//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Correlated Value Propagation pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DomTreeUpdater.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include #include using namespace llvm; #define DEBUG_TYPE "correlated-value-propagation" STATISTIC(NumPhis, "Number of phis propagated"); STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value"); STATISTIC(NumSelects, "Number of selects propagated"); STATISTIC(NumMemAccess, "Number of memory access targets propagated"); STATISTIC(NumCmps, "Number of comparisons propagated"); STATISTIC(NumReturns, "Number of return values propagated"); STATISTIC(NumDeadCases, "Number of switch cases removed"); STATISTIC(NumSDivs, "Number of sdiv converted to udiv"); STATISTIC(NumUDivs, "Number of udivs whose width was decreased"); STATISTIC(NumAShrs, "Number of ashr converted to lshr"); STATISTIC(NumSRems, "Number of srem converted to urem"); STATISTIC(NumOverflows, "Number of overflow checks removed"); static cl::opt DontProcessAdds("cvp-dont-process-adds", cl::init(true)); namespace { class CorrelatedValuePropagation : public FunctionPass { public: static char ID; CorrelatedValuePropagation(): FunctionPass(ID) { initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; } // end anonymous namespace char CorrelatedValuePropagation::ID = 0; INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation", "Value Propagation", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation", "Value Propagation", false, false) // Public interface to the Value Propagation pass Pass *llvm::createCorrelatedValuePropagationPass() { return new CorrelatedValuePropagation(); } static bool processSelect(SelectInst *S, LazyValueInfo *LVI) { if (S->getType()->isVectorTy()) return false; if (isa(S->getOperand(0))) return false; Constant *C = LVI->getConstant(S->getCondition(), S->getParent(), S); if (!C) return false; ConstantInt *CI = dyn_cast(C); if (!CI) return false; Value *ReplaceWith = S->getTrueValue(); Value *Other = S->getFalseValue(); if (!CI->isOne()) std::swap(ReplaceWith, Other); if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType()); S->replaceAllUsesWith(ReplaceWith); S->eraseFromParent(); ++NumSelects; return true; } /// Try to simplify a phi with constant incoming values that match the edge /// values of a non-constant value on all other edges: /// bb0: /// %isnull = icmp eq i8* %x, null /// br i1 %isnull, label %bb2, label %bb1 /// bb1: /// br label %bb2 /// bb2: /// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ] /// --> /// %r = %x static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT) { // Collect incoming constants and initialize possible common value. SmallVector, 4> IncomingConstants; Value *CommonValue = nullptr; for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { Value *Incoming = P->getIncomingValue(i); if (auto *IncomingConstant = dyn_cast(Incoming)) { IncomingConstants.push_back(std::make_pair(IncomingConstant, i)); } else if (!CommonValue) { // The potential common value is initialized to the first non-constant. CommonValue = Incoming; } else if (Incoming != CommonValue) { // There can be only one non-constant common value. return false; } } if (!CommonValue || IncomingConstants.empty()) return false; // The common value must be valid in all incoming blocks. BasicBlock *ToBB = P->getParent(); if (auto *CommonInst = dyn_cast(CommonValue)) if (!DT->dominates(CommonInst, ToBB)) return false; // We have a phi with exactly 1 variable incoming value and 1 or more constant // incoming values. See if all constant incoming values can be mapped back to // the same incoming variable value. for (auto &IncomingConstant : IncomingConstants) { Constant *C = IncomingConstant.first; BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second); if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P)) return false; } // All constant incoming values map to the same variable along the incoming // edges of the phi. The phi is unnecessary. P->replaceAllUsesWith(CommonValue); P->eraseFromParent(); ++NumPhiCommon; return true; } static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT, const SimplifyQuery &SQ) { bool Changed = false; BasicBlock *BB = P->getParent(); for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { Value *Incoming = P->getIncomingValue(i); if (isa(Incoming)) continue; Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P); // Look if the incoming value is a select with a scalar condition for which // LVI can tells us the value. In that case replace the incoming value with // the appropriate value of the select. This often allows us to remove the // select later. if (!V) { SelectInst *SI = dyn_cast(Incoming); if (!SI) continue; Value *Condition = SI->getCondition(); if (!Condition->getType()->isVectorTy()) { if (Constant *C = LVI->getConstantOnEdge( Condition, P->getIncomingBlock(i), BB, P)) { if (C->isOneValue()) { V = SI->getTrueValue(); } else if (C->isZeroValue()) { V = SI->getFalseValue(); } // Once LVI learns to handle vector types, we could also add support // for vector type constants that are not all zeroes or all ones. } } // Look if the select has a constant but LVI tells us that the incoming // value can never be that constant. In that case replace the incoming // value with the other value of the select. This often allows us to // remove the select later. if (!V) { Constant *C = dyn_cast(SI->getFalseValue()); if (!C) continue; if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, P->getIncomingBlock(i), BB, P) != LazyValueInfo::False) continue; V = SI->getTrueValue(); } LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n'); } P->setIncomingValue(i, V); Changed = true; } if (Value *V = SimplifyInstruction(P, SQ)) { P->replaceAllUsesWith(V); P->eraseFromParent(); Changed = true; } if (!Changed) Changed = simplifyCommonValuePhi(P, LVI, DT); if (Changed) ++NumPhis; return Changed; } static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) { Value *Pointer = nullptr; if (LoadInst *L = dyn_cast(I)) Pointer = L->getPointerOperand(); else Pointer = cast(I)->getPointerOperand(); if (isa(Pointer)) return false; Constant *C = LVI->getConstant(Pointer, I->getParent(), I); if (!C) return false; ++NumMemAccess; I->replaceUsesOfWith(Pointer, C); return true; } /// See if LazyValueInfo's ability to exploit edge conditions or range /// information is sufficient to prove this comparison. Even for local /// conditions, this can sometimes prove conditions instcombine can't by /// exploiting range information. static bool processCmp(CmpInst *C, LazyValueInfo *LVI) { Value *Op0 = C->getOperand(0); Constant *Op1 = dyn_cast(C->getOperand(1)); if (!Op1) return false; // As a policy choice, we choose not to waste compile time on anything where // the comparison is testing local values. While LVI can sometimes reason // about such cases, it's not its primary purpose. We do make sure to do // the block local query for uses from terminator instructions, but that's // handled in the code for each terminator. auto *I = dyn_cast(Op0); if (I && I->getParent() == C->getParent()) return false; LazyValueInfo::Tristate Result = LVI->getPredicateAt(C->getPredicate(), Op0, Op1, C); if (Result == LazyValueInfo::Unknown) return false; ++NumCmps; if (Result == LazyValueInfo::True) C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext())); else C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext())); C->eraseFromParent(); return true; } /// Simplify a switch instruction by removing cases which can never fire. If the /// uselessness of a case could be determined locally then constant propagation /// would already have figured it out. Instead, walk the predecessors and /// statically evaluate cases based on information available on that edge. Cases /// that cannot fire no matter what the incoming edge can safely be removed. If /// a case fires on every incoming edge then the entire switch can be removed /// and replaced with a branch to the case destination. static bool processSwitch(SwitchInst *SI, LazyValueInfo *LVI, DominatorTree *DT) { DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); Value *Cond = SI->getCondition(); BasicBlock *BB = SI->getParent(); // If the condition was defined in same block as the switch then LazyValueInfo // currently won't say anything useful about it, though in theory it could. if (isa(Cond) && cast(Cond)->getParent() == BB) return false; // If the switch is unreachable then trying to improve it is a waste of time. pred_iterator PB = pred_begin(BB), PE = pred_end(BB); if (PB == PE) return false; // Analyse each switch case in turn. bool Changed = false; DenseMap SuccessorsCount; for (auto *Succ : successors(BB)) SuccessorsCount[Succ]++; for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) { ConstantInt *Case = CI->getCaseValue(); // Check to see if the switch condition is equal to/not equal to the case // value on every incoming edge, equal/not equal being the same each time. LazyValueInfo::Tristate State = LazyValueInfo::Unknown; for (pred_iterator PI = PB; PI != PE; ++PI) { // Is the switch condition equal to the case value? LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, Cond, Case, *PI, BB, SI); // Give up on this case if nothing is known. if (Value == LazyValueInfo::Unknown) { State = LazyValueInfo::Unknown; break; } // If this was the first edge to be visited, record that all other edges // need to give the same result. if (PI == PB) { State = Value; continue; } // If this case is known to fire for some edges and known not to fire for // others then there is nothing we can do - give up. if (Value != State) { State = LazyValueInfo::Unknown; break; } } if (State == LazyValueInfo::False) { // This case never fires - remove it. BasicBlock *Succ = CI->getCaseSuccessor(); Succ->removePredecessor(BB); CI = SI->removeCase(CI); CE = SI->case_end(); // The condition can be modified by removePredecessor's PHI simplification // logic. Cond = SI->getCondition(); ++NumDeadCases; Changed = true; if (--SuccessorsCount[Succ] == 0) DTU.deleteEdge(BB, Succ); continue; } if (State == LazyValueInfo::True) { // This case always fires. Arrange for the switch to be turned into an // unconditional branch by replacing the switch condition with the case // value. SI->setCondition(Case); NumDeadCases += SI->getNumCases(); Changed = true; break; } // Increment the case iterator since we didn't delete it. ++CI; } if (Changed) // If the switch has been simplified to the point where it can be replaced // by a branch then do so now. ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false, /*TLI = */ nullptr, &DTU); return Changed; } // See if we can prove that the given overflow intrinsic will not overflow. static bool willNotOverflow(IntrinsicInst *II, LazyValueInfo *LVI) { using OBO = OverflowingBinaryOperator; auto NoWrap = [&] (Instruction::BinaryOps BinOp, unsigned NoWrapKind) { Value *RHS = II->getOperand(1); ConstantRange RRange = LVI->getConstantRange(RHS, II->getParent(), II); ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( BinOp, RRange, NoWrapKind); // As an optimization, do not compute LRange if we do not need it. if (NWRegion.isEmptySet()) return false; Value *LHS = II->getOperand(0); ConstantRange LRange = LVI->getConstantRange(LHS, II->getParent(), II); return NWRegion.contains(LRange); }; switch (II->getIntrinsicID()) { default: break; case Intrinsic::uadd_with_overflow: return NoWrap(Instruction::Add, OBO::NoUnsignedWrap); case Intrinsic::sadd_with_overflow: return NoWrap(Instruction::Add, OBO::NoSignedWrap); case Intrinsic::usub_with_overflow: return NoWrap(Instruction::Sub, OBO::NoUnsignedWrap); case Intrinsic::ssub_with_overflow: return NoWrap(Instruction::Sub, OBO::NoSignedWrap); } return false; } static void processOverflowIntrinsic(IntrinsicInst *II) { Value *NewOp = nullptr; switch (II->getIntrinsicID()) { default: llvm_unreachable("Unexpected instruction."); case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: NewOp = BinaryOperator::CreateAdd(II->getOperand(0), II->getOperand(1), II->getName(), II); break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: NewOp = BinaryOperator::CreateSub(II->getOperand(0), II->getOperand(1), II->getName(), II); break; } ++NumOverflows; IRBuilder<> B(II); Value *NewI = B.CreateInsertValue(UndefValue::get(II->getType()), NewOp, 0); NewI = B.CreateInsertValue(NewI, ConstantInt::getFalse(II->getContext()), 1); II->replaceAllUsesWith(NewI); II->eraseFromParent(); } /// Infer nonnull attributes for the arguments at the specified callsite. static bool processCallSite(CallSite CS, LazyValueInfo *LVI) { SmallVector ArgNos; unsigned ArgNo = 0; if (auto *II = dyn_cast(CS.getInstruction())) { if (willNotOverflow(II, LVI)) { processOverflowIntrinsic(II); return true; } } for (Value *V : CS.args()) { PointerType *Type = dyn_cast(V->getType()); // Try to mark pointer typed parameters as non-null. We skip the // relatively expensive analysis for constants which are obviously either // null or non-null to start with. if (Type && !CS.paramHasAttr(ArgNo, Attribute::NonNull) && !isa(V) && LVI->getPredicateAt(ICmpInst::ICMP_EQ, V, ConstantPointerNull::get(Type), CS.getInstruction()) == LazyValueInfo::False) ArgNos.push_back(ArgNo); ArgNo++; } assert(ArgNo == CS.arg_size() && "sanity check"); if (ArgNos.empty()) return false; AttributeList AS = CS.getAttributes(); LLVMContext &Ctx = CS.getInstruction()->getContext(); AS = AS.addParamAttribute(Ctx, ArgNos, Attribute::get(Ctx, Attribute::NonNull)); CS.setAttributes(AS); return true; } static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) { Constant *Zero = ConstantInt::get(SDI->getType(), 0); for (Value *O : SDI->operands()) { auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI); if (Result != LazyValueInfo::True) return false; } return true; } /// Try to shrink a udiv/urem's width down to the smallest power of two that's /// sufficient to contain its operands. static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) { assert(Instr->getOpcode() == Instruction::UDiv || Instr->getOpcode() == Instruction::URem); if (Instr->getType()->isVectorTy()) return false; // Find the smallest power of two bitwidth that's sufficient to hold Instr's // operands. auto OrigWidth = Instr->getType()->getIntegerBitWidth(); ConstantRange OperandRange(OrigWidth, /*isFullset=*/false); for (Value *Operand : Instr->operands()) { OperandRange = OperandRange.unionWith( LVI->getConstantRange(Operand, Instr->getParent())); } // Don't shrink below 8 bits wide. unsigned NewWidth = std::max( PowerOf2Ceil(OperandRange.getUnsignedMax().getActiveBits()), 8); // NewWidth might be greater than OrigWidth if OrigWidth is not a power of // two. if (NewWidth >= OrigWidth) return false; ++NumUDivs; auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth); auto *LHS = CastInst::Create(Instruction::Trunc, Instr->getOperand(0), TruncTy, Instr->getName() + ".lhs.trunc", Instr); auto *RHS = CastInst::Create(Instruction::Trunc, Instr->getOperand(1), TruncTy, Instr->getName() + ".rhs.trunc", Instr); auto *BO = BinaryOperator::Create(Instr->getOpcode(), LHS, RHS, Instr->getName(), Instr); auto *Zext = CastInst::Create(Instruction::ZExt, BO, Instr->getType(), Instr->getName() + ".zext", Instr); if (BO->getOpcode() == Instruction::UDiv) BO->setIsExact(Instr->isExact()); Instr->replaceAllUsesWith(Zext); Instr->eraseFromParent(); return true; } static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) { if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) return false; ++NumSRems; auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1), SDI->getName(), SDI); SDI->replaceAllUsesWith(BO); SDI->eraseFromParent(); // Try to process our new urem. processUDivOrURem(BO, LVI); return true; } /// See if LazyValueInfo's ability to exploit edge conditions or range /// information is sufficient to prove the both operands of this SDiv are /// positive. If this is the case, replace the SDiv with a UDiv. Even for local /// conditions, this can sometimes prove conditions instcombine can't by /// exploiting range information. static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) { if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) return false; ++NumSDivs; auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1), SDI->getName(), SDI); BO->setIsExact(SDI->isExact()); SDI->replaceAllUsesWith(BO); SDI->eraseFromParent(); // Try to simplify our new udiv. processUDivOrURem(BO, LVI); return true; } static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) { if (SDI->getType()->isVectorTy()) return false; Constant *Zero = ConstantInt::get(SDI->getType(), 0); if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, SDI->getOperand(0), Zero, SDI) != LazyValueInfo::True) return false; ++NumAShrs; auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1), SDI->getName(), SDI); BO->setIsExact(SDI->isExact()); SDI->replaceAllUsesWith(BO); SDI->eraseFromParent(); return true; } static bool processAdd(BinaryOperator *AddOp, LazyValueInfo *LVI) { using OBO = OverflowingBinaryOperator; if (DontProcessAdds) return false; if (AddOp->getType()->isVectorTy()) return false; bool NSW = AddOp->hasNoSignedWrap(); bool NUW = AddOp->hasNoUnsignedWrap(); if (NSW && NUW) return false; BasicBlock *BB = AddOp->getParent(); Value *LHS = AddOp->getOperand(0); Value *RHS = AddOp->getOperand(1); ConstantRange LRange = LVI->getConstantRange(LHS, BB, AddOp); // Initialize RRange only if we need it. If we know that guaranteed no wrap // range for the given LHS range is empty don't spend time calculating the // range for the RHS. Optional RRange; auto LazyRRange = [&] () { if (!RRange) RRange = LVI->getConstantRange(RHS, BB, AddOp); return RRange.getValue(); }; bool Changed = false; if (!NUW) { ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( BinaryOperator::Add, LRange, OBO::NoUnsignedWrap); if (!NUWRange.isEmptySet()) { bool NewNUW = NUWRange.contains(LazyRRange()); AddOp->setHasNoUnsignedWrap(NewNUW); Changed |= NewNUW; } } if (!NSW) { ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( BinaryOperator::Add, LRange, OBO::NoSignedWrap); if (!NSWRange.isEmptySet()) { bool NewNSW = NSWRange.contains(LazyRRange()); AddOp->setHasNoSignedWrap(NewNSW); Changed |= NewNSW; } } return Changed; } static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) { if (Constant *C = LVI->getConstant(V, At->getParent(), At)) return C; // TODO: The following really should be sunk inside LVI's core algorithm, or // at least the outer shims around such. auto *C = dyn_cast(V); if (!C) return nullptr; Value *Op0 = C->getOperand(0); Constant *Op1 = dyn_cast(C->getOperand(1)); if (!Op1) return nullptr; LazyValueInfo::Tristate Result = LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At); if (Result == LazyValueInfo::Unknown) return nullptr; return (Result == LazyValueInfo::True) ? ConstantInt::getTrue(C->getContext()) : ConstantInt::getFalse(C->getContext()); } static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT, const SimplifyQuery &SQ) { bool FnChanged = false; // Visiting in a pre-order depth-first traversal causes us to simplify early // blocks before querying later blocks (which require us to analyze early // blocks). Eagerly simplifying shallow blocks means there is strictly less // work to do for deep blocks. This also means we don't visit unreachable // blocks. for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { bool BBChanged = false; for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { Instruction *II = &*BI++; switch (II->getOpcode()) { case Instruction::Select: BBChanged |= processSelect(cast(II), LVI); break; case Instruction::PHI: BBChanged |= processPHI(cast(II), LVI, DT, SQ); break; case Instruction::ICmp: case Instruction::FCmp: BBChanged |= processCmp(cast(II), LVI); break; case Instruction::Load: case Instruction::Store: BBChanged |= processMemAccess(II, LVI); break; case Instruction::Call: case Instruction::Invoke: BBChanged |= processCallSite(CallSite(II), LVI); break; case Instruction::SRem: BBChanged |= processSRem(cast(II), LVI); break; case Instruction::SDiv: BBChanged |= processSDiv(cast(II), LVI); break; case Instruction::UDiv: case Instruction::URem: BBChanged |= processUDivOrURem(cast(II), LVI); break; case Instruction::AShr: BBChanged |= processAShr(cast(II), LVI); break; case Instruction::Add: BBChanged |= processAdd(cast(II), LVI); break; } } Instruction *Term = BB->getTerminator(); switch (Term->getOpcode()) { case Instruction::Switch: BBChanged |= processSwitch(cast(Term), LVI, DT); break; case Instruction::Ret: { auto *RI = cast(Term); // Try to determine the return value if we can. This is mainly here to // simplify the writing of unit tests, but also helps to enable IPO by // constant folding the return values of callees. auto *RetVal = RI->getReturnValue(); if (!RetVal) break; // handle "ret void" if (isa(RetVal)) break; // nothing to do if (auto *C = getConstantAt(RetVal, RI, LVI)) { ++NumReturns; RI->replaceUsesOfWith(RetVal, C); BBChanged = true; } } } FnChanged |= BBChanged; } return FnChanged; } bool CorrelatedValuePropagation::runOnFunction(Function &F) { if (skipFunction(F)) return false; LazyValueInfo *LVI = &getAnalysis().getLVI(); DominatorTree *DT = &getAnalysis().getDomTree(); return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F)); } PreservedAnalyses CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) { LazyValueInfo *LVI = &AM.getResult(F); DominatorTree *DT = &AM.getResult(F); bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F)); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; }