//===- BlackfinInstrInfo.td - Target Description for Blackfin Target ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Blackfin instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "BlackfinInstrFormats.td" // These are target-independent nodes, but have target-specific formats. def SDT_BfinCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_BfinCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def BfinCallseqStart : SDNode<"ISD::CALLSEQ_START", SDT_BfinCallSeqStart, [SDNPHasChain, SDNPOutFlag]>; def BfinCallseqEnd : SDNode<"ISD::CALLSEQ_END", SDT_BfinCallSeqEnd, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def SDT_BfinCall : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def BfinCall : SDNode<"BFISD::CALL", SDT_BfinCall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def BfinRet: SDNode<"BFISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInFlag]>; def BfinWrapper: SDNode<"BFISD::Wrapper", SDTIntUnaryOp>; //===----------------------------------------------------------------------===// // Transformations //===----------------------------------------------------------------------===// def trailingZeros_xform : SDNodeXFormgetTargetConstant(N->getAPIntValue().countTrailingZeros(), MVT::i32); }]>; def trailingOnes_xform : SDNodeXFormgetTargetConstant(N->getAPIntValue().countTrailingOnes(), MVT::i32); }]>; def LO16 : SDNodeXFormgetTargetConstant((unsigned short)N->getZExtValue(), MVT::i16); }]>; def HI16 : SDNodeXFormgetTargetConstant((unsigned)N->getZExtValue() >> 16, MVT::i16); }]>; //===----------------------------------------------------------------------===// // Immediates //===----------------------------------------------------------------------===// def imm3 : PatLeaf<(imm), [{return isInt<3>(N->getSExtValue());}]>; def uimm3 : PatLeaf<(imm), [{return isUint<3>(N->getZExtValue());}]>; def uimm4 : PatLeaf<(imm), [{return isUint<4>(N->getZExtValue());}]>; def uimm5 : PatLeaf<(imm), [{return isUint<5>(N->getZExtValue());}]>; def uimm5m2 : PatLeaf<(imm), [{ uint64_t value = N->getZExtValue(); return value % 2 == 0 && isUint<5>(value); }]>; def uimm6m4 : PatLeaf<(imm), [{ uint64_t value = N->getZExtValue(); return value % 4 == 0 && isUint<6>(value); }]>; def imm7 : PatLeaf<(imm), [{return isInt<7>(N->getSExtValue());}]>; def imm16 : PatLeaf<(imm), [{return isInt<16>(N->getSExtValue());}]>; def uimm16 : PatLeaf<(imm), [{return isUint<16>(N->getZExtValue());}]>; def ximm16 : PatLeaf<(imm), [{ int64_t value = N->getSExtValue(); return value < (1<<16) && value >= -(1<<15); }]>; def imm17m2 : PatLeaf<(imm), [{ int64_t value = N->getSExtValue(); return value % 2 == 0 && isInt<17>(value); }]>; def imm18m4 : PatLeaf<(imm), [{ int64_t value = N->getSExtValue(); return value % 4 == 0 && isInt<18>(value); }]>; // 32-bit bitmask transformed to a bit number def uimm5mask : Operand, PatLeaf<(imm), [{ return isPowerOf2_32(N->getZExtValue()); }], trailingZeros_xform>; // 32-bit inverse bitmask transformed to a bit number def uimm5imask : Operand, PatLeaf<(imm), [{ return isPowerOf2_32(~N->getZExtValue()); }], trailingOnes_xform>; //===----------------------------------------------------------------------===// // Operands //===----------------------------------------------------------------------===// def calltarget : Operand; def brtarget : Operand; // Addressing modes def ADDRspii : ComplexPattern; // Address operands def MEMii : Operand { let PrintMethod = "printMemoryOperand"; let MIOperandInfo = (ops i32imm, i32imm); } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// // Pseudo instructions. class Pseudo pattern> : InstBfin; let Defs = [SP], Uses = [SP] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), "${:comment}ADJCALLSTACKDOWN $amt", [(BfinCallseqStart timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), "${:comment}ADJCALLSTACKUP $amt1 $amt2", [(BfinCallseqEnd timm:$amt1, timm:$amt2)]>; } //===----------------------------------------------------------------------===// // Table C-9. Program Flow Control Instructions //===----------------------------------------------------------------------===// let isBranch = 1, isTerminator = 1 in { let isIndirectBranch = 1 in def JUMPp : F1<(outs), (ins P:$target), "JUMP ($target);", [(brind P:$target)]>; // TODO JUMP (PC-P) // NOTE: assembler chooses between JUMP.S and JUMP.L def JUMPa : F1<(outs), (ins brtarget:$target), "jump $target;", [(br bb:$target)]>; def JUMPcc : F1<(outs), (ins AnyCC:$cc, brtarget:$target), "if $cc jump $target;", [(brcond AnyCC:$cc, bb:$target)]>; } let isCall = 1, Defs = [R0, R1, R2, R3, P0, P1, P2, LB0, LB1, LC0, LC1, RETS, ASTAT] in { def CALLa: F1<(outs), (ins calltarget:$func, variable_ops), "call $func;", []>; def CALLp: F1<(outs), (ins P:$func, variable_ops), "call ($func);", [(BfinCall P:$func)]>; } let isReturn = 1, isTerminator = 1, Uses = [RETS] in def RTS: F1<(outs), (ins), "rts;", [(BfinRet)]>; //===----------------------------------------------------------------------===// // Table C-10. Load / Store Instructions //===----------------------------------------------------------------------===// // Immediate constant loads // sext immediate, i32 D/P regs def LOADimm7: F1<(outs DP:$dst), (ins i32imm:$src), "$dst = $src (x);", [(set DP:$dst, imm7:$src)]>; // zext immediate, i32 reg groups 0-3 def LOADuimm16: F2<(outs GR:$dst), (ins i32imm:$src), "$dst = $src (z);", [(set GR:$dst, uimm16:$src)]>; // sext immediate, i32 reg groups 0-3 def LOADimm16: F2<(outs GR:$dst), (ins i32imm:$src), "$dst = $src (x);", [(set GR:$dst, imm16:$src)]>; // Pseudo-instruction for loading a general 32-bit constant. def LOAD32imm: Pseudo<(outs GR:$dst), (ins i32imm:$src), "$dst.h = ($src >> 16); $dst.l = ($src & 0xffff);", [(set GR:$dst, imm:$src)]>; def LOAD32sym: Pseudo<(outs GR:$dst), (ins i32imm:$src), "$dst.h = $src; $dst.l = $src;", []>; // 16-bit immediate, i16 reg groups 0-3 def LOAD16i: F2<(outs GR16:$dst), (ins i16imm:$src), "$dst = $src;", []>; def : Pat<(BfinWrapper (i32 tglobaladdr:$addr)), (LOAD32sym tglobaladdr:$addr)>; def : Pat<(BfinWrapper (i32 tjumptable:$addr)), (LOAD32sym tjumptable:$addr)>; // We cannot copy from GR16 to D16, and codegen wants to insert copies if we // emit GR16 instructions. As a hack, we use this fake instruction instead. def LOAD16i_d16: F2<(outs D16:$dst), (ins i16imm:$src), "$dst = $src;", [(set D16:$dst, ximm16:$src)]>; // Memory loads with patterns def LOAD32p: F1<(outs DP:$dst), (ins P:$ptr), "$dst = [$ptr];", [(set DP:$dst, (load P:$ptr))]>; // Pseudo-instruction for loading a stack slot def LOAD32fi: Pseudo<(outs DP:$dst), (ins MEMii:$mem), "${:comment}FI $dst = [$mem];", [(set DP:$dst, (load ADDRspii:$mem))]>; // Note: Expands to multiple insns def LOAD16fi: Pseudo<(outs D16:$dst), (ins MEMii:$mem), "${:comment}FI $dst = [$mem];", [(set D16:$dst, (load ADDRspii:$mem))]>; // Pseudo-instruction for loading a stack slot, used for AnyCC regs. // Replaced with Load D + CC=D def LOAD8fi: Pseudo<(outs AnyCC:$dst), (ins MEMii:$mem), "${:comment}FI $dst = B[$mem];", [(set AnyCC:$dst, (load ADDRspii:$mem))]>; def LOAD32p_uimm6m4: F1<(outs DP:$dst), (ins P:$ptr, i32imm:$off), "$dst = [$ptr + $off];", [(set DP:$dst, (load (add P:$ptr, uimm6m4:$off)))]>; def LOAD32p_imm18m4: F2<(outs DP:$dst), (ins P:$ptr, i32imm:$off), "$dst = [$ptr + $off];", [(set DP:$dst, (load (add P:$ptr, imm18m4:$off)))]>; def LOAD32p_16z: F1<(outs D:$dst), (ins P:$ptr), "$dst = W[$ptr] (z);", [(set D:$dst, (zextloadi16 P:$ptr))]>; def : Pat<(i32 (extloadi16 P:$ptr)),(LOAD32p_16z P:$ptr)>; def LOAD32p_uimm5m2_16z: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off), "$dst = w[$ptr + $off] (z);", [(set D:$dst, (zextloadi16 (add P:$ptr, uimm5m2:$off)))]>; def : Pat<(i32 (extloadi16 (add P:$ptr, uimm5m2:$off))), (LOAD32p_uimm5m2_16z P:$ptr, imm:$off)>; def LOAD32p_imm17m2_16z: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off), "$dst = w[$ptr + $off] (z);", [(set D:$dst, (zextloadi16 (add P:$ptr, imm17m2:$off)))]>; def : Pat<(i32 (extloadi16 (add P:$ptr, imm17m2:$off))), (LOAD32p_imm17m2_16z P:$ptr, imm:$off)>; def LOAD32p_16s: F1<(outs D:$dst), (ins P:$ptr), "$dst = w[$ptr] (x);", [(set D:$dst, (sextloadi16 P:$ptr))]>; def LOAD32p_uimm5m2_16s: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off), "$dst = w[$ptr + $off] (x);", [(set D:$dst, (sextloadi16 (add P:$ptr, uimm5m2:$off)))]>; def LOAD32p_imm17m2_16s: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off), "$dst = w[$ptr + $off] (x);", [(set D:$dst, (sextloadi16 (add P:$ptr, imm17m2:$off)))]>; def LOAD16pi: F1<(outs D16:$dst), (ins PI:$ptr), "$dst = w[$ptr];", [(set D16:$dst, (load PI:$ptr))]>; def LOAD32p_8z: F1<(outs D:$dst), (ins P:$ptr), "$dst = B[$ptr] (z);", [(set D:$dst, (zextloadi8 P:$ptr))]>; def : Pat<(i32 (extloadi8 P:$ptr)), (LOAD32p_8z P:$ptr)>; def : Pat<(i16 (extloadi8 P:$ptr)), (EXTRACT_SUBREG (LOAD32p_8z P:$ptr), bfin_subreg_lo16)>; def : Pat<(i16 (zextloadi8 P:$ptr)), (EXTRACT_SUBREG (LOAD32p_8z P:$ptr), bfin_subreg_lo16)>; def LOAD32p_imm16_8z: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off), "$dst = b[$ptr + $off] (z);", [(set D:$dst, (zextloadi8 (add P:$ptr, imm16:$off)))]>; def : Pat<(i32 (extloadi8 (add P:$ptr, imm16:$off))), (LOAD32p_imm16_8z P:$ptr, imm:$off)>; def : Pat<(i16 (extloadi8 (add P:$ptr, imm16:$off))), (EXTRACT_SUBREG (LOAD32p_imm16_8z P:$ptr, imm:$off), bfin_subreg_lo16)>; def : Pat<(i16 (zextloadi8 (add P:$ptr, imm16:$off))), (EXTRACT_SUBREG (LOAD32p_imm16_8z P:$ptr, imm:$off), bfin_subreg_lo16)>; def LOAD32p_8s: F1<(outs D:$dst), (ins P:$ptr), "$dst = b[$ptr] (x);", [(set D:$dst, (sextloadi8 P:$ptr))]>; def : Pat<(i16 (sextloadi8 P:$ptr)), (EXTRACT_SUBREG (LOAD32p_8s P:$ptr), bfin_subreg_lo16)>; def LOAD32p_imm16_8s: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off), "$dst = b[$ptr + $off] (x);", [(set D:$dst, (sextloadi8 (add P:$ptr, imm16:$off)))]>; def : Pat<(i16 (sextloadi8 (add P:$ptr, imm16:$off))), (EXTRACT_SUBREG (LOAD32p_imm16_8s P:$ptr, imm:$off), bfin_subreg_lo16)>; // Memory loads without patterns let mayLoad = 1 in { multiclass LOAD_incdec { def _inc : F1<(outs drc:$dst, prc:$ptr_wb), (ins prc:$ptr), !strconcat(!subst("M", mem, "$dst = M[$ptr++]"), suf), []>; def _dec : F1<(outs drc:$dst, prc:$ptr_wb), (ins prc:$ptr), !strconcat(!subst("M", mem, "$dst = M[$ptr--]"), suf), []>; } multiclass LOAD_incdecpost : LOAD_incdec { def _post : F1<(outs drc:$dst, prc:$ptr_wb), (ins prc:$ptr, prc:$off), !strconcat(!subst("M", mem, "$dst = M[$ptr++$off]"), suf), []>; } defm LOAD32p: LOAD_incdec; defm LOAD32i: LOAD_incdec; defm LOAD8z32p: LOAD_incdec; defm LOAD8s32p: LOAD_incdec; defm LOADhi: LOAD_incdec; defm LOAD16z32p: LOAD_incdecpost; defm LOAD16s32p: LOAD_incdecpost; def LOAD32p_post: F1<(outs D:$dst, P:$ptr_wb), (ins P:$ptr, P:$off), "$dst = [$ptr ++ $off];", []>; // Note: $fp MUST be FP def LOAD32fp_nimm7m4: F1<(outs DP:$dst), (ins P:$fp, i32imm:$off), "$dst = [$fp - $off];", []>; def LOAD32i: F1<(outs D:$dst), (ins I:$ptr), "$dst = [$ptr];", []>; def LOAD32i_post: F1<(outs D:$dst, I:$ptr_wb), (ins I:$ptr, M:$off), "$dst = [$ptr ++ $off];", []>; def LOADhp_post: F1<(outs D16:$dst, P:$ptr_wb), (ins P:$ptr, P:$off), "$dst = w[$ptr ++ $off];", []>; } // Memory stores with patterns def STORE32p: F1<(outs), (ins DP:$val, P:$ptr), "[$ptr] = $val;", [(store DP:$val, P:$ptr)]>; // Pseudo-instructions for storing to a stack slot def STORE32fi: Pseudo<(outs), (ins DP:$val, MEMii:$mem), "${:comment}FI [$mem] = $val;", [(store DP:$val, ADDRspii:$mem)]>; // Note: This stack-storing pseudo-instruction is expanded to multiple insns def STORE16fi: Pseudo<(outs), (ins D16:$val, MEMii:$mem), "${:comment}FI [$mem] = $val;", [(store D16:$val, ADDRspii:$mem)]>; // Pseudo-instructions for storing AnyCC register to a stack slot. // Replaced with D=CC + STORE byte def STORE8fi: Pseudo<(outs), (ins AnyCC:$val, MEMii:$mem), "${:comment}FI b[$mem] = $val;", [(store AnyCC:$val, ADDRspii:$mem)]>; def STORE32p_uimm6m4: F1<(outs), (ins DP:$val, P:$ptr, i32imm:$off), "[$ptr + $off] = $val;", [(store DP:$val, (add P:$ptr, uimm6m4:$off))]>; def STORE32p_imm18m4: F1<(outs), (ins DP:$val, P:$ptr, i32imm:$off), "[$ptr + $off] = $val;", [(store DP:$val, (add P:$ptr, imm18m4:$off))]>; def STORE16pi: F1<(outs), (ins D16:$val, PI:$ptr), "w[$ptr] = $val;", [(store D16:$val, PI:$ptr)]>; def STORE8p: F1<(outs), (ins D:$val, P:$ptr), "b[$ptr] = $val;", [(truncstorei8 D:$val, P:$ptr)]>; def STORE8p_imm16: F1<(outs), (ins D:$val, P:$ptr, i32imm:$off), "b[$ptr + $off] = $val;", [(truncstorei8 D:$val, (add P:$ptr, imm16:$off))]>; let Constraints = "$ptr = $ptr_wb" in { multiclass STORE_incdec { def _inc : F1<(outs prc:$ptr_wb), (ins drc:$val, prc:$ptr), !strconcat(pre, "[$ptr++] = $val;"), [(set prc:$ptr_wb, (post_store drc:$val, prc:$ptr, off))]>; def _dec : F1<(outs prc:$ptr_wb), (ins drc:$val, prc:$ptr), !strconcat(pre, "[$ptr--] = $val;"), [(set prc:$ptr_wb, (post_store drc:$val, prc:$ptr, (ineg off)))]>; } defm STORE32p: STORE_incdec; defm STORE16i: STORE_incdec; defm STORE8p: STORE_incdec; def STORE32p_post: F1<(outs P:$ptr_wb), (ins D:$val, P:$ptr, P:$off), "[$ptr ++ $off] = $val;", [(set P:$ptr_wb, (post_store D:$val, P:$ptr, P:$off))]>; def STORE16p_post: F1<(outs P:$ptr_wb), (ins D16:$val, P:$ptr, P:$off), "w[$ptr ++ $off] = $val;", [(set P:$ptr_wb, (post_store D16:$val, P:$ptr, P:$off))]>; } // Memory stores without patterns let mayStore = 1 in { // Note: only works for $fp == FP def STORE32fp_nimm7m4: F1<(outs), (ins DP:$val, P:$fp, i32imm:$off), "[$fp - $off] = $val;", []>; def STORE32i: F1<(outs), (ins D:$val, I:$ptr), "[$ptr] = $val;", []>; def STORE32i_inc: F1<(outs I:$ptr_wb), (ins D:$val, I:$ptr), "[$ptr++] = $val;", []>; def STORE32i_dec: F1<(outs I:$ptr_wb), (ins D:$val, I:$ptr), "[$ptr--] = $val;", []>; def STORE32i_post: F1<(outs I:$ptr_wb), (ins D:$val, I:$ptr, M:$off), "[$ptr ++ $off] = $val;", []>; } def : Pat<(truncstorei16 D:$val, PI:$ptr), (STORE16pi (EXTRACT_SUBREG (COPY_TO_REGCLASS D:$val, D), bfin_subreg_lo16), PI:$ptr)>; def : Pat<(truncstorei16 (srl D:$val, (i16 16)), PI:$ptr), (STORE16pi (EXTRACT_SUBREG (COPY_TO_REGCLASS D:$val, D), bfin_subreg_hi16), PI:$ptr)>; def : Pat<(truncstorei8 D16L:$val, P:$ptr), (STORE8p (INSERT_SUBREG (i32 (IMPLICIT_DEF)), (COPY_TO_REGCLASS D16L:$val, D16L), bfin_subreg_lo16), P:$ptr)>; //===----------------------------------------------------------------------===// // Table C-11. Move Instructions. //===----------------------------------------------------------------------===// def MOVE: F1<(outs ALL:$dst), (ins ALL:$src), "$dst = $src;", []>; let isTwoAddress = 1 in def MOVEcc: F1<(outs DP:$dst), (ins DP:$src1, DP:$src2, AnyCC:$cc), "if $cc $dst = $src2;", [(set DP:$dst, (select AnyCC:$cc, DP:$src2, DP:$src1))]>; let Defs = [AZ, AN, AC0, V] in { def MOVEzext: F1<(outs D:$dst), (ins D16L:$src), "$dst = $src (z);", [(set D:$dst, (zext D16L:$src))]>; def MOVEsext: F1<(outs D:$dst), (ins D16L:$src), "$dst = $src (x);", [(set D:$dst, (sext D16L:$src))]>; def MOVEzext8: F1<(outs D:$dst), (ins D:$src), "$dst = $src.b (z);", [(set D:$dst, (and D:$src, 0xff))]>; def MOVEsext8: F1<(outs D:$dst), (ins D:$src), "$dst = $src.b (x);", [(set D:$dst, (sext_inreg D:$src, i8))]>; } def : Pat<(sext_inreg D16L:$src, i8), (EXTRACT_SUBREG (MOVEsext8 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), D16L:$src, bfin_subreg_lo16)), bfin_subreg_lo16)>; def : Pat<(sext_inreg D:$src, i16), (MOVEsext (EXTRACT_SUBREG D:$src, bfin_subreg_lo16))>; def : Pat<(and D:$src, 0xffff), (MOVEzext (EXTRACT_SUBREG D:$src, bfin_subreg_lo16))>; def : Pat<(i32 (anyext D16L:$src)), (INSERT_SUBREG (i32 (IMPLICIT_DEF)), (COPY_TO_REGCLASS D16L:$src, D16L), bfin_subreg_lo16)>; // TODO Dreg = Dreg_byte (X/Z) // TODO Accumulator moves //===----------------------------------------------------------------------===// // Table C-12. Stack Control Instructions //===----------------------------------------------------------------------===// let Uses = [SP], Defs = [SP] in { def PUSH: F1<(outs), (ins ALL:$src), "[--sp] = $src;", []> { let mayStore = 1; } // NOTE: POP does not work for DP regs, use LOAD instead def POP: F1<(outs ALL:$dst), (ins), "$dst = [sp++];", []> { let mayLoad = 1; } } // TODO: push/pop multiple def LINK: F2<(outs), (ins i32imm:$amount), "link $amount;", []>; def UNLINK: F2<(outs), (ins), "unlink;", []>; //===----------------------------------------------------------------------===// // Table C-13. Control Code Bit Management Instructions //===----------------------------------------------------------------------===// multiclass SETCC { def dd : F1<(outs JustCC:$cc), (ins D:$a, D:$b), !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf), [(set JustCC:$cc, (opnode D:$a, D:$b))]>; def ri : F1<(outs JustCC:$cc), (ins DP:$a, i32imm:$b), !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf), [(set JustCC:$cc, (opnode DP:$a, imm3:$b))]>; def pp : F1<(outs JustCC:$cc), (ins P:$a, P:$b), !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf), []>; def ri_not : F1<(outs NotCC:$cc), (ins DP:$a, i32imm:$b), !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf), [(set NotCC:$cc, (invnode DP:$a, imm3:$b))]>; } defm SETEQ : SETCC; defm SETLT : SETCC; defm SETLE : SETCC; defm SETULE : SETCC; def SETNEdd : F1<(outs NotCC:$cc), (ins D:$a, D:$b), "cc = $a == $b;", [(set NotCC:$cc, (setne D:$a, D:$b))]>; def : Pat<(setgt D:$a, D:$b), (SETLTdd D:$b, D:$a)>; def : Pat<(setge D:$a, D:$b), (SETLEdd D:$b, D:$a)>; def : Pat<(setugt D:$a, D:$b), (SETULTdd D:$b, D:$a)>; def : Pat<(setuge D:$a, D:$b), (SETULEdd D:$b, D:$a)>; // TODO: compare pointer for P-P comparisons // TODO: compare accumulator let Defs = [AC0] in def OR_ac0_cc : F1<(outs), (ins JustCC:$cc), "ac0 \\|= cc;", []>; let Uses = [AC0] in def MOVE_cc_ac0 : F1<(outs JustCC:$cc), (ins), "cc = ac0;", []>; def MOVE_ccncc : F1<(outs JustCC:$cc), (ins NotCC:$sb), "cc = !cc;", []>; def MOVE_ncccc : F1<(outs NotCC:$cc), (ins JustCC:$sb), "cc = !cc;", []>; def MOVECC_zext : F1<(outs D:$dst), (ins JustCC:$cc), "$dst = $cc;", [(set D:$dst, (zext JustCC:$cc))]>; def MOVENCC_z : F1<(outs D:$dst), (ins NotCC:$cc), "$dst = cc;", []>; def MOVECC_nz : F1<(outs AnyCC:$cc), (ins D:$src), "cc = $src;", [(set AnyCC:$cc, (setne D:$src, 0))]>; //===----------------------------------------------------------------------===// // Table C-14. Logical Operations Instructions //===----------------------------------------------------------------------===// def AND: F1<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = $src1 & $src2;", [(set D:$dst, (and D:$src1, D:$src2))]>; def NOT: F1<(outs D:$dst), (ins D:$src), "$dst = ~$src;", [(set D:$dst, (not D:$src))]>; def OR: F1<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = $src1 \\| $src2;", [(set D:$dst, (or D:$src1, D:$src2))]>; def XOR: F1<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = $src1 ^ $src2;", [(set D:$dst, (xor D:$src1, D:$src2))]>; // missing: BXOR, BXORSHIFT //===----------------------------------------------------------------------===// // Table C-15. Bit Operations Instructions //===----------------------------------------------------------------------===// let isTwoAddress = 1 in { def BITCLR: F1<(outs D:$dst), (ins D:$src1, uimm5imask:$src2), "bitclr($dst, $src2);", [(set D:$dst, (and D:$src1, uimm5imask:$src2))]>; def BITSET: F1<(outs D:$dst), (ins D:$src1, uimm5mask:$src2), "bitset($dst, $src2);", [(set D:$dst, (or D:$src1, uimm5mask:$src2))]>; def BITTGL: F1<(outs D:$dst), (ins D:$src1, uimm5mask:$src2), "bittgl($dst, $src2);", [(set D:$dst, (xor D:$src1, uimm5mask:$src2))]>; } def BITTST: F1<(outs JustCC:$cc), (ins D:$src1, uimm5mask:$src2), "cc = bittst($src1, $src2);", [(set JustCC:$cc, (setne (and D:$src1, uimm5mask:$src2), (i32 0)))]>; def NBITTST: F1<(outs JustCC:$cc), (ins D:$src1, uimm5mask:$src2), "cc = !bittst($src1, $src2);", [(set JustCC:$cc, (seteq (and D:$src1, uimm5mask:$src2), (i32 0)))]>; // TODO: DEPOSIT, EXTRACT, BITMUX def ONES: F2<(outs D16L:$dst), (ins D:$src), "$dst = ones $src;", [(set D16L:$dst, (trunc (ctpop D:$src)))]>; def : Pat<(ctpop D:$src), (MOVEzext (ONES D:$src))>; //===----------------------------------------------------------------------===// // Table C-16. Shift / Rotate Instructions //===----------------------------------------------------------------------===// multiclass SHIFT32 { def i : F1<(outs D:$dst), (ins D:$src, i16imm:$amount), !subst("XX", ops, "$dst XX= $amount;"), [(set D:$dst, (opnode D:$src, (i16 uimm5:$amount)))]>; def r : F1<(outs D:$dst), (ins D:$src, D:$amount), !subst("XX", ops, "$dst XX= $amount;"), [(set D:$dst, (opnode D:$src, D:$amount))]>; } let Defs = [AZ, AN, V, VS], isTwoAddress = 1 in { defm SRA : SHIFT32>>">; defm SRL : SHIFT32>">; defm SLL : SHIFT32; } // TODO: automatic switching between 2-addr and 3-addr (?) let Defs = [AZ, AN, V, VS] in { def SLLr16: F2<(outs D:$dst), (ins D:$src, D16L:$amount), "$dst = lshift $src by $amount;", [(set D:$dst, (shl D:$src, D16L:$amount))]>; // Arithmetic left-shift = saturing overflow. def SLAr16: F2<(outs D:$dst), (ins D:$src, D16L:$amount), "$dst = ashift $src by $amount;", [(set D:$dst, (sra D:$src, (ineg D16L:$amount)))]>; def SRA16i: F1<(outs D16:$dst), (ins D16:$src, i16imm:$amount), "$dst = $src >>> $amount;", [(set D16:$dst, (sra D16:$src, (i16 uimm4:$amount)))]>; def SRL16i: F1<(outs D16:$dst), (ins D16:$src, i16imm:$amount), "$dst = $src >> $amount;", [(set D16:$dst, (srl D16:$src, (i16 uimm4:$amount)))]>; // Arithmetic left-shift = saturing overflow. def SLA16r: F1<(outs D16:$dst), (ins D16:$src, D16L:$amount), "$dst = ashift $src BY $amount;", [(set D16:$dst, (srl D16:$src, (ineg D16L:$amount)))]>; def SLL16i: F1<(outs D16:$dst), (ins D16:$src, i16imm:$amount), "$dst = $src << $amount;", [(set D16:$dst, (shl D16:$src, (i16 uimm4:$amount)))]>; def SLL16r: F1<(outs D16:$dst), (ins D16:$src, D16L:$amount), "$dst = lshift $src by $amount;", [(set D16:$dst, (shl D16:$src, D16L:$amount))]>; } //===----------------------------------------------------------------------===// // Table C-17. Arithmetic Operations Instructions //===----------------------------------------------------------------------===// // TODO: ABS let Defs = [AZ, AN, AC0, V, VS] in { def ADD: F1<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = $src1 + $src2;", [(set D:$dst, (add D:$src1, D:$src2))]>; def ADD16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2), "$dst = $src1 + $src2;", [(set D16:$dst, (add D16:$src1, D16:$src2))]>; let isTwoAddress = 1 in def ADDimm7: F1<(outs D:$dst), (ins D:$src1, i32imm:$src2), "$dst += $src2;", [(set D:$dst, (add D:$src1, imm7:$src2))]>; def SUB: F1<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = $src1 - $src2;", [(set D:$dst, (sub D:$src1, D:$src2))]>; def SUB16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2), "$dst = $src1 - $src2;", [(set D16:$dst, (sub D16:$src1, D16:$src2))]>; } def : Pat<(addc D:$src1, D:$src2), (ADD D:$src1, D:$src2)>; def : Pat<(subc D:$src1, D:$src2), (SUB D:$src1, D:$src2)>; let Defs = [AZ, AN, V, VS] in def NEG: F1<(outs D:$dst), (ins D:$src), "$dst = -$src;", [(set D:$dst, (ineg D:$src))]>; // No pattern, it would confuse isel to have two i32 = i32+i32 patterns def ADDpp: F1<(outs P:$dst), (ins P:$src1, P:$src2), "$dst = $src1 + $src2;", []>; let isTwoAddress = 1 in def ADDpp_imm7: F1<(outs P:$dst), (ins P:$src1, i32imm:$src2), "$dst += $src2;", []>; let Defs = [AZ, AN, V] in def ADD_RND20: F2<(outs D16:$dst), (ins D:$src1, D:$src2), "$dst = $src1 + $src2 (rnd20);", []>; let Defs = [V, VS] in { def MUL16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2), "$dst = $src1 * $src2 (is);", [(set D16:$dst, (mul D16:$src1, D16:$src2))]>; def MULHS16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2), "$dst = $src1 * $src2 (ih);", [(set D16:$dst, (mulhs D16:$src1, D16:$src2))]>; def MULhh32s: F2<(outs D:$dst), (ins D16:$src1, D16:$src2), "$dst = $src1 * $src2 (is);", [(set D:$dst, (mul (sext D16:$src1), (sext D16:$src2)))]>; def MULhh32u: F2<(outs D:$dst), (ins D16:$src1, D16:$src2), "$dst = $src1 * $src2 (is);", [(set D:$dst, (mul (zext D16:$src1), (zext D16:$src2)))]>; } let isTwoAddress = 1 in def MUL32: F1<(outs D:$dst), (ins D:$src1, D:$src2), "$dst *= $src2;", [(set D:$dst, (mul D:$src1, D:$src2))]>; //===----------------------------------------------------------------------===// // Table C-18. External Exent Management Instructions //===----------------------------------------------------------------------===// def IDLE : F1<(outs), (ins), "idle;", [(int_bfin_idle)]>; def CSYNC : F1<(outs), (ins), "csync;", [(int_bfin_csync)]>; def SSYNC : F1<(outs), (ins), "ssync;", [(int_bfin_ssync)]>; def EMUEXCPT : F1<(outs), (ins), "emuexcpt;", []>; def CLI : F1<(outs D:$mask), (ins), "cli $mask;", []>; def STI : F1<(outs), (ins D:$mask), "sti $mask;", []>; def RAISE : F1<(outs), (ins i32imm:$itr), "raise $itr;", []>; def EXCPT : F1<(outs), (ins i32imm:$exc), "excpt $exc;", []>; def NOP : F1<(outs), (ins), "nop;", []>; def MNOP : F2<(outs), (ins), "mnop;", []>; def ABORT : F1<(outs), (ins), "abort;", []>; //===----------------------------------------------------------------------===// // Table C-19. Cache Control Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Table C-20. Video Pixel Operations Instructions //===----------------------------------------------------------------------===// def ALIGN8 : F2<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = align8($src1, $src2);", [(set D:$dst, (or (shl D:$src1, (i32 24)), (srl D:$src2, (i32 8))))]>; def ALIGN16 : F2<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = align16($src1, $src2);", [(set D:$dst, (or (shl D:$src1, (i32 16)), (srl D:$src2, (i32 16))))]>; def ALIGN24 : F2<(outs D:$dst), (ins D:$src1, D:$src2), "$dst = align16($src1, $src2);", [(set D:$dst, (or (shl D:$src1, (i32 8)), (srl D:$src2, (i32 24))))]>; def DISALGNEXCPT : F2<(outs), (ins), "disalignexcpt;", []>; // TODO: BYTEOP3P, BYTEOP16P, BYTEOP1P, BYTEOP2P, BYTEOP16M, SAA, // BYTEPACK, BYTEUNPACK // Table C-21. Vector Operations Instructions // Patterns def : Pat<(BfinCall (i32 tglobaladdr:$dst)), (CALLa tglobaladdr:$dst)>; def : Pat<(BfinCall (i32 texternalsym:$dst)), (CALLa texternalsym:$dst)>; def : Pat<(sext JustCC:$cc), (NEG (MOVECC_zext JustCC:$cc))>; def : Pat<(anyext JustCC:$cc), (MOVECC_zext JustCC:$cc)>; def : Pat<(i16 (zext JustCC:$cc)), (EXTRACT_SUBREG (MOVECC_zext JustCC:$cc), bfin_subreg_lo16)>; def : Pat<(i16 (sext JustCC:$cc)), (EXTRACT_SUBREG (NEG (MOVECC_zext JustCC:$cc)), bfin_subreg_lo16)>; def : Pat<(i16 (anyext JustCC:$cc)), (EXTRACT_SUBREG (MOVECC_zext JustCC:$cc), bfin_subreg_lo16)>; def : Pat<(i16 (trunc D:$src)), (EXTRACT_SUBREG (COPY_TO_REGCLASS D:$src, D), bfin_subreg_lo16)>;