//===-- LiveRangeInfo.cpp -------------------------------------------------===// // // Live range construction for coloring-based register allocation for LLVM. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveRangeInfo.h" #include "llvm/CodeGen/RegAllocCommon.h" #include "llvm/CodeGen/RegClass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineCodeForBasicBlock.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "Support/SetOperations.h" using std::cerr; LiveRangeInfo::LiveRangeInfo(const Function *F, const TargetMachine &tm, std::vector &RCL) : Meth(F), TM(tm), RegClassList(RCL), MRI(tm.getRegInfo()) { } LiveRangeInfo::~LiveRangeInfo() { for (LiveRangeMapType::iterator MI = LiveRangeMap.begin(); MI != LiveRangeMap.end(); ++MI) { if (MI->first && MI->second) { LiveRange *LR = MI->second; // we need to be careful in deleting LiveRanges in LiveRangeMap // since two/more Values in the live range map can point to the same // live range. We have to make the other entries NULL when we delete // a live range. for(LiveRange::iterator LI = LR->begin(); LI != LR->end(); ++LI) LiveRangeMap[*LI] = 0; delete LR; } } } //--------------------------------------------------------------------------- // union two live ranges into one. The 2nd LR is deleted. Used for coalescing. // Note: the caller must make sure that L1 and L2 are distinct and both // LRs don't have suggested colors //--------------------------------------------------------------------------- void LiveRangeInfo::unionAndUpdateLRs(LiveRange *L1, LiveRange *L2) { assert(L1 != L2 && (!L1->hasSuggestedColor() || !L2->hasSuggestedColor())); set_union(*L1, *L2); // add elements of L2 to L1 for(ValueSet::iterator L2It = L2->begin(); L2It != L2->end(); ++L2It) { //assert(( L1->getTypeID() == L2->getTypeID()) && "Merge:Different types"); L1->insert(*L2It); // add the var in L2 to L1 LiveRangeMap[*L2It] = L1; // now the elements in L2 should map //to L1 } // Now if LROfDef(L1) has a suggested color, it will remain. // But, if LROfUse(L2) has a suggested color, the new range // must have the same color. if(L2->hasSuggestedColor()) L1->setSuggestedColor(L2->getSuggestedColor()); if (L2->isCallInterference()) L1->setCallInterference(); // add the spill costs L1->addSpillCost(L2->getSpillCost()); delete L2; // delete L2 as it is no longer needed } //--------------------------------------------------------------------------- // Method for creating a single live range for a definition. // The definition must be represented by a virtual register (a Value). // Note: this function does *not* check that no live range exists for def. //--------------------------------------------------------------------------- LiveRange* LiveRangeInfo::createNewLiveRange(const Value* Def, bool isCC /* = false*/) { LiveRange* DefRange = new LiveRange(); // Create a new live range, DefRange->insert(Def); // add Def to it, LiveRangeMap[Def] = DefRange; // and update the map. // set the register class of the new live range DefRange->setRegClass(RegClassList[MRI.getRegClassIDOfValue(Def, isCC)]); if (DEBUG_RA >= RA_DEBUG_LiveRanges) { cerr << " Creating a LR for def "; if (isCC) cerr << " (CC Register!)"; cerr << " : " << RAV(Def) << "\n"; } return DefRange; } LiveRange* LiveRangeInfo::createOrAddToLiveRange(const Value* Def, bool isCC /* = false*/) { LiveRange *DefRange = LiveRangeMap[Def]; // check if the LR is already there (because of multiple defs) if (!DefRange) { DefRange = this->createNewLiveRange(Def, isCC); } else { // live range already exists DefRange->insert(Def); // add the operand to the range LiveRangeMap[Def] = DefRange; // make operand point to merged set if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << " Added to existing LR for def: " << RAV(Def) << "\n"; } return DefRange; } //--------------------------------------------------------------------------- // Method for constructing all live ranges in a function. It creates live // ranges for all values defined in the instruction stream. Also, it // creates live ranges for all incoming arguments of the function. //--------------------------------------------------------------------------- void LiveRangeInfo::constructLiveRanges() { if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "Constructing Live Ranges ...\n"; // first find the live ranges for all incoming args of the function since // those LRs start from the start of the function for (Function::const_aiterator AI = Meth->abegin(); AI != Meth->aend(); ++AI) this->createNewLiveRange(AI, /*isCC*/ false); // Now suggest hardware registers for these function args MRI.suggestRegs4MethodArgs(Meth, *this); // Now create LRs for machine instructions. A new LR will be created // only for defs in the machine instr since, we assume that all Values are // defined before they are used. However, there can be multiple defs for // the same Value in machine instructions. // // Also, find CALL and RETURN instructions, which need extra work. // for (Function::const_iterator BBI=Meth->begin(); BBI != Meth->end(); ++BBI){ // get the vector of machine instructions for this basic block. MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI); // iterate over all the machine instructions in BB for(MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin(); MInstIterator != MIVec.end(); ++MInstIterator) { MachineInstr *MInst = *MInstIterator; // If the machine instruction is a call/return instruction, add it to // CallRetInstrList for processing its args, ret value, and ret addr. // if(TM.getInstrInfo().isReturn(MInst->getOpCode()) || TM.getInstrInfo().isCall(MInst->getOpCode())) CallRetInstrList.push_back( MInst ); // iterate over explicit MI operands and create a new LR // for each operand that is defined by the instruction for (MachineInstr::val_op_iterator OpI = MInst->begin(), OpE = MInst->end(); OpI != OpE; ++OpI) if (OpI.isDef()) { const Value *Def = *OpI; bool isCC = (OpI.getMachineOperand().getOperandType() == MachineOperand::MO_CCRegister); this->createOrAddToLiveRange(Def, isCC); } // iterate over implicit MI operands and create a new LR // for each operand that is defined by the instruction for (unsigned i = 0; i < MInst->getNumImplicitRefs(); ++i) if (MInst->implicitRefIsDefined(i)) { const Value *Def = MInst->getImplicitRef(i); this->createOrAddToLiveRange(Def, /*isCC*/ false); } } // for all machine instructions in the BB } // for all BBs in function // Now we have to suggest clors for call and return arg live ranges. // Also, if there are implicit defs (e.g., retun value of a call inst) // they must be added to the live range list // suggestRegs4CallRets(); if( DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "Initial Live Ranges constructed!\n"; } //--------------------------------------------------------------------------- // If some live ranges must be colored with specific hardware registers // (e.g., for outgoing call args), suggesting of colors for such live // ranges is done using target specific function. Those functions are called // from this function. The target specific methods must: // 1) suggest colors for call and return args. // 2) create new LRs for implicit defs in machine instructions //--------------------------------------------------------------------------- void LiveRangeInfo::suggestRegs4CallRets() { CallRetInstrListType::iterator It = CallRetInstrList.begin(); for( ; It != CallRetInstrList.end(); ++It ) { MachineInstr *MInst = *It; MachineOpCode OpCode = MInst->getOpCode(); if( (TM.getInstrInfo()).isReturn(OpCode) ) MRI.suggestReg4RetValue( MInst, *this); else if( (TM.getInstrInfo()).isCall( OpCode ) ) MRI.suggestRegs4CallArgs( MInst, *this); else assert( 0 && "Non call/ret instr in CallRetInstrList" ); } } //-------------------------------------------------------------------------- // The following method coalesces live ranges when possible. This method // must be called after the interference graph has been constructed. /* Algorithm: for each BB in function for each machine instruction (inst) for each definition (def) in inst for each operand (op) of inst that is a use if the def and op are of the same register type if the def and op do not interfere //i.e., not simultaneously live if (degree(LR of def) + degree(LR of op)) <= # avail regs if both LRs do not have suggested colors merge2IGNodes(def, op) // i.e., merge 2 LRs */ //--------------------------------------------------------------------------- void LiveRangeInfo::coalesceLRs() { if(DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "\nCoalescing LRs ...\n"; for(Function::const_iterator BBI = Meth->begin(), BBE = Meth->end(); BBI != BBE; ++BBI) { // get the iterator for machine instructions const MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI); MachineCodeForBasicBlock::const_iterator MInstIterator = MIVec.begin(); // iterate over all the machine instructions in BB for( ; MInstIterator != MIVec.end(); ++MInstIterator) { const MachineInstr * MInst = *MInstIterator; if( DEBUG_RA >= RA_DEBUG_LiveRanges) { cerr << " *Iterating over machine instr "; MInst->dump(); cerr << "\n"; } // iterate over MI operands to find defs for(MachineInstr::const_val_op_iterator DefI = MInst->begin(), DefE = MInst->end(); DefI != DefE; ++DefI) { if (DefI.isDef()) { // iff this operand is a def LiveRange *LROfDef = getLiveRangeForValue( *DefI ); RegClass *RCOfDef = LROfDef->getRegClass(); MachineInstr::const_val_op_iterator UseI = MInst->begin(), UseE = MInst->end(); for( ; UseI != UseE; ++UseI){ // for all uses LiveRange *LROfUse = getLiveRangeForValue( *UseI ); if (!LROfUse) { // if LR of use is not found //don't warn about labels if (!isa(*UseI) && DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << " !! Warning: No LR for use " << RAV(*UseI) << "\n"; continue; // ignore and continue } if (LROfUse == LROfDef) // nothing to merge if they are same continue; if (MRI.getRegType(LROfDef) == MRI.getRegType(LROfUse)) { // If the two RegTypes are the same if (!RCOfDef->getInterference(LROfDef, LROfUse) ) { unsigned CombinedDegree = LROfDef->getUserIGNode()->getNumOfNeighbors() + LROfUse->getUserIGNode()->getNumOfNeighbors(); if (CombinedDegree > RCOfDef->getNumOfAvailRegs()) { // get more precise estimate of combined degree CombinedDegree = LROfDef->getUserIGNode()-> getCombinedDegree(LROfUse->getUserIGNode()); } if (CombinedDegree <= RCOfDef->getNumOfAvailRegs()) { // if both LRs do not have suggested colors if (!(LROfDef->hasSuggestedColor() && LROfUse->hasSuggestedColor())) { RCOfDef->mergeIGNodesOfLRs(LROfDef, LROfUse); unionAndUpdateLRs(LROfDef, LROfUse); } } // if combined degree is less than # of regs } // if def and use do not interfere }// if reg classes are the same } // for all uses } // if def } // for all defs } // for all machine instructions } // for all BBs if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "\nCoalescing Done!\n"; } /*--------------------------- Debug code for printing ---------------*/ void LiveRangeInfo::printLiveRanges() { LiveRangeMapType::iterator HMI = LiveRangeMap.begin(); // hash map iterator cerr << "\nPrinting Live Ranges from Hash Map:\n"; for( ; HMI != LiveRangeMap.end(); ++HMI) { if (HMI->first && HMI->second) { cerr << " Value* " << RAV(HMI->first) << "\t: "; if (IGNode* igNode = HMI->second->getUserIGNode()) cerr << "LR# " << igNode->getIndex(); else cerr << "LR# " << ""; cerr << "\t:Values = "; printSet(*HMI->second); cerr << "\n"; } } }