//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAG class, which is a base class used by // scheduling implementation classes. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "SDNodeDbgValue.h" #include "ScheduleDAGSDNodes.h" #include "InstrEmitter.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtarget.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(LoadsClustered, "Number of loads clustered together"); ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) : ScheduleDAG(mf) { } /// Run - perform scheduling. /// void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos) { DAG = dag; ScheduleDAG::Run(bb, insertPos); } /// NewSUnit - Creates a new SUnit and return a ptr to it. /// SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) { #ifndef NDEBUG const SUnit *Addr = 0; if (!SUnits.empty()) Addr = &SUnits[0]; #endif SUnits.push_back(SUnit(N, (unsigned)SUnits.size())); assert((Addr == 0 || Addr == &SUnits[0]) && "SUnits std::vector reallocated on the fly!"); SUnits.back().OrigNode = &SUnits.back(); SUnit *SU = &SUnits.back(); const TargetLowering &TLI = DAG->getTargetLoweringInfo(); if (N->isMachineOpcode() && N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) SU->SchedulingPref = Sched::None; else SU->SchedulingPref = TLI.getSchedulingPreference(N); return SU; } SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { SUnit *SU = NewSUnit(Old->getNode()); SU->OrigNode = Old->OrigNode; SU->Latency = Old->Latency; SU->isTwoAddress = Old->isTwoAddress; SU->isCommutable = Old->isCommutable; SU->hasPhysRegDefs = Old->hasPhysRegDefs; SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; SU->SchedulingPref = Old->SchedulingPref; Old->isCloned = true; return SU; } /// CheckForPhysRegDependency - Check if the dependency between def and use of /// a specified operand is a physical register dependency. If so, returns the /// register and the cost of copying the register. static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) { if (Op != 2 || User->getOpcode() != ISD::CopyToReg) return; unsigned Reg = cast(User->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) return; unsigned ResNo = User->getOperand(2).getResNo(); if (Def->isMachineOpcode()) { const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); if (ResNo >= II.getNumDefs() && II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { PhysReg = Reg; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo)); Cost = RC->getCopyCost(); } } } static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag, SelectionDAG *DAG) { SmallVector VTs; SDNode *FlagDestNode = Flag.getNode(); // Don't add a flag from a node to itself. if (FlagDestNode == N) return; // Don't add a flag to something which already has a flag. if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return; for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) VTs.push_back(N->getValueType(I)); if (AddFlag) VTs.push_back(MVT::Flag); SmallVector Ops; for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I) Ops.push_back(N->getOperand(I)); if (FlagDestNode) Ops.push_back(Flag); SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); MachineSDNode::mmo_iterator Begin = 0, End = 0; MachineSDNode *MN = dyn_cast(N); // Store memory references. if (MN) { Begin = MN->memoperands_begin(); End = MN->memoperands_end(); } DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); // Reset the memory references if (MN) MN->setMemRefs(Begin, End); } /// ClusterNeighboringLoads - Force nearby loads together by "flagging" them. /// This function finds loads of the same base and different offsets. If the /// offsets are not far apart (target specific), it add MVT::Flag inputs and /// outputs to ensure they are scheduled together and in order. This /// optimization may benefit some targets by improving cache locality. void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { SDNode *Chain = 0; unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) Chain = Node->getOperand(NumOps-1).getNode(); if (!Chain) return; // Look for other loads of the same chain. Find loads that are loading from // the same base pointer and different offsets. SmallPtrSet Visited; SmallVector Offsets; DenseMap O2SMap; // Map from offset to SDNode. bool Cluster = false; SDNode *Base = Node; for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { SDNode *User = *I; if (User == Node || !Visited.insert(User)) continue; int64_t Offset1, Offset2; if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || Offset1 == Offset2) // FIXME: Should be ok if they addresses are identical. But earlier // optimizations really should have eliminated one of the loads. continue; if (O2SMap.insert(std::make_pair(Offset1, Base)).second) Offsets.push_back(Offset1); O2SMap.insert(std::make_pair(Offset2, User)); Offsets.push_back(Offset2); if (Offset2 < Offset1) Base = User; Cluster = true; } if (!Cluster) return; // Sort them in increasing order. std::sort(Offsets.begin(), Offsets.end()); // Check if the loads are close enough. SmallVector Loads; unsigned NumLoads = 0; int64_t BaseOff = Offsets[0]; SDNode *BaseLoad = O2SMap[BaseOff]; Loads.push_back(BaseLoad); for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { int64_t Offset = Offsets[i]; SDNode *Load = O2SMap[Offset]; if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) break; // Stop right here. Ignore loads that are further away. Loads.push_back(Load); ++NumLoads; } if (NumLoads == 0) return; // Cluster loads by adding MVT::Flag outputs and inputs. This also // ensure they are scheduled in order of increasing addresses. SDNode *Lead = Loads[0]; AddFlags(Lead, SDValue(0, 0), true, DAG); SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1); for (unsigned I = 1, E = Loads.size(); I != E; ++I) { bool OutFlag = I < E - 1; SDNode *Load = Loads[I]; AddFlags(Load, InFlag, OutFlag, DAG); if (OutFlag) InFlag = SDValue(Load, Load->getNumValues() - 1); ++LoadsClustered; } } /// ClusterNodes - Cluster certain nodes which should be scheduled together. /// void ScheduleDAGSDNodes::ClusterNodes() { for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), E = DAG->allnodes_end(); NI != E; ++NI) { SDNode *Node = &*NI; if (!Node || !Node->isMachineOpcode()) continue; unsigned Opc = Node->getMachineOpcode(); const TargetInstrDesc &TID = TII->get(Opc); if (TID.mayLoad()) // Cluster loads from "near" addresses into combined SUnits. ClusterNeighboringLoads(Node); } } void ScheduleDAGSDNodes::BuildSchedUnits() { // During scheduling, the NodeId field of SDNode is used to map SDNodes // to their associated SUnits by holding SUnits table indices. A value // of -1 means the SDNode does not yet have an associated SUnit. unsigned NumNodes = 0; for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), E = DAG->allnodes_end(); NI != E; ++NI) { NI->setNodeId(-1); ++NumNodes; } // Reserve entries in the vector for each of the SUnits we are creating. This // ensure that reallocation of the vector won't happen, so SUnit*'s won't get // invalidated. // FIXME: Multiply by 2 because we may clone nodes during scheduling. // This is a temporary workaround. SUnits.reserve(NumNodes * 2); // Add all nodes in depth first order. SmallVector Worklist; SmallPtrSet Visited; Worklist.push_back(DAG->getRoot().getNode()); Visited.insert(DAG->getRoot().getNode()); while (!Worklist.empty()) { SDNode *NI = Worklist.pop_back_val(); // Add all operands to the worklist unless they've already been added. for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) if (Visited.insert(NI->getOperand(i).getNode())) Worklist.push_back(NI->getOperand(i).getNode()); if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. continue; // If this node has already been processed, stop now. if (NI->getNodeId() != -1) continue; SUnit *NodeSUnit = NewSUnit(NI); // See if anything is flagged to this node, if so, add them to flagged // nodes. Nodes can have at most one flag input and one flag output. Flags // are required to be the last operand and result of a node. // Scan up to find flagged preds. SDNode *N = NI; while (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { N = N->getOperand(N->getNumOperands()-1).getNode(); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); } // Scan down to find any flagged succs. N = NI; while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { SDValue FlagVal(N, N->getNumValues()-1); // There are either zero or one users of the Flag result. bool HasFlagUse = false; for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) if (FlagVal.isOperandOf(*UI)) { HasFlagUse = true; assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); N = *UI; break; } if (!HasFlagUse) break; } // If there are flag operands involved, N is now the bottom-most node // of the sequence of nodes that are flagged together. // Update the SUnit. NodeSUnit->setNode(N); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); // Assign the Latency field of NodeSUnit using target-provided information. ComputeLatency(NodeSUnit); } } void ScheduleDAGSDNodes::AddSchedEdges() { const TargetSubtarget &ST = TM.getSubtarget(); // Check to see if the scheduler cares about latencies. bool UnitLatencies = ForceUnitLatencies(); // Pass 2: add the preds, succs, etc. for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { SUnit *SU = &SUnits[su]; SDNode *MainNode = SU->getNode(); if (MainNode->isMachineOpcode()) { unsigned Opc = MainNode->getMachineOpcode(); const TargetInstrDesc &TID = TII->get(Opc); for (unsigned i = 0; i != TID.getNumOperands(); ++i) { if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { SU->isTwoAddress = true; break; } } if (TID.isCommutable()) SU->isCommutable = true; } // Find all predecessors and successors of the group. for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) { if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).getImplicitDefs()) { SU->hasPhysRegClobbers = true; unsigned NumUsed = InstrEmitter::CountResults(N); while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) --NumUsed; // Skip over unused values at the end. if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) SU->hasPhysRegDefs = true; } for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *OpN = N->getOperand(i).getNode(); if (isPassiveNode(OpN)) continue; // Not scheduled. SUnit *OpSU = &SUnits[OpN->getNodeId()]; assert(OpSU && "Node has no SUnit!"); if (OpSU == SU) continue; // In the same group. EVT OpVT = N->getOperand(i).getValueType(); assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); bool isChain = OpVT == MVT::Other; unsigned PhysReg = 0; int Cost = 1; // Determine if this is a physical register dependency. CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); assert((PhysReg == 0 || !isChain) && "Chain dependence via physreg data?"); // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler // emits a copy from the physical register to a virtual register unless // it requires a cross class copy (cost < 0). That means we are only // treating "expensive to copy" register dependency as physical register // dependency. This may change in the future though. if (Cost >= 0) PhysReg = 0; // If this is a ctrl dep, latency is 1. unsigned OpLatency = isChain ? 1 : OpSU->Latency; const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data, OpLatency, PhysReg); if (!isChain && !UnitLatencies) { ComputeOperandLatency(OpN, N, i, const_cast(dep)); ST.adjustSchedDependency(OpSU, SU, const_cast(dep)); } SU->addPred(dep); } } } } /// BuildSchedGraph - Build the SUnit graph from the selection dag that we /// are input. This SUnit graph is similar to the SelectionDAG, but /// excludes nodes that aren't interesting to scheduling, and represents /// flagged together nodes with a single SUnit. void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { // Cluster certain nodes which should be scheduled together. ClusterNodes(); // Populate the SUnits array. BuildSchedUnits(); // Compute all the scheduling dependencies between nodes. AddSchedEdges(); } void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { // Check to see if the scheduler cares about latencies. if (ForceUnitLatencies()) { SU->Latency = 1; return; } const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); if (InstrItins.isEmpty()) { SU->Latency = 1; return; } // Compute the latency for the node. We use the sum of the latencies for // all nodes flagged together into this SUnit. SU->Latency = 0; for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) if (N->isMachineOpcode()) { SU->Latency += InstrItins. getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass()); } } void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use, unsigned OpIdx, SDep& dep) const{ // Check to see if the scheduler cares about latencies. if (ForceUnitLatencies()) return; const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); if (InstrItins.isEmpty()) return; if (dep.getKind() != SDep::Data) return; unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); if (Def->isMachineOpcode()) { const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); if (DefIdx >= II.getNumDefs()) return; int DefCycle = InstrItins.getOperandCycle(II.getSchedClass(), DefIdx); if (DefCycle < 0) return; int UseCycle = 1; if (Use->isMachineOpcode()) { const unsigned UseClass = TII->get(Use->getMachineOpcode()).getSchedClass(); UseCycle = InstrItins.getOperandCycle(UseClass, OpIdx); } if (UseCycle >= 0) { int Latency = DefCycle - UseCycle + 1; if (Latency >= 0) dep.setLatency(Latency); } } } void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { if (!SU->getNode()) { dbgs() << "PHYS REG COPY\n"; return; } SU->getNode()->dump(DAG); dbgs() << "\n"; SmallVector FlaggedNodes; for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode()) FlaggedNodes.push_back(N); while (!FlaggedNodes.empty()) { dbgs() << " "; FlaggedNodes.back()->dump(DAG); dbgs() << "\n"; FlaggedNodes.pop_back(); } } namespace { struct OrderSorter { bool operator()(const std::pair &A, const std::pair &B) { return A.first < B.first; } }; } // ProcessSourceNode - Process nodes with source order numbers. These are added // to a vector which EmitSchedule use to determine how to insert dbg_value // instructions in the right order. static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, DenseMap &VRBaseMap, SmallVector, 32> &Orders, SmallSet &Seen) { unsigned Order = DAG->GetOrdering(N); if (!Order || !Seen.insert(Order)) return; MachineBasicBlock *BB = Emitter.getBlock(); if (BB->empty() || BB->back().isPHI()) { // Did not insert any instruction. Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); return; } Orders.push_back(std::make_pair(Order, &BB->back())); if (!N->getHasDebugValue()) return; // Opportunistically insert immediate dbg_value uses, i.e. those with source // order number right after the N. MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); SmallVector &DVs = DAG->GetDbgValues(N); for (unsigned i = 0, e = DVs.size(); i != e; ++i) { if (DVs[i]->isInvalidated()) continue; unsigned DVOrder = DVs[i]->getOrder(); if (DVOrder == ++Order) { MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap); if (DbgMI) { Orders.push_back(std::make_pair(DVOrder, DbgMI)); BB->insert(InsertPos, DbgMI); } DVs[i]->setIsInvalidated(); } } } /// EmitSchedule - Emit the machine code in scheduled order. MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() { InstrEmitter Emitter(BB, InsertPos); DenseMap VRBaseMap; DenseMap CopyVRBaseMap; SmallVector, 32> Orders; SmallSet Seen; bool HasDbg = DAG->hasDebugValues(); // If this is the first BB, emit byval parameter dbg_value's. if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); for (; PDI != PDE; ++PDI) { MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); if (DbgMI) BB->push_back(DbgMI); } } for (unsigned i = 0, e = Sequence.size(); i != e; i++) { SUnit *SU = Sequence[i]; if (!SU) { // Null SUnit* is a noop. EmitNoop(); continue; } // For pre-regalloc scheduling, create instructions corresponding to the // SDNode and any flagged SDNodes and append them to the block. if (!SU->getNode()) { // Emit a copy. EmitPhysRegCopy(SU, CopyVRBaseMap); continue; } SmallVector FlaggedNodes; for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode()) FlaggedNodes.push_back(N); while (!FlaggedNodes.empty()) { SDNode *N = FlaggedNodes.back(); Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); // Remember the source order of the inserted instruction. if (HasDbg) ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); FlaggedNodes.pop_back(); } Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); // Remember the source order of the inserted instruction. if (HasDbg) ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen); } // Insert all the dbg_values which have not already been inserted in source // order sequence. if (HasDbg) { MachineBasicBlock::iterator BBBegin = BB->empty() ? BB->end() : BB->begin(); while (BBBegin != BB->end() && BBBegin->isPHI()) ++BBBegin; // Sort the source order instructions and use the order to insert debug // values. std::sort(Orders.begin(), Orders.end(), OrderSorter()); SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); // Now emit the rest according to source order. unsigned LastOrder = 0; for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { unsigned Order = Orders[i].first; MachineInstr *MI = Orders[i].second; // Insert all SDDbgValue's whose order(s) are before "Order". if (!MI) continue; MachineBasicBlock *MIBB = MI->getParent(); #ifndef NDEBUG unsigned LastDIOrder = 0; #endif for (; DI != DE && (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { #ifndef NDEBUG assert((*DI)->getOrder() >= LastDIOrder && "SDDbgValue nodes must be in source order!"); LastDIOrder = (*DI)->getOrder(); #endif if ((*DI)->isInvalidated()) continue; MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); if (DbgMI) { if (!LastOrder) // Insert to start of the BB (after PHIs). BB->insert(BBBegin, DbgMI); else { MachineBasicBlock::iterator Pos = MI; MIBB->insert(llvm::next(Pos), DbgMI); } } } LastOrder = Order; } // Add trailing DbgValue's before the terminator. FIXME: May want to add // some of them before one or more conditional branches? while (DI != DE) { MachineBasicBlock *InsertBB = Emitter.getBlock(); MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator(); if (!(*DI)->isInvalidated()) { MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap); if (DbgMI) InsertBB->insert(Pos, DbgMI); } ++DI; } } BB = Emitter.getBlock(); InsertPos = Emitter.getInsertPos(); return BB; }