the values. If this use has a value that is a token chain, add it // to the worklist. SDNode *User = *UI; for (unsigned i = 0, e = User->getNumValues(); i != e; ++i) if (User->getValueType(i) == MVT::Other) { Worklist.push_back(SDOperand(User, i)); break; } } // Finally, legalize this node. Select(Node); } // Select target instructions for the DAG. DAG.setRoot(Select(DAG.getRoot())); CodeGenMap.clear(); DAG.RemoveDeadNodes(); // Emit machine code to BB. ScheduleAndEmitDAG(DAG); } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// SDOperand PPCDAGToDAGISel::getGlobalBaseReg() { if (!GlobalBaseReg) { // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = BB->getParent()->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); SSARegMap *RegMap = BB->getParent()->getSSARegMap(); // FIXME: when we get to LP64, we will need to create the appropriate // type of register here. GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass); BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); } return CurDAG->getRegister(GlobalBaseReg, MVT::i32); } // isIntImmediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isIntImmediate(SDNode *N, unsigned& Imm) { if (N->getOpcode() == ISD::Constant) { Imm = cast(N)->getValue(); return true; } return false; } // isOprShiftImm - Returns true if the specified operand is a shift opcode with // a immediate shift count less than 32. static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) { Opc = N->getOpcode(); return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) && isIntImmediate(N->getOperand(1).Val, SH) && SH < 32; } // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with // any number of 0s on either side. The 1s are allowed to wrap from LSB to // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is // not, since all 1s are not contiguous. static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { if (isShiftedMask_32(Val)) { // look for the first non-zero bit MB = CountLeadingZeros_32(Val); // look for the first zero bit after the run of ones ME = CountLeadingZeros_32((Val - 1) ^ Val); return true; } else { Val = ~Val; // invert mask if (isShiftedMask_32(Val)) { // effectively look for the first zero bit ME = CountLeadingZeros_32(Val) - 1; // effectively look for the first one bit after the run of zeros MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; return true; } } // no run present return false; } // isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate // and mask opcode and mask operation. static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask, unsigned &SH, unsigned &MB, unsigned &ME) { // Don't even go down this path for i64, since different logic will be // necessary for rldicl/rldicr/rldimi. if (N->getValueType(0) != MVT::i32) return false; unsigned Shift = 32; unsigned Indeterminant = ~0; // bit mask marking indeterminant results unsigned Opcode = N->getOpcode(); if (N->getNumOperands() != 2 || !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31)) return false; if (Opcode == ISD::SHL) { // apply shift left to mask if it comes first if (IsShiftMask) Mask = Mask << Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu << Shift); } else if (Opcode == ISD::SRL) { // apply shift right to mask if it comes first if (IsShiftMask) Mask = Mask >> Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu >> Shift); // adjust for the left rotate Shift = 32 - Shift; } else { return false; } // if the mask doesn't intersect any Indeterminant bits if (Mask && !(Mask & Indeterminant)) { SH = Shift; // make sure the mask is still a mask (wrap arounds may not be) return isRunOfOnes(Mask, MB, ME); } return false; } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the 32 bit value. static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm); } // isOprNot - Returns true if the specified operand is an xor with immediate -1. static bool isOprNot(SDNode *N) { unsigned Imm; return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1; } // Immediate constant composers. // Lo16 - grabs the lo 16 bits from a 32 bit constant. // Hi16 - grabs the hi 16 bits from a 32 bit constant. // HA16 - computes the hi bits required if the lo bits are add/subtracted in // arithmethically. static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; } static unsigned Hi16(unsigned x) { return Lo16(x >> 16); } static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); } // isIntImmediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isIntImmediate(SDOperand N, unsigned& Imm) { if (ConstantSDNode *CN = dyn_cast(N)) { Imm = (unsigned)CN->getSignExtended(); return true; } return false; } /// SelectBitfieldInsert - turn an or of two masked values into /// the rotate left word immediate then mask insert (rlwimi) instruction. /// Returns true on success, false if the caller still needs to select OR. /// /// Patterns matched: /// 1. or shl, and 5. or and, and /// 2. or and, shl 6. or shl, shr /// 3. or shr, and 7. or shr, shl /// 4. or and, shr SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { bool IsRotate = false; unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0; unsigned Value; SDOperand Op0 = N->getOperand(0); SDOperand Op1 = N->getOperand(1); unsigned Op0Opc = Op0.getOpcode(); unsigned Op1Opc = Op1.getOpcode(); // Verify that we have the correct opcodes if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) return false; if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) return false; // Generate Mask value for Target if (isIntImmediate(Op0.getOperand(1), Value)) { switch(Op0Opc) { case ISD::SHL: TgtMask <<= Value; break; case ISD::SRL: TgtMask >>= Value; break; case ISD::AND: TgtMask &= Value; break; } } else { return 0; } // Generate Mask value for Insert if (!isIntImmediate(Op1.getOperand(1), Value)) return 0; switch(Op1Opc) { case ISD::SHL: SH = Value; InsMask <<= SH; if (Op0Opc == ISD::SRL) IsRotate = true; break; case ISD::SRL: SH = Value; InsMask >>= SH; SH = 32-SH; if (Op0Opc == ISD::SHL) IsRotate = true; break; case ISD::AND: InsMask &= Value; break; } // If both of the inputs are ANDs and one of them has a logical shift by // constant as its input, make that AND the inserted value so that we can // combine the shift into the rotate part of the rlwimi instruction bool IsAndWithShiftOp = false; if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { if (Op1.getOperand(0).getOpcode() == ISD::SHL || Op1.getOperand(0).getOpcode() == ISD::SRL) { if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) { SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; IsAndWithShiftOp = true; } } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || Op0.getOperand(0).getOpcode() == ISD::SRL) { if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) { std::swap(Op0, Op1); std::swap(TgtMask, InsMask); SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; IsAndWithShiftOp = true; } } } // Verify that the Target mask and Insert mask together form a full word mask // and that the Insert mask is a run of set bits (which implies both are runs // of set bits). Given that, Select the arguments and generate the rlwimi // instruction. unsigned MB, ME; if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) { bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; bool Op0IsAND = Op0Opc == ISD::AND; // Check for rotlwi / rotrwi here, a special case of bitfield insert // where both bitfield halves are sourced from the same value. if (IsRotate && fullMask && N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) { Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Select(N->getOperand(0).getOperand(0)), getI32Imm(SH), getI32Imm(0), getI32Imm(31)); return Op0.Val; } SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0)) : Select(Op0); SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0)) : Select(Op1.getOperand(0)); Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); return Op0.Val; } return 0; } /// SelectAddr - Given the specified address, return the two operands for a /// load/store instruction, and return true if it should be an indexed [r+r] /// operation. bool PPCDAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2) { unsigned imm = 0; if (Addr.getOpcode() == ISD::ADD) { if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) { Op1 = getI32Imm(Lo16(imm)); if (FrameIndexSDNode *FI = dyn_cast(Addr.getOperand(0))) { ++FrameOff; Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); } else { Op2 = Select(Addr.getOperand(0)); } return false; } else { Op1 = Select(Addr.getOperand(0)); Op2 = Select(Addr.getOperand(1)); return true; // [r+r] } } // Now check if we're dealing with a global, and whether or not we should emit // an optimized load or store for statics. if (GlobalAddressSDNode *GN = dyn_cast(Addr)) { GlobalValue *GV = GN->getGlobal(); if (!GV->hasWeakLinkage() && !GV->isExternal()) { Op1 = CurDAG->getTargetGlobalAddress(GV, MVT::i32); if (PICEnabled) Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), Op1); else Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1); return false; } } else if (FrameIndexSDNode *FI = dyn_cast(Addr)) { Op1 = getI32Imm(0); Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); return false; } else if (ConstantPoolSDNode *CP = dyn_cast(Addr)) { Op1 = Addr; if (PICEnabled) Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1); else Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1); return false; } Op1 = getI32Imm(0); Op2 = Select(Addr); return false; } /// SelectCC - Select a comparison of the specified values with the specified /// condition code, returning the CR# of the expression. SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC) { // Always select the LHS. LHS = Select(LHS); // Use U to determine whether the SETCC immediate range is signed or not. if (MVT::isInteger(LHS.getValueType())) { bool U = ISD::isUnsignedIntSetCC(CC); unsigned Imm; if (isIntImmediate(RHS, Imm) && ((U && isUInt16(Imm)) || (!U && isInt16(Imm)))) return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32, LHS, getI32Imm(Lo16(Imm))); return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32, LHS, Select(RHS)); } else if (LHS.getValueType() == MVT::f32) { return CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, Select(RHS)); } else { return CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, Select(RHS)); } } /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding /// to Condition. static unsigned getBCCForSetCC(ISD::CondCode CC) { switch (CC) { default: assert(0 && "Unknown condition!"); abort(); case ISD::SETEQ: return PPC::BEQ; case ISD::SETNE: return PPC::BNE; case ISD::SETULT: case ISD::SETLT: return PPC::BLT; case ISD::SETULE: case ISD::SETLE: return PPC::BLE; case ISD::SETUGT: case ISD::SETGT: return PPC::BGT; case ISD::SETUGE: case ISD::SETGE: return PPC::BGE; } return 0; } /// getCRIdxForSetCC - Return the index of the condition register field /// associated with the SetCC condition, and whether or not the field is /// treated as inverted. That is, lt = 0; ge = 0 inverted. static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { switch (CC) { default: assert(0 && "Unknown condition!"); abort(); case ISD::SETULT: case ISD::SETLT: Inv = false; return 0; case ISD::SETUGE: case ISD::SETGE: Inv = true; return 0; case ISD::SETUGT: case ISD::SETGT: Inv = false; return 1; case ISD::SETULE: case ISD::SETLE: Inv = true; return 1; case ISD::SETEQ: Inv = false; return 2; case ISD::SETNE: Inv = true; return 2; } return 0; } // Structure used to return the necessary information to codegen an SDIV as // a multiply. struct ms { int m; // magic number int s; // shift amount }; struct mu { unsigned int m; // magic number int a; // add indicator int s; // shift amount }; /// magic - calculate the magic numbers required to codegen an integer sdiv as /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, /// or -1. static struct ms magic(int d) { int p; unsigned int ad, anc, delta, q1, r1, q2, r2, t; const unsigned int two31 = 0x80000000U; struct ms mag; ad = abs(d); t = two31 + ((unsigned int)d >> 31); anc = t - 1 - t%ad; // absolute value of nc p = 31; // initialize p q1 = two31/anc; // initialize q1 = 2p/abs(nc) r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) q2 = two31/ad; // initialize q2 = 2p/abs(d) r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) do { p = p + 1; q1 = 2*q1; // update q1 = 2p/abs(nc) r1 = 2*r1; // update r1 = rem(2p/abs(nc)) if (r1 >= anc) { // must be unsigned comparison q1 = q1 + 1; r1 = r1 - anc; } q2 = 2*q2; // update q2 = 2p/abs(d) r2 = 2*r2; // update r2 = rem(2p/abs(d)) if (r2 >= ad) { // must be unsigned comparison q2 = q2 + 1; r2 = r2 - ad; } delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); mag.m = q2 + 1; if (d < 0) mag.m = -mag.m; // resulting magic number mag.s = p - 32; // resulting shift return mag; } /// magicu - calculate the magic numbers required to codegen an integer udiv as /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. static struct mu magicu(unsigned d) { int p; unsigned int nc, delta, q1, r1, q2, r2; struct mu magu; magu.a = 0; // initialize "add" indicator nc = - 1 - (-d)%d; p = 31; // initialize p q1 = 0x80000000/nc; // initialize q1 = 2p/nc r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) do { p = p + 1; if (r1 >= nc - r1 ) { q1 = 2*q1 + 1; // update q1 r1 = 2*r1 - nc; // update r1 } else { q1 = 2*q1; // update q1 r1 = 2*r1; // update r1 } if (r2 + 1 >= d - r2) { if (q2 >= 0x7FFFFFFF) magu.a = 1; q2 = 2*q2 + 1; // update q2 r2 = 2*r2 + 1 - d; // update r2 } else { if (q2 >= 0x80000000) magu.a = 1; q2 = 2*q2; // update q2 r2 = 2*r2 + 1; // update r2 } delta = d - 1 - r2; } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); magu.m = q2 + 1; // resulting magic number magu.s = p - 32; // resulting shift return magu; } /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand PPCDAGToDAGISel::BuildSDIVSequence(SDNode *N) { int d = (int)cast(N->getOperand(1))->getValue(); ms magics = magic(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = CurDAG->getNode(ISD::MULHS, MVT::i32, N->getOperand(0), CurDAG->getConstant(magics.m, MVT::i32)); // If d > 0 and m < 0, add the numerator if (d > 0 && magics.m < 0) Q = CurDAG->getNode(ISD::ADD, MVT::i32, Q, N->getOperand(0)); // If d < 0 and m > 0, subtract the numerator. if (d < 0 && magics.m > 0) Q = CurDAG->getNode(ISD::SUB, MVT::i32, Q, N->getOperand(0)); // Shift right algebraic if shift value is nonzero if (magics.s > 0) Q = CurDAG->getNode(ISD::SRA, MVT::i32, Q, CurDAG->getConstant(magics.s, MVT::i32)); // Extract the sign bit and add it to the quotient SDOperand T = CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(31, MVT::i32)); return CurDAG->getNode(ISD::ADD, MVT::i32, Q, T); } /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand PPCDAGToDAGISel::BuildUDIVSequence(SDNode *N) { unsigned d = (unsigned)cast(N->getOperand(1))->getValue(); mu magics = magicu(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = CurDAG->getNode(ISD::MULHU, MVT::i32, N->getOperand(0), CurDAG->getConstant(magics.m, MVT::i32)); if (magics.a == 0) { return CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(magics.s, MVT::i32)); } else { SDOperand NPQ = CurDAG->getNode(ISD::SUB, MVT::i32, N->getOperand(0), Q); NPQ = CurDAG->getNode(ISD::SRL, MVT::i32, NPQ, CurDAG->getConstant(1, MVT::i32)); NPQ = CurDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q); return CurDAG->getNode(ISD::SRL, MVT::i32, NPQ, CurDAG->getConstant(magics.s-1, MVT::i32)); } } SDOperand PPCDAGToDAGISel::SelectDYNAMIC_STACKALLOC(SDOperand Op) { SDNode *N = Op.Val; // FIXME: We are currently ignoring the requested alignment for handling // greater than the stack alignment. This will need to be revisited at some // point. Align = N.getOperand(2); if (!isa(N->getOperand(2)) || cast(N->getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } SDOperand Chain = Select(N->getOperand(0)); SDOperand Amt = Select(N->getOperand(1)); SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32); SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); Chain = R1Val.getValue(1); // Subtract the amount (guaranteed to be a multiple of the stack alignment) // from the stack pointer, giving us the result pointer. SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val); // Copy this result back into R1. Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result); // Copy this result back out of R1 to make sure we're not using the stack // space without decrementing the stack pointer. Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg. CodeGenMap[Op.getValue(0)] = Result; CodeGenMap[Op.getValue(1)] = Result.getValue(1); return SDOperand(Result.Val, Op.ResNo); } SDOperand PPCDAGToDAGISel::SelectADD_PARTS(SDOperand Op) { SDNode *N = Op.Val; SDOperand LHSL = Select(N->getOperand(0)); SDOperand LHSH = Select(N->getOperand(1)); unsigned Imm; bool ME = false, ZE = false; if (isIntImmediate(N->getOperand(3), Imm)) { ME = (signed)Imm == -1; ZE = Imm == 0; } std::vector Result; SDOperand CarryFromLo; if (isIntImmediate(N->getOperand(2), Imm) && ((signed)Imm >= -32768 || (signed)Imm < 32768)) { // Codegen the low 32 bits of the add. Interestingly, there is no // shifted form of add immediate carrying. CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, LHSL, getI32Imm(Imm)); } else { CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag, LHSL, Select(N->getOperand(2))); } CarryFromLo = CarryFromLo.getValue(1); // Codegen the high 32 bits, adding zero, minus one, or the full value // along with the carry flag produced by addc/addic. SDOperand ResultHi; if (ZE) ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo); else if (ME) ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo); else ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH, Select(N->getOperand(3)), CarryFromLo); Result.push_back(CarryFromLo.getValue(0)); Result.push_back(ResultHi); CodeGenMap[Op.getValue(0)] = Result[0]; CodeGenMap[Op.getValue(1)] = Result[1]; return Result[Op.ResNo]; } SDOperand PPCDAGToDAGISel::SelectSUB_PARTS(SDOperand Op) { SDNode *N = Op.Val; SDOperand LHSL = Select(N->getOperand(0)); SDOperand LHSH = Select(N->getOperand(1)); SDOperand RHSL = Select(N->getOperand(2)); SDOperand RHSH = Select(N->getOperand(3)); std::vector Result; Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag, RHSL, LHSL)); Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH, Result[0].getValue(1))); CodeGenMap[Op.getValue(0)] = Result[0]; CodeGenMap[Op.getValue(1)] = Result[1]; return Result[Op.ResNo]; } SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) { SDNode *N = Op.Val; unsigned Imm; ISD::CondCode CC = cast(N->getOperand(2))->get(); if (isIntImmediate(N->getOperand(1), Imm)) { // We can codegen setcc op, imm very efficiently compared to a brcond. // Check for those cases here. // setcc op, 0 if (Imm == 0) { SDOperand Op = Select(N->getOperand(0)); switch (CC) { default: assert(0 && "Unhandled SetCC condition"); abort(); case ISD::SETEQ: Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op); CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27), getI32Imm(5), getI32Imm(31)); break; case ISD::SETNE: { SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, Op, getI32Imm(~0U)); CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); break; } case ISD::SETLT: CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1), getI32Imm(31), getI32Imm(31)); break; case ISD::SETGT: { SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op); T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1), getI32Imm(31), getI32Imm(31)); break; } } return SDOperand(N, 0); } else if (Imm == ~0U) { // setcc op, -1 SDOperand Op = Select(N->getOperand(0)); switch (CC) { default: assert(0 && "Unhandled SetCC condition"); abort(); case ISD::SETEQ: Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, Op, getI32Imm(1)); CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, CurDAG->getTargetNode(PPC::LI, MVT::i32, getI32Imm(0)), Op.getValue(1)); break; case ISD::SETNE: { Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op); SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, Op, getI32Imm(~0U)); CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); break; } case ISD::SETLT: { SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op, getI32Imm(1)); SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op); CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1), getI32Imm(31), getI32Imm(31)); break; } case ISD::SETGT: Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1), getI32Imm(31), getI32Imm(31)); CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); break; } return SDOperand(N, 0); } } bool Inv; unsigned Idx = getCRIdxForSetCC(CC, Inv); SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); SDOperand IntCR; // Force the ccreg into CR7. SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); std::vector VTs; VTs.push_back(MVT::Other); VTs.push_back(MVT::Flag); // NONSTANDARD CopyToReg node: defines a flag std::vector Ops; Ops.push_back(CurDAG->getEntryNode()); Ops.push_back(CR7Reg); Ops.push_back(CCReg); CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1); if (TLI.getTargetMachine().getSubtarget().isGigaProcessor()) IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg); else IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg); if (!Inv) { CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR, getI32Imm(32-(3-Idx)), getI32Imm(31), getI32Imm(31)); } else { SDOperand Tmp = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR, getI32Imm(32-(3-Idx)), getI32Imm(31),getI32Imm(31)); CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); } return SDOperand(N, 0); } SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) { SDNode *N = Op.Val; SDOperand Chain = Select(N->getOperand(0)); unsigned CallOpcode; std::vector CallOperands; if (GlobalAddressSDNode *GASD = dyn_cast(N->getOperand(1))) { CallOpcode = PPC::CALLpcrel; CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(), MVT::i32)); } else if (ExternalSymbolSDNode *ESSDN = dyn_cast(N->getOperand(1))) { CallOpcode = PPC::CALLpcrel; CallOperands.push_back(N->getOperand(1)); } else { // Copy the callee address into the CTR register. SDOperand Callee = Select(N->getOperand(1)); Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain); // Copy the callee address into R12 on darwin. SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32); Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee); CallOperands.push_back(getI32Imm(20)); // Information to encode indcall CallOperands.push_back(getI32Imm(0)); // Information to encode indcall CallOperands.push_back(R12); CallOpcode = PPC::CALLindirect; } unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; SDOperand InFlag; // Null incoming flag value. for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) { unsigned DestReg = 0; MVT::ValueType RegTy = N->getOperand(i).getValueType(); if (RegTy == MVT::i32) { assert(GPR_idx < 8 && "Too many int args"); DestReg = GPR[GPR_idx++]; } else { assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) && "Unpromoted integer arg?"); assert(FPR_idx < 13 && "Too many fp args"); DestReg = FPR[FPR_idx++]; } if (N->getOperand(i).getOpcode() != ISD::UNDEF) { SDOperand Val = Select(N->getOperand(i)); Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag); InFlag = Chain.getValue(1); CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy)); } } // Finally, once everything is in registers to pass to the call, emit the // call itself. if (InFlag.Val) CallOperands.push_back(InFlag); // Strong dep on register copies. else CallOperands.push_back(Chain); // Weak dep on whatever occurs before Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, CallOperands); std::vector CallResults; // If the call has results, copy the values out of the ret val registers. switch (N->getValueType(0)) { default: assert(0 && "Unexpected ret value!"); case MVT::Other: break; case MVT::i32: if (N->getValueType(1) == MVT::i32) { Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, Chain.getValue(1)).getValue(1); CallResults.push_back(Chain.getValue(0)); Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, Chain.getValue(2)).getValue(1); CallResults.push_back(Chain.getValue(0)); } else { Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, Chain.getValue(1)).getValue(1); CallResults.push_back(Chain.getValue(0)); } break; case MVT::f32: case MVT::f64: Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0), Chain.getValue(1)).getValue(1); CallResults.push_back(Chain.getValue(0)); break; } CallResults.push_back(Chain); for (unsigned i = 0, e = CallResults.size(); i != e; ++i) CodeGenMap[Op.getValue(i)] = CallResults[i]; return CallResults[Op.ResNo]; } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDOperand PPCDAGToDAGISel::Select(SDOperand Op) { SDNode *N = Op.Val; if (N->getOpcode() >= ISD::BUILTIN_OP_END && N->getOpcode() < PPCISD::FIRST_NUMBER) return Op; // Already selected. // If this has already been converted, use it. std::map::iterator CGMI = CodeGenMap.find(Op); if (CGMI != CodeGenMap.end()) return CGMI->second; switch (N->getOpcode()) { default: break; case ISD::DYNAMIC_STACKALLOC: return SelectDYNAMIC_STACKALLOC(Op); case ISD::ADD_PARTS: return SelectADD_PARTS(Op); case ISD::SUB_PARTS: return SelectSUB_PARTS(Op); case ISD::SETCC: return SelectSETCC(Op); case ISD::CALL: return SelectCALL(Op); case ISD::TAILCALL: return SelectCALL(Op); case ISD::TokenFactor: { SDOperand New; if (N->getNumOperands() == 2) { SDOperand Op0 = Select(N->getOperand(0)); SDOperand Op1 = Select(N->getOperand(1)); New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1); } else { std::vector Ops; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) Ops.push_back(Select(N->getOperand(i))); New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops); } CodeGenMap[Op] = New; return New; } case ISD::CopyFromReg: { SDOperand Chain = Select(N->getOperand(0)); if (Chain == N->getOperand(0)) return Op; // No change SDOperand New = CurDAG->getCopyFromReg(Chain, cast(N->getOperand(1))->getReg(), N->getValueType(0)); return New.getValue(Op.ResNo); } case ISD::CopyToReg: { SDOperand Chain = Select(N->getOperand(0)); SDOperand Reg = N->getOperand(1); SDOperand Val = Select(N->getOperand(2)); SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, Reg, Val); CodeGenMap[Op] = New; return New; } case ISD::UNDEF: if (N->getValueType(0) == MVT::i32) CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_GPR, MVT::i32); else if (N->getValueType(0) == MVT::f32) CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_F4, MVT::f32); else CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_F8, MVT::f64); return SDOperand(N, 0); case ISD::FrameIndex: { int FI = cast(N)->getIndex(); CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32, CurDAG->getTargetFrameIndex(FI, MVT::i32), getI32Imm(0)); return SDOperand(N, 0); } case ISD::ConstantPool: { Constant *C = cast(N)->get(); SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32); if (PICEnabled) Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI); else Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI); CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI); return SDOperand(N, 0); } case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); SDOperand Tmp; SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i32); if (PICEnabled) Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), GA); else Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, GA); if (GV->hasWeakLinkage() || GV->isExternal()) CurDAG->SelectNodeTo(N, PPC::LWZ, MVT::i32, GA, Tmp); else CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, GA); return SDOperand(N, 0); } case PPCISD::FSEL: { SDOperand Comparison = Select(N->getOperand(0)); // Extend the comparison to 64-bits. if (Comparison.getValueType() == MVT::f32) Comparison = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Comparison); unsigned Opc = N->getValueType(0) == MVT::f32 ? PPC::FSELS : PPC::FSELD; CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Comparison, Select(N->getOperand(1)), Select(N->getOperand(2))); return SDOperand(N, 0); } case PPCISD::FCFID: CurDAG->SelectNodeTo(N, PPC::FCFID, N->getValueType(0), Select(N->getOperand(0))); return SDOperand(N, 0); case PPCISD::FCTIDZ: CurDAG->SelectNodeTo(N, PPC::FCTIDZ, N->getValueType(0), Select(N->getOperand(0))); return SDOperand(N, 0); case PPCISD::FCTIWZ: CurDAG->SelectNodeTo(N, PPC::FCTIWZ, N->getValueType(0), Select(N->getOperand(0))); return SDOperand(N, 0); case ISD::FADD: { MVT::ValueType Ty = N->getValueType(0); if (!NoExcessFPPrecision) { // Match FMA ops if (N->getOperand(0).getOpcode() == ISD::FMUL && N->getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, Select(N->getOperand(0).getOperand(0)), Select(N->getOperand(0).getOperand(1)), Select(N->getOperand(1))); return SDOperand(N, 0); } else if (N->getOperand(1).getOpcode() == ISD::FMUL && N->getOperand(1).hasOneUse()) { ++FusedFP; // Statistic CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, Select(N->getOperand(1).getOperand(0)), Select(N->getOperand(1).getOperand(1)), Select(N->getOperand(0))); return SDOperand(N, 0); } } CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, Ty, Select(N->getOperand(0)), Select(N->getOperand(1))); return SDOperand(N, 0); } case ISD::FSUB: { MVT::ValueType Ty = N->getValueType(0); if (!NoExcessFPPrecision) { // Match FMA ops if (N->getOperand(0).getOpcode() == ISD::FMUL && N->getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty, Select(N->getOperand(0).getOperand(0)), Select(N->getOperand(0).getOperand(1)), Select(N->getOperand(1))); return SDOperand(N, 0); } else if (N->getOperand(1).getOpcode() == ISD::FMUL && N->getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty, Select(N->getOperand(1).getOperand(0)), Select(N->getOperand(1).getOperand(1)), Select(N->getOperand(0))); return SDOperand(N, 0); } } CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, Ty, Select(N->getOperand(0)), Select(N->getOperand(1))); return SDOperand(N, 0); } case ISD::SDIV: { unsigned Imm; if (isIntImmediate(N->getOperand(1), Imm)) { if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { SDOperand Op = CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, Select(N->getOperand(0)), getI32Imm(Log2_32(Imm))); CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, Op.getValue(0), Op.getValue(1)); return SDOperand(N, 0); } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { SDOperand Op = CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, Select(N->getOperand(0)), getI32Imm(Log2_32(-Imm))); SDOperand PT = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0), Op.getValue(1)); CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); return SDOperand(N, 0); } else if (Imm) { SDOperand Result = Select(BuildSDIVSequence(N)); CodeGenMap[Op] = Result; return Result; } } // Other cases are autogenerated. break; } case ISD::UDIV: { // If this is a divide by constant, we can emit code using some magic // constants to implement it as a multiply instead. unsigned Imm; if (isIntImmediate(N->getOperand(1), Imm) && Imm) { SDOperand Result = Select(BuildUDIVSequence(N)); CodeGenMap[Op] = Result; return Result; } // Other cases are autogenerated. break; } case ISD::AND: { unsigned Imm; // If this is an and of a value rotated between 0 and 31 bits and then and'd // with a mask, emit rlwinm if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) || isShiftedMask_32(~Imm))) { SDOperand Val; unsigned SH, MB, ME; if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) { Val = Select(N->getOperand(0).getOperand(0)); } else { Val = Select(N->getOperand(0)); isRunOfOnes(Imm, MB, ME); SH = 0; } CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); return SDOperand(N, 0); } // Other cases are autogenerated. break; } case ISD::OR: if (SDNode *I = SelectBitfieldInsert(N)) return CodeGenMap[Op] = SDOperand(I, 0); // Other cases are autogenerated. break; case ISD::TRUNCATE: { assert(N->getValueType(0) == MVT::i32 && N->getOperand(0).getValueType() == MVT::i64 && "TRUNCATE only supported for i64 -> i32"); // FIXME: this code breaks ScheduleDAG since Op0 is an i64 and OR4 // takes i32s. SDOperand Op0 = Select(N->getOperand(0)); CurDAG->SelectNodeTo(N, PPC::OR4, MVT::i32, Op0, Op0); break; } case ISD::ANY_EXTEND: switch(N->getValueType(0)) { default: assert(0 && "Unhandled type in ANY_EXTEND"); case MVT::i64: { // FIXME: this code breaks ScheduleDAG since Op0 is an i32 and OR8 // takes i64s. SDOperand Op0 = Select(N->getOperand(0)); CurDAG->SelectNodeTo(N, PPC::OR8, MVT::i64, Op0, Op0); break; } } return SDOperand(N, 0); case ISD::ZERO_EXTEND: assert(N->getValueType(0) == MVT::i64 && N->getOperand(0).getValueType() == MVT::i32 && "ZERO_EXTEND only supported for i32 -> i64"); CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Select(N->getOperand(0)), getI32Imm(32)); return SDOperand(N, 0); case ISD::SHL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0).getOperand(0)), getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); else if (isIntImmediate(N->getOperand(1), Imm)) CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)), getI32Imm(Imm), getI32Imm(0), getI32Imm(31-Imm)); else CurDAG->SelectNodeTo(N, PPC::SLW, MVT::i32, Select(N->getOperand(0)), Select(N->getOperand(1))); return SDOperand(N, 0); } case ISD::SRL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0).getOperand(0)), getI32Imm(SH & 0x1F), getI32Imm(MB), getI32Imm(ME)); else if (isIntImmediate(N->getOperand(1), Imm)) CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)), getI32Imm((32-Imm) & 0x1F), getI32Imm(Imm), getI32Imm(31)); else CurDAG->SelectNodeTo(N, PPC::SRW, MVT::i32, Select(N->getOperand(0)), Select(N->getOperand(1))); return SDOperand(N, 0); } case ISD::FNEG: { SDOperand Val = Select(N->getOperand(0)); MVT::ValueType Ty = N->getValueType(0); if (N->getOperand(0).Val->hasOneUse()) { unsigned Opc; switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) { default: Opc = 0; break; case PPC::FABSS: Opc = PPC::FNABSS; break; case PPC::FABSD: Opc = PPC::FNABSD; break; case PPC::FMADD: Opc = PPC::FNMADD; break; case PPC::FMADDS: Opc = PPC::FNMADDS; break; case PPC::FMSUB: Opc = PPC::FNMSUB; break; case PPC::FMSUBS: Opc = PPC::FNMSUBS; break; } // If we inverted the opcode, then emit the new instruction with the // inverted opcode and the original instruction's operands. Otherwise, // fall through and generate a fneg instruction. if (Opc) { if (Opc == PPC::FNABSS || Opc == PPC::FNABSD) CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0)); else CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0), Val.getOperand(1), Val.getOperand(2)); return SDOperand(N, 0); } } if (Ty == MVT::f32) CurDAG->SelectNodeTo(N, PPC::FNEGS, MVT::f32, Val); else CurDAG->SelectNodeTo(N, PPC::FNEGD, MVT::f64, Val); return SDOperand(N, 0); } case ISD::LOAD: case ISD::EXTLOAD: case ISD::ZEXTLOAD: case ISD::SEXTLOAD: { SDOperand Op1, Op2; bool isIdx = SelectAddr(N->getOperand(1), Op1, Op2); MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ? N->getValueType(0) : cast(N->getOperand(3))->getVT(); unsigned Opc; switch (TypeBeingLoaded) { default: N->dump(); assert(0 && "Cannot load this type!"); case MVT::i1: case MVT::i8: Opc = isIdx ? PPC::LBZX : PPC::LBZ; break; case MVT::i16: if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load? Opc = isIdx ? PPC::LHAX : PPC::LHA; } else { Opc = isIdx ? PPC::LHZX : PPC::LHZ; } break; case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break; case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break; case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break; } // If this is an f32 -> f64 load, emit the f32 load, then use an 'extending // copy'. if (TypeBeingLoaded != MVT::f32 || N->getOpcode() == ISD::LOAD) { CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other, Op1, Op2, Select(N->getOperand(0))); return SDOperand(N, Op.ResNo); } else { std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Select(N->getOperand(0))); SDOperand Res = CurDAG->getTargetNode(Opc, MVT::f32, MVT::Other, Ops); SDOperand Ext = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Res); CodeGenMap[Op.getValue(0)] = Ext; CodeGenMap[Op.getValue(1)] = Res.getValue(1); if (Op.ResNo) return Res.getValue(1); else return Ext; } } case ISD::TRUNCSTORE: case ISD::STORE: { SDOperand AddrOp1, AddrOp2; bool isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2); unsigned Opc; if (N->getOpcode() == ISD::STORE) { switch (N->getOperand(1).getValueType()) { default: assert(0 && "unknown Type in store"); case MVT::i32: Opc = isIdx ? PPC::STWX : PPC::STW; break; case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break; case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break; } } else { //ISD::TRUNCSTORE switch(cast(N->getOperand(4))->getVT()) { default: assert(0 && "unknown Type in store"); case MVT::i8: Opc = isIdx ? PPC::STBX : PPC::STB; break; case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break; } } CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)), AddrOp1, AddrOp2, Select(N->getOperand(0))); return SDOperand(N, 0); } case ISD::SELECT_CC: { ISD::CondCode CC = cast(N->getOperand(4))->get(); // handle the setcc cases here. select_cc lhs, 0, 1, 0, cc if (ConstantSDNode *N1C = dyn_cast(N->getOperand(1))) if (ConstantSDNode *N2C = dyn_cast(N->getOperand(2))) if (ConstantSDNode *N3C = dyn_cast(N->getOperand(3))) if (N1C->isNullValue() && N3C->isNullValue() && N2C->getValue() == 1ULL && CC == ISD::SETNE) { SDOperand LHS = Select(N->getOperand(0)); SDOperand Tmp = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, LHS, getI32Imm(~0U)); CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS, Tmp.getValue(1)); return SDOperand(N, 0); } SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); unsigned BROpc = getBCCForSetCC(CC); bool isFP = MVT::isFloatingPoint(N->getValueType(0)); unsigned SelectCCOp; if (MVT::isInteger(N->getValueType(0))) SelectCCOp = PPC::SELECT_CC_Int; else if (N->getValueType(0) == MVT::f32) SelectCCOp = PPC::SELECT_CC_F4; else SelectCCOp = PPC::SELECT_CC_F8; CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg, Select(N->getOperand(2)), Select(N->getOperand(3)), getI32Imm(BROpc)); return SDOperand(N, 0); } case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: { unsigned Amt = cast(N->getOperand(1))->getValue(); unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP; CurDAG->SelectNodeTo(N, Opc, MVT::Other, getI32Imm(Amt), Select(N->getOperand(0))); return SDOperand(N, 0); } case ISD::RET: { SDOperand Chain = Select(N->getOperand(0)); // Token chain. if (N->getNumOperands() == 2) { SDOperand Val = Select(N->getOperand(1)); if (N->getOperand(1).getValueType() == MVT::i32) { Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val); } else { assert(MVT::isFloatingPoint(N->getOperand(1).getValueType())); Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val); } } else if (N->getNumOperands() > 1) { assert(N->getOperand(1).getValueType() == MVT::i32 && N->getOperand(2).getValueType() == MVT::i32 && N->getNumOperands() == 3 && "Unknown two-register ret value!"); Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1))); Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2))); } // Finally, select this to a blr (return) instruction. CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain); return SDOperand(N, 0); } case ISD::BR: CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1), Select(N->getOperand(0))); return SDOperand(N, 0); case ISD::BR_CC: case ISD::BRTWOWAY_CC: { SDOperand Chain = Select(N->getOperand(0)); MachineBasicBlock *Dest = cast(N->getOperand(4))->getBasicBlock(); ISD::CondCode CC = cast(N->getOperand(1))->get(); SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC); // If this is a two way branch, then grab the fallthrough basic block // argument and build a PowerPC branch pseudo-op, suitable for long branch // conversion if necessary by the branch selection pass. Otherwise, emit a // standard conditional branch. if (N->getOpcode() == ISD::BRTWOWAY_CC) { SDOperand CondTrueBlock = N->getOperand(4); SDOperand CondFalseBlock = N->getOperand(5); // If the false case is the current basic block, then this is a self loop. // We do not want to emit "Loop: ... brcond Out; br Loop", as it adds an // extra dispatch group to the loop. Instead, invert the condition and // emit "Loop: ... br!cond Loop; br Out if (cast(CondFalseBlock)->getBasicBlock() == BB) { std::swap(CondTrueBlock, CondFalseBlock); CC = getSetCCInverse(CC, MVT::isInteger(N->getOperand(2).getValueType())); } unsigned Opc = getBCCForSetCC(CC); SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other, CondCode, getI32Imm(Opc), CondTrueBlock, CondFalseBlock, Chain); CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, CondFalseBlock, CB); } else { // Iterate to the next basic block ilist::iterator It = BB; ++It; // If the fallthrough path is off the end of the function, which would be // undefined behavior, set it to be the same as the current block because // we have nothing better to set it to, and leaving it alone will cause // the PowerPC Branch Selection pass to crash. if (It == BB->getParent()->end()) It = Dest; CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode, getI32Imm(getBCCForSetCC(CC)), N->getOperand(4), CurDAG->getBasicBlock(It), Chain); } return SDOperand(N, 0); } } return SelectCode(Op); } /// createPPCISelDag - This pass converts a legalized DAG into a /// PowerPC-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createPPCISelDag(TargetMachine &TM) { return new PPCDAGToDAGISel(TM); }