//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Target/TargetMachOWriterInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; class MachObjectWriter; static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, MachObjectWriter &MOW); class MachObjectWriter { // See . enum { Header_Magic32 = 0xFEEDFACE, Header_Magic64 = 0xFEEDFACF }; static const unsigned Header32Size = 28; static const unsigned Header64Size = 32; static const unsigned SegmentLoadCommand32Size = 56; static const unsigned Section32Size = 68; static const unsigned SymtabLoadCommandSize = 24; static const unsigned DysymtabLoadCommandSize = 80; static const unsigned Nlist32Size = 12; enum HeaderFileType { HFT_Object = 0x1 }; enum LoadCommandType { LCT_Segment = 0x1, LCT_Symtab = 0x2, LCT_Dysymtab = 0xb }; // See . enum SymbolTypeType { STT_Undefined = 0x00, STT_Absolute = 0x02, STT_Section = 0x0e }; enum SymbolTypeFlags { // If any of these bits are set, then the entry is a stab entry number (see // . Otherwise the other masks apply. STF_StabsEntryMask = 0xe0, STF_TypeMask = 0x0e, STF_External = 0x01, STF_PrivateExtern = 0x10 }; /// MachSymbolData - Helper struct for containing some precomputed information /// on symbols. struct MachSymbolData { MCSymbolData *SymbolData; uint64_t StringIndex; uint8_t SectionIndex; // Support lexicographic sorting. bool operator<(const MachSymbolData &RHS) const { const std::string &Name = SymbolData->getSymbol().getName(); return Name < RHS.SymbolData->getSymbol().getName(); } }; raw_ostream &OS; bool IsLSB; public: MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true) : OS(_OS), IsLSB(_IsLSB) { } /// @name Helper Methods /// @{ void Write8(uint8_t Value) { OS << char(Value); } void Write16(uint16_t Value) { if (IsLSB) { Write8(uint8_t(Value >> 0)); Write8(uint8_t(Value >> 8)); } else { Write8(uint8_t(Value >> 8)); Write8(uint8_t(Value >> 0)); } } void Write32(uint32_t Value) { if (IsLSB) { Write16(uint16_t(Value >> 0)); Write16(uint16_t(Value >> 16)); } else { Write16(uint16_t(Value >> 16)); Write16(uint16_t(Value >> 0)); } } void Write64(uint64_t Value) { if (IsLSB) { Write32(uint32_t(Value >> 0)); Write32(uint32_t(Value >> 32)); } else { Write32(uint32_t(Value >> 32)); Write32(uint32_t(Value >> 0)); } } void WriteZeros(unsigned N) { const char Zeros[16] = { 0 }; for (unsigned i = 0, e = N / 16; i != e; ++i) OS << StringRef(Zeros, 16); OS << StringRef(Zeros, N % 16); } void WriteString(const StringRef &Str, unsigned ZeroFillSize = 0) { OS << Str; if (ZeroFillSize) WriteZeros(ZeroFillSize - Str.size()); } /// @} void WriteHeader32(unsigned NumLoadCommands, unsigned LoadCommandsSize) { // struct mach_header (28 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(Header_Magic32); // FIXME: Support cputype. Write32(TargetMachOWriterInfo::HDR_CPU_TYPE_I386); // FIXME: Support cpusubtype. Write32(TargetMachOWriterInfo::HDR_CPU_SUBTYPE_I386_ALL); Write32(HFT_Object); // Object files have a single load command, the segment. Write32(NumLoadCommands); Write32(LoadCommandsSize); Write32(0); // Flags assert(OS.tell() - Start == Header32Size); } /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command. /// /// \arg NumSections - The number of sections in this segment. /// \arg SectionDataSize - The total size of the sections. void WriteSegmentLoadCommand32(unsigned NumSections, uint64_t SectionDataStartOffset, uint64_t SectionDataSize) { // struct segment_command (56 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Segment); Write32(SegmentLoadCommand32Size + NumSections * Section32Size); WriteString("", 16); Write32(0); // vmaddr Write32(SectionDataSize); // vmsize Write32(SectionDataStartOffset); // file offset Write32(SectionDataSize); // file size Write32(0x7); // maxprot Write32(0x7); // initprot Write32(NumSections); Write32(0); // flags assert(OS.tell() - Start == SegmentLoadCommand32Size); } void WriteSection32(const MCSectionData &SD, uint64_t FileOffset) { // struct section (68 bytes) uint64_t Start = OS.tell(); (void) Start; // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(SD.getSection()); WriteString(Section.getSectionName(), 16); WriteString(Section.getSegmentName(), 16); Write32(0); // address Write32(SD.getFileSize()); // size Write32(FileOffset); assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); Write32(Log2_32(SD.getAlignment())); Write32(0); // file offset of relocation entries Write32(0); // number of relocation entrions Write32(Section.getTypeAndAttributes()); Write32(0); // reserved1 Write32(Section.getStubSize()); // reserved2 assert(OS.tell() - Start == Section32Size); } void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols, uint32_t StringTableOffset, uint32_t StringTableSize) { // struct symtab_command (24 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Symtab); Write32(SymtabLoadCommandSize); Write32(SymbolOffset); Write32(NumSymbols); Write32(StringTableOffset); Write32(StringTableSize); assert(OS.tell() - Start == SymtabLoadCommandSize); } void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol, uint32_t NumLocalSymbols, uint32_t FirstExternalSymbol, uint32_t NumExternalSymbols, uint32_t FirstUndefinedSymbol, uint32_t NumUndefinedSymbols, uint32_t IndirectSymbolOffset, uint32_t NumIndirectSymbols) { // struct dysymtab_command (80 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Dysymtab); Write32(DysymtabLoadCommandSize); Write32(FirstLocalSymbol); Write32(NumLocalSymbols); Write32(FirstExternalSymbol); Write32(NumExternalSymbols); Write32(FirstUndefinedSymbol); Write32(NumUndefinedSymbols); Write32(0); // tocoff Write32(0); // ntoc Write32(0); // modtaboff Write32(0); // nmodtab Write32(0); // extrefsymoff Write32(0); // nextrefsyms Write32(IndirectSymbolOffset); Write32(NumIndirectSymbols); Write32(0); // extreloff Write32(0); // nextrel Write32(0); // locreloff Write32(0); // nlocrel assert(OS.tell() - Start == DysymtabLoadCommandSize); } void WriteNlist32(MachSymbolData &MSD) { MCSymbol &Symbol = MSD.SymbolData->getSymbol(); uint8_t Type = 0; // Set the N_TYPE bits. See . // // FIXME: Are the prebound or indirect fields possible here? if (Symbol.isUndefined()) Type = STT_Undefined; else if (Symbol.isAbsolute()) Type = STT_Absolute; else Type = STT_Section; // FIXME: Set STAB bits. if (MSD.SymbolData->isPrivateExtern()) Type |= STF_PrivateExtern; // Set external bit. if (MSD.SymbolData->isExternal() || Symbol.isUndefined()) Type |= STF_External; // struct nlist (12 bytes) Write32(MSD.StringIndex); Write8(Type); Write8(MSD.SectionIndex); // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' // value. Write16(MSD.SymbolData->getFlags() & 0xFFFF); Write32(0); // FIXME: Value } /// ComputeSymbolTable - Compute the symbol table data /// /// \param StringTable [out] - The string table data. /// \param StringIndexMap [out] - Map from symbol names to offsets in the /// string table. void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable, std::vector &LocalSymbolData, std::vector &ExternalSymbolData, std::vector &UndefinedSymbolData) { // Build section lookup table. DenseMap SectionIndexMap; unsigned Index = 1; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) SectionIndexMap[&it->getSection()] = Index; assert(Index <= 256 && "Too many sections!"); // Index 0 is always the empty string. StringMap StringIndexMap; StringTable += '\x00'; // Build the symbol arrays and the string table, but only for non-local // symbols. // // The particular order that we collect the symbols and create the string // table, then sort the symbols is chosen to match 'as'. Even though it // doesn't matter for correctness, this is important for letting us diff .o // files. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { MCSymbol &Symbol = it->getSymbol(); if (!it->isExternal() && !Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isUndefined()) { MSD.SectionIndex = 0; UndefinedSymbolData.push_back(MSD); } else if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; ExternalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); ExternalSymbolData.push_back(MSD); } } // Now add the data for local symbols. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { MCSymbol &Symbol = it->getSymbol(); if (it->isExternal() || Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; LocalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); LocalSymbolData.push_back(MSD); } } // External and undefined symbols are required to be in lexicographic order. std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end()); // The string table is padded to a multiple of 4. // // FIXME: Check to see if this varies per arch. while (StringTable.size() % 4) StringTable += '\x00'; } void WriteObject(MCAssembler &Asm) { unsigned NumSections = Asm.size(); // Compute symbol table information. SmallString<256> StringTable; std::vector LocalSymbolData; std::vector ExternalSymbolData; std::vector UndefinedSymbolData; unsigned NumSymbols = Asm.symbol_size(); // No symbol table command is written if there are no symbols. if (NumSymbols) ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData, UndefinedSymbolData); // Compute the file offsets for all the sections in advance, so that we can // write things out in order. SmallVector SectionFileOffsets; SectionFileOffsets.resize(NumSections); // The section data starts after the header, the segment load command (and // section headers) and the symbol table. unsigned NumLoadCommands = 1; uint64_t LoadCommandsSize = SegmentLoadCommand32Size + NumSections * Section32Size; // Add the symbol table load command sizes, if used. if (NumSymbols) { NumLoadCommands += 2; LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize; } uint64_t FileOffset = Header32Size + LoadCommandsSize; uint64_t SectionDataStartOffset = FileOffset; uint64_t SectionDataSize = 0; unsigned Index = 0; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) { SectionFileOffsets[Index] = FileOffset; FileOffset += it->getFileSize(); SectionDataSize += it->getFileSize(); } // Write the prolog, starting with the header and load command... WriteHeader32(NumLoadCommands, LoadCommandsSize); WriteSegmentLoadCommand32(NumSections, SectionDataStartOffset, SectionDataSize); // ... and then the section headers. Index = 0; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) WriteSection32(*it, SectionFileOffsets[Index]); // Write the symbol table load command, if used. if (NumSymbols) { // The string table is written after all the section data. uint64_t SymbolTableOffset = SectionDataStartOffset + SectionDataSize; uint64_t StringTableOffset = SymbolTableOffset + NumSymbols * Nlist32Size; WriteSymtabLoadCommand(SymbolTableOffset, NumSymbols, StringTableOffset, StringTable.size()); unsigned FirstLocalSymbol = 0; unsigned NumLocalSymbols = LocalSymbolData.size(); unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; unsigned NumExternalSymbols = ExternalSymbolData.size(); unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); // FIXME: Get correct symbol indices and counts for indirect symbols. unsigned IndirectSymbolOffset = 0; unsigned NumIndirectSymbols = 0; WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, FirstExternalSymbol, NumExternalSymbols, FirstUndefinedSymbol, NumUndefinedSymbols, IndirectSymbolOffset, NumIndirectSymbols); } // Write the actual section data. for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) WriteFileData(OS, *it, *this); // Write the symbol table data, if used. if (NumSymbols) { // FIXME: Check that offsets match computed ones. // FIXME: Some of these are ordered by name to help the linker. // Write the symbol table entries. for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) WriteNlist32(LocalSymbolData[i]); for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) WriteNlist32(ExternalSymbolData[i]); for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) WriteNlist32(UndefinedSymbolData[i]); // Write the string table. OS << StringTable.str(); } } }; /* *** */ MCFragment::MCFragment() : Kind(FragmentType(~0)) { } MCFragment::MCFragment(FragmentType _Kind, MCSectionData *SD) : Kind(_Kind), FileSize(~UINT64_C(0)) { if (SD) SD->getFragmentList().push_back(this); } MCFragment::~MCFragment() { } /* *** */ MCSectionData::MCSectionData() : Section(*(MCSection*)0) {} MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) : Section(_Section), Alignment(1), FileSize(~UINT64_C(0)) { if (A) A->getSectionList().push_back(this); } /* *** */ MCSymbolData::MCSymbolData() : Symbol(*(MCSymbol*)0) {} MCSymbolData::MCSymbolData(MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset, MCAssembler *A) : Symbol(_Symbol), Fragment(_Fragment), Offset(_Offset), IsExternal(false), IsPrivateExtern(false), Flags(0) { if (A) A->getSymbolList().push_back(this); } /* *** */ MCAssembler::MCAssembler(raw_ostream &_OS) : OS(_OS) {} MCAssembler::~MCAssembler() { } void MCAssembler::LayoutSection(MCSectionData &SD) { uint64_t Offset = 0; for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) { MCFragment &F = *it; F.setOffset(Offset); // Evaluate fragment size. switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t AlignedOffset = RoundUpToAlignment(Offset, AF.getAlignment()); uint64_t PaddingBytes = AlignedOffset - Offset; if (PaddingBytes > AF.getMaxBytesToEmit()) AF.setFileSize(0); else AF.setFileSize(PaddingBytes); break; } case MCFragment::FT_Data: case MCFragment::FT_Fill: F.setFileSize(F.getMaxFileSize()); break; case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); if (!OF.getOffset().isAbsolute()) llvm_unreachable("FIXME: Not yet implemented!"); uint64_t OrgOffset = OF.getOffset().getConstant(); // FIXME: We need a way to communicate this error. if (OrgOffset < Offset) llvm_report_error("invalid .org offset '" + Twine(OrgOffset) + "' (section offset '" + Twine(Offset) + "'"); F.setFileSize(OrgOffset - Offset); break; } } Offset += F.getFileSize(); } // FIXME: Pad section? SD.setFileSize(Offset); } /// WriteFileData - Write the \arg F data to the output file. static void WriteFileData(raw_ostream &OS, const MCFragment &F, MachObjectWriter &MOW) { uint64_t Start = OS.tell(); (void) Start; // FIXME: Embed in fragments instead? switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t Count = AF.getFileSize() / AF.getValueSize(); // FIXME: This error shouldn't actually occur (the front end should emit // multiple .align directives to enforce the semantics it wants), but is // severe enough that we want to report it. How to handle this? if (Count * AF.getValueSize() != AF.getFileSize()) llvm_report_error("undefined .align directive, value size '" + Twine(AF.getValueSize()) + "' is not a divisor of padding size '" + Twine(AF.getFileSize()) + "'"); for (uint64_t i = 0; i != Count; ++i) { switch (AF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (AF.getValue())); break; case 2: MOW.Write16(uint16_t(AF.getValue())); break; case 4: MOW.Write32(uint32_t(AF.getValue())); break; case 8: MOW.Write64(uint64_t(AF.getValue())); break; } } break; } case MCFragment::FT_Data: OS << cast(F).getContents().str(); break; case MCFragment::FT_Fill: { MCFillFragment &FF = cast(F); if (!FF.getValue().isAbsolute()) llvm_unreachable("FIXME: Not yet implemented!"); int64_t Value = FF.getValue().getConstant(); for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { switch (FF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (Value)); break; case 2: MOW.Write16(uint16_t(Value)); break; case 4: MOW.Write32(uint32_t(Value)); break; case 8: MOW.Write64(uint64_t(Value)); break; } } break; } case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i) MOW.Write8(uint8_t(OF.getValue())); break; } } assert(OS.tell() - Start == F.getFileSize()); } /// WriteFileData - Write the \arg SD data to the output file. static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, MachObjectWriter &MOW) { uint64_t Start = OS.tell(); (void) Start; for (MCSectionData::const_iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) WriteFileData(OS, *it, MOW); assert(OS.tell() - Start == SD.getFileSize()); } void MCAssembler::Finish() { // Layout the sections and fragments. for (iterator it = begin(), ie = end(); it != ie; ++it) LayoutSection(*it); // Write the object file. MachObjectWriter MOW(OS); MOW.WriteObject(*this); OS.flush(); }