//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Hexagon implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "HexagonInstrInfo.h" #include "Hexagon.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/DFAPacketizer.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #define GET_INSTRINFO_CTOR #define GET_INSTRMAP_INFO #include "HexagonGenInstrInfo.inc" #include "HexagonGenDFAPacketizer.inc" using namespace llvm; /// /// Constants for Hexagon instructions. /// const int Hexagon_MEMW_OFFSET_MAX = 4095; const int Hexagon_MEMW_OFFSET_MIN = -4096; const int Hexagon_MEMD_OFFSET_MAX = 8191; const int Hexagon_MEMD_OFFSET_MIN = -8192; const int Hexagon_MEMH_OFFSET_MAX = 2047; const int Hexagon_MEMH_OFFSET_MIN = -2048; const int Hexagon_MEMB_OFFSET_MAX = 1023; const int Hexagon_MEMB_OFFSET_MIN = -1024; const int Hexagon_ADDI_OFFSET_MAX = 32767; const int Hexagon_ADDI_OFFSET_MIN = -32768; const int Hexagon_MEMD_AUTOINC_MAX = 56; const int Hexagon_MEMD_AUTOINC_MIN = -64; const int Hexagon_MEMW_AUTOINC_MAX = 28; const int Hexagon_MEMW_AUTOINC_MIN = -32; const int Hexagon_MEMH_AUTOINC_MAX = 14; const int Hexagon_MEMH_AUTOINC_MIN = -16; const int Hexagon_MEMB_AUTOINC_MAX = 7; const int Hexagon_MEMB_AUTOINC_MIN = -8; HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), RI(ST, *this), Subtarget(ST) { } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case Hexagon::LDriw: case Hexagon::LDrid: case Hexagon::LDrih: case Hexagon::LDrib: case Hexagon::LDriub: if (MI->getOperand(2).isFI() && MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case Hexagon::STriw: case Hexagon::STrid: case Hexagon::STrih: case Hexagon::STrib: if (MI->getOperand(2).isFI() && MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { FrameIndex = MI->getOperand(0).getIndex(); return MI->getOperand(2).getReg(); } break; } return 0; } unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const{ int BOpc = Hexagon::JMP; int BccOpc = Hexagon::JMP_t; assert(TBB && "InsertBranch must not be told to insert a fallthrough"); int regPos = 0; // Check if ReverseBranchCondition has asked to reverse this branch // If we want to reverse the branch an odd number of times, we want // JMP_f. if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { BccOpc = Hexagon::JMP_f; regPos = 1; } if (FBB == 0) { if (Cond.empty()) { // Due to a bug in TailMerging/CFG Optimization, we need to add a // special case handling of a predicated jump followed by an // unconditional jump. If not, Tail Merging and CFG Optimization go // into an infinite loop. MachineBasicBlock *NewTBB, *NewFBB; SmallVector Cond; MachineInstr *Term = MBB.getFirstTerminator(); if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) { MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(&MBB)); if (NewTBB == NextBB) { ReverseBranchCondition(Cond); RemoveBranch(MBB); return InsertBranch(MBB, TBB, 0, Cond, DL); } } BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); } else { BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); } return 1; } BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); return 2; } bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { TBB = NULL; FBB = NULL; // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::instr_iterator I = MBB.instr_end(); if (I == MBB.instr_begin()) return false; // A basic block may looks like this: // // [ insn // EH_LABEL // insn // insn // insn // EH_LABEL // insn ] // // It has two succs but does not have a terminator // Don't know how to handle it. do { --I; if (I->isEHLabel()) return true; } while (I != MBB.instr_begin()); I = MBB.instr_end(); --I; while (I->isDebugValue()) { if (I == MBB.instr_begin()) return false; --I; } // Delete the JMP if it's equivalent to a fall-through. if (AllowModify && I->getOpcode() == Hexagon::JMP && MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { DEBUG(dbgs()<< "\nErasing the jump to successor block\n";); I->eraseFromParent(); I = MBB.instr_end(); if (I == MBB.instr_begin()) return false; --I; } if (!isUnpredicatedTerminator(I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; MachineInstr *SecondLastInst = NULL; // Find one more terminator if present. do { if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) { if (!SecondLastInst) SecondLastInst = I; else // This is a third branch. return true; } if (I == MBB.instr_begin()) break; --I; } while(I); int LastOpcode = LastInst->getOpcode(); bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode); // If there is only one terminator instruction, process it. if (LastInst && !SecondLastInst) { if (LastOpcode == Hexagon::JMP) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (LastOpcode == Hexagon::ENDLOOP0) { TBB = LastInst->getOperand(0).getMBB(); Cond.push_back(LastInst->getOperand(0)); return false; } if (LastOpcodeHasJMP_c) { TBB = LastInst->getOperand(1).getMBB(); if (LastOpcodeHasNot) { Cond.push_back(MachineOperand::CreateImm(0)); } Cond.push_back(LastInst->getOperand(0)); return false; } // Otherwise, don't know what this is. return true; } int SecLastOpcode = SecondLastInst->getOpcode(); bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode); if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) { TBB = SecondLastInst->getOperand(1).getMBB(); if (SecLastOpcodeHasNot) Cond.push_back(MachineOperand::CreateImm(0)); Cond.push_back(SecondLastInst->getOperand(0)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two Hexagon:JMPs, handle it. The second one is not // executed, so remove it. if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // If the block ends with an ENDLOOP, and JMP, handle it. if (SecLastOpcode == Hexagon::ENDLOOP0 && LastOpcode == Hexagon::JMP) { TBB = SecondLastInst->getOperand(0).getMBB(); Cond.push_back(SecondLastInst->getOperand(0)); FBB = LastInst->getOperand(0).getMBB(); return false; } // Otherwise, can't handle this. return true; } unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { int BOpc = Hexagon::JMP; int BccOpc = Hexagon::JMP_t; int BccOpcNot = Hexagon::JMP_f; MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot) return 1; // Remove the branch. I->eraseFromParent(); return 2; } /// \brief For a comparison instruction, return the source registers in /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it /// compares against in CmpValue. Return true if the comparison instruction /// can be analyzed. bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const { unsigned Opc = MI->getOpcode(); // Set mask and the first source register. switch (Opc) { case Hexagon::CMPEHexagon4rr: case Hexagon::CMPEQri: case Hexagon::CMPEQrr: case Hexagon::CMPGT64rr: case Hexagon::CMPGTU64rr: case Hexagon::CMPGTUri: case Hexagon::CMPGTUrr: case Hexagon::CMPGTri: case Hexagon::CMPGTrr: SrcReg = MI->getOperand(1).getReg(); Mask = ~0; break; case Hexagon::CMPbEQri_V4: case Hexagon::CMPbEQrr_sbsb_V4: case Hexagon::CMPbEQrr_ubub_V4: case Hexagon::CMPbGTUri_V4: case Hexagon::CMPbGTUrr_V4: case Hexagon::CMPbGTrr_V4: SrcReg = MI->getOperand(1).getReg(); Mask = 0xFF; break; case Hexagon::CMPhEQri_V4: case Hexagon::CMPhEQrr_shl_V4: case Hexagon::CMPhEQrr_xor_V4: case Hexagon::CMPhGTUri_V4: case Hexagon::CMPhGTUrr_V4: case Hexagon::CMPhGTrr_shl_V4: SrcReg = MI->getOperand(1).getReg(); Mask = 0xFFFF; break; } // Set the value/second source register. switch (Opc) { case Hexagon::CMPEHexagon4rr: case Hexagon::CMPEQrr: case Hexagon::CMPGT64rr: case Hexagon::CMPGTU64rr: case Hexagon::CMPGTUrr: case Hexagon::CMPGTrr: case Hexagon::CMPbEQrr_sbsb_V4: case Hexagon::CMPbEQrr_ubub_V4: case Hexagon::CMPbGTUrr_V4: case Hexagon::CMPbGTrr_V4: case Hexagon::CMPhEQrr_shl_V4: case Hexagon::CMPhEQrr_xor_V4: case Hexagon::CMPhGTUrr_V4: case Hexagon::CMPhGTrr_shl_V4: SrcReg2 = MI->getOperand(2).getReg(); return true; case Hexagon::CMPEQri: case Hexagon::CMPGTUri: case Hexagon::CMPGTri: case Hexagon::CMPbEQri_V4: case Hexagon::CMPbGTUri_V4: case Hexagon::CMPhEQri_V4: case Hexagon::CMPhGTUri_V4: SrcReg2 = 0; Value = MI->getOperand(2).getImm(); return true; } return false; } void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg); return; } if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg); return; } if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { // Map Pd = Ps to Pd = or(Ps, Ps). BuildMI(MBB, I, DL, get(Hexagon::OR_pp), DestReg).addReg(SrcReg).addReg(SrcReg); return; } if (Hexagon::DoubleRegsRegClass.contains(DestReg) && Hexagon::IntRegsRegClass.contains(SrcReg)) { // We can have an overlap between single and double reg: r1:0 = r0. if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) { // r1:0 = r0 BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, Hexagon::subreg_hireg))).addImm(0); } else { // r1:0 = r1 or no overlap. BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg, Hexagon::subreg_loreg))).addReg(SrcReg); BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, Hexagon::subreg_hireg))).addImm(0); } return; } if (Hexagon::CRRegsRegClass.contains(DestReg) && Hexagon::IntRegsRegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg); return; } if (Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::IntRegsRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg). addReg(SrcReg, getKillRegState(KillSrc)); return; } if (Hexagon::IntRegsRegClass.contains(SrcReg) && Hexagon::PredRegsRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg). addReg(SrcReg, getKillRegState(KillSrc)); return; } llvm_unreachable("Unimplemented"); } void HexagonInstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBB.findDebugLoc(I); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align); if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Hexagon::STriw)) .addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Hexagon::STrid)) .addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) .addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); } else { llvm_unreachable("Unimplemented"); } } void HexagonInstrInfo::storeRegToAddr( MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { llvm_unreachable("Unimplemented"); } void HexagonInstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBB.findDebugLoc(I); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align); if (RC == &Hexagon::IntRegsRegClass) { BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO); } else if (RC == &Hexagon::DoubleRegsRegClass) { BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO); } else if (RC == &Hexagon::PredRegsRegClass) { BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO); } else { llvm_unreachable("Can't store this register to stack slot"); } } void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { llvm_unreachable("Unimplemented"); } MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, int FI) const { // Hexagon_TODO: Implement. return(0); } MachineInstr* HexagonInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const { MachineInstrBuilder MIB = BuildMI(MF, DL, get(Hexagon::DBG_VALUE)) .addImm(0).addImm(Offset).addMetadata(MDPtr); return &*MIB; } unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const { MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *TRC; if (VT == MVT::i1) { TRC = &Hexagon::PredRegsRegClass; } else if (VT == MVT::i32 || VT == MVT::f32) { TRC = &Hexagon::IntRegsRegClass; } else if (VT == MVT::i64 || VT == MVT::f64) { TRC = &Hexagon::DoubleRegsRegClass; } else { llvm_unreachable("Cannot handle this register class"); } unsigned NewReg = RegInfo.createVirtualRegister(TRC); return NewReg; } bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const { // Constant extenders are allowed only for V4 and above. if (!Subtarget.hasV4TOps()) return false; const MCInstrDesc &MID = MI->getDesc(); const uint64_t F = MID.TSFlags; if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) return true; // TODO: This is largely obsolete now. Will need to be removed // in consecutive patches. switch(MI->getOpcode()) { // TFR_FI Remains a special case. case Hexagon::TFR_FI: return true; default: return false; } return false; } // This returns true in two cases: // - The OP code itself indicates that this is an extended instruction. // - One of MOs has been marked with HMOTF_ConstExtended flag. bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const { // First check if this is permanently extended op code. const uint64_t F = MI->getDesc().TSFlags; if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) return true; // Use MO operand flags to determine if one of MI's operands // has HMOTF_ConstExtended flag set. for (MachineInstr::const_mop_iterator I = MI->operands_begin(), E = MI->operands_end(); I != E; ++I) { if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended) return true; } return false; } bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const { return MI->getDesc().isBranch(); } bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const { if (isNewValueJump(MI)) return true; if (isNewValueStore(MI)) return true; return false; } bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const { return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4; } bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const { bool isPred = MI->getDesc().isPredicable(); if (!isPred) return false; const int Opc = MI->getOpcode(); switch(Opc) { case Hexagon::TFRI: return isInt<12>(MI->getOperand(1).getImm()); case Hexagon::STrid: case Hexagon::STrid_indexed: return isShiftedUInt<6,3>(MI->getOperand(1).getImm()); case Hexagon::STriw: case Hexagon::STriw_indexed: case Hexagon::STriw_nv_V4: return isShiftedUInt<6,2>(MI->getOperand(1).getImm()); case Hexagon::STrih: case Hexagon::STrih_indexed: case Hexagon::STrih_nv_V4: return isShiftedUInt<6,1>(MI->getOperand(1).getImm()); case Hexagon::STrib: case Hexagon::STrib_indexed: case Hexagon::STrib_nv_V4: return isUInt<6>(MI->getOperand(1).getImm()); case Hexagon::LDrid: case Hexagon::LDrid_indexed: return isShiftedUInt<6,3>(MI->getOperand(2).getImm()); case Hexagon::LDriw: case Hexagon::LDriw_indexed: return isShiftedUInt<6,2>(MI->getOperand(2).getImm()); case Hexagon::LDrih: case Hexagon::LDriuh: case Hexagon::LDrih_indexed: case Hexagon::LDriuh_indexed: return isShiftedUInt<6,1>(MI->getOperand(2).getImm()); case Hexagon::LDrib: case Hexagon::LDriub: case Hexagon::LDrib_indexed: case Hexagon::LDriub_indexed: return isUInt<6>(MI->getOperand(2).getImm()); case Hexagon::POST_LDrid: return isShiftedInt<4,3>(MI->getOperand(3).getImm()); case Hexagon::POST_LDriw: return isShiftedInt<4,2>(MI->getOperand(3).getImm()); case Hexagon::POST_LDrih: case Hexagon::POST_LDriuh: return isShiftedInt<4,1>(MI->getOperand(3).getImm()); case Hexagon::POST_LDrib: case Hexagon::POST_LDriub: return isInt<4>(MI->getOperand(3).getImm()); case Hexagon::STrib_imm_V4: case Hexagon::STrih_imm_V4: case Hexagon::STriw_imm_V4: return (isUInt<6>(MI->getOperand(1).getImm()) && isInt<6>(MI->getOperand(2).getImm())); case Hexagon::ADD_ri: return isInt<8>(MI->getOperand(2).getImm()); case Hexagon::ASLH: case Hexagon::ASRH: case Hexagon::SXTB: case Hexagon::SXTH: case Hexagon::ZXTB: case Hexagon::ZXTH: return Subtarget.hasV4TOps(); } return true; } // This function performs the following inversiones: // // cPt ---> cNotPt // cNotPt ---> cPt // unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { int InvPredOpcode; InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) : Hexagon::getTruePredOpcode(Opc); if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. return InvPredOpcode; switch(Opc) { default: llvm_unreachable("Unexpected predicated instruction"); case Hexagon::COMBINE_rr_cPt: return Hexagon::COMBINE_rr_cNotPt; case Hexagon::COMBINE_rr_cNotPt: return Hexagon::COMBINE_rr_cPt; // Dealloc_return. case Hexagon::DEALLOC_RET_cPt_V4: return Hexagon::DEALLOC_RET_cNotPt_V4; case Hexagon::DEALLOC_RET_cNotPt_V4: return Hexagon::DEALLOC_RET_cPt_V4; } } // New Value Store instructions. bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); } bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); } int HexagonInstrInfo:: getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const { enum Hexagon::PredSense inPredSense; inPredSense = invertPredicate ? Hexagon::PredSense_false : Hexagon::PredSense_true; int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); if (CondOpcode >= 0) // Valid Conditional opcode/instruction return CondOpcode; // This switch case will be removed once all the instructions have been // modified to use relation maps. switch(Opc) { case Hexagon::TFRI_f: return !invertPredicate ? Hexagon::TFRI_cPt_f : Hexagon::TFRI_cNotPt_f; case Hexagon::COMBINE_rr: return !invertPredicate ? Hexagon::COMBINE_rr_cPt : Hexagon::COMBINE_rr_cNotPt; // Word. case Hexagon::STriw_f: return !invertPredicate ? Hexagon::STriw_cPt : Hexagon::STriw_cNotPt; case Hexagon::STriw_indexed_f: return !invertPredicate ? Hexagon::STriw_indexed_cPt : Hexagon::STriw_indexed_cNotPt; // DEALLOC_RETURN. case Hexagon::DEALLOC_RET_V4: return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 : Hexagon::DEALLOC_RET_cNotPt_V4; } llvm_unreachable("Unexpected predicable instruction"); } bool HexagonInstrInfo:: PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Cond) const { int Opc = MI->getOpcode(); assert (isPredicable(MI) && "Expected predicable instruction"); bool invertJump = (!Cond.empty() && Cond[0].isImm() && (Cond[0].getImm() == 0)); // This will change MI's opcode to its predicate version. // However, its operand list is still the old one, i.e. the // non-predicate one. MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump))); int oper = -1; unsigned int GAIdx = 0; // Indicates whether the current MI has a GlobalAddress operand bool hasGAOpnd = false; std::vector tmpOpnds; // Indicates whether we need to shift operands to right. bool needShift = true; // The predicate is ALWAYS the FIRST input operand !!! if (MI->getNumOperands() == 0) { // The non-predicate version of MI does not take any operands, // i.e. no outs and no ins. In this condition, the predicate // operand will be directly placed at Operands[0]. No operand // shift is needed. // Example: BARRIER needShift = false; oper = -1; } else if ( MI->getOperand(MI->getNumOperands()-1).isReg() && MI->getOperand(MI->getNumOperands()-1).isDef() && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) { // The non-predicate version of MI does not have any input operands. // In this condition, we extend the length of Operands[] by one and // copy the original last operand to the newly allocated slot. // At this moment, it is just a place holder. Later, we will put // predicate operand directly into it. No operand shift is needed. // Example: r0=BARRIER (this is a faked insn used here for illustration) MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); needShift = false; oper = MI->getNumOperands() - 2; } else { // We need to right shift all input operands by one. Duplicate the // last operand into the newly allocated slot. MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); } if (needShift) { // Operands[ MI->getNumOperands() - 2 ] has been copied into // Operands[ MI->getNumOperands() - 1 ], so we start from // Operands[ MI->getNumOperands() - 3 ]. // oper is a signed int. // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1. for (oper = MI->getNumOperands() - 3; oper >= 0; --oper) { MachineOperand &MO = MI->getOperand(oper); // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7] // // /\~ // /||\~ // || // Predicate Operand here if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) { break; } if (MO.isReg()) { MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(), MO.isImplicit(), MO.isKill(), MO.isDead(), MO.isUndef(), MO.isDebug()); } else if (MO.isImm()) { MI->getOperand(oper+1).ChangeToImmediate(MO.getImm()); } else if (MO.isGlobal()) { // MI can not have more than one GlobalAddress operand. assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd"); // There is no member function called "ChangeToGlobalAddress" in the // MachineOperand class (not like "ChangeToRegister" and // "ChangeToImmediate"). So we have to remove them from Operands[] list // first, and then add them back after we have inserted the predicate // operand. tmpOpnds[] is to remember these operands before we remove // them. tmpOpnds.push_back(MO); // Operands[oper] is a GlobalAddress operand; // Operands[oper+1] has been copied into Operands[oper+2]; hasGAOpnd = true; GAIdx = oper; continue; } else { assert(false && "Unexpected operand type"); } } } int regPos = invertJump ? 1 : 0; MachineOperand PredMO = Cond[regPos]; // [oper] now points to the last explicit Def. Predicate operand must be // located at [oper+1]. See diagram above. // This assumes that the predicate is always the first operand, // i.e. Operands[0+numResults], in the set of inputs // It is better to have an assert here to check this. But I don't know how // to write this assert because findFirstPredOperandIdx() would return -1 if (oper < -1) oper = -1; MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(), PredMO.isImplicit(), false, PredMO.isDead(), PredMO.isUndef(), PredMO.isDebug()); MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo(); RegInfo.clearKillFlags(PredMO.getReg()); if (hasGAOpnd) { unsigned int i; // Operands[GAIdx] is the original GlobalAddress operand, which is // already copied into tmpOpnds[0]. // Operands[GAIdx] now stores a copy of Operands[GAIdx-1] // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2], // so we start from [GAIdx+2] for (i = GAIdx + 2; i < MI->getNumOperands(); ++i) tmpOpnds.push_back(MI->getOperand(i)); // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ] // It is very important that we always remove from the end of Operands[] // MI->getNumOperands() is at least 2 if program goes to here. for (i = MI->getNumOperands() - 1; i > GAIdx; --i) MI->RemoveOperand(i); for (i = 0; i < tmpOpnds.size(); ++i) MI->addOperand(tmpOpnds[i]); } return true; } bool HexagonInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, const BranchProbability &Probability) const { return true; } bool HexagonInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, const BranchProbability &Probability) const { return true; } // Returns true if an instruction is predicated irrespective of the predicate // sense. For example, all of the following will return true. // if (p0) R1 = add(R2, R3) // if (!p0) R1 = add(R2, R3) // if (p0.new) R1 = add(R2, R3) // if (!p0.new) R1 = add(R2, R3) bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); } bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); } bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; assert(isPredicated(MI)); return (!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); } bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; // Make sure that the instruction is predicated. assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); return (!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); } bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; assert(isPredicated(MI)); return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); } bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; assert(isPredicated(Opcode)); return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); } bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) { MachineOperand MO = MI->getOperand(oper); if (MO.isReg() && MO.isDef()) { const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg()); if (RC == &Hexagon::PredRegsRegClass) { Pred.push_back(MO); return true; } } } return false; } bool HexagonInstrInfo:: SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const { // TODO: Fix this return false; } // // We indicate that we want to reverse the branch by // inserting a 0 at the beginning of the Cond vector. // bool HexagonInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { Cond.erase(Cond.begin()); } else { Cond.insert(Cond.begin(), MachineOperand::CreateImm(0)); } return false; } bool HexagonInstrInfo:: isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs, const BranchProbability &Probability) const { return (NumInstrs <= 4); } bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::DEALLOC_RET_V4 : case Hexagon::DEALLOC_RET_cPt_V4 : case Hexagon::DEALLOC_RET_cNotPt_V4 : case Hexagon::DEALLOC_RET_cdnPnt_V4 : case Hexagon::DEALLOC_RET_cNotdnPnt_V4 : case Hexagon::DEALLOC_RET_cdnPt_V4 : case Hexagon::DEALLOC_RET_cNotdnPt_V4 : return true; } } bool HexagonInstrInfo:: isValidOffset(const int Opcode, const int Offset) const { // This function is to check whether the "Offset" is in the correct range of // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is // inserted to calculate the final address. Due to this reason, the function // assumes that the "Offset" has correct alignment. // We used to assert if the offset was not properly aligned, however, // there are cases where a misaligned pointer recast can cause this // problem, and we need to allow for it. The front end warns of such // misaligns with respect to load size. switch(Opcode) { case Hexagon::LDriw: case Hexagon::LDriw_indexed: case Hexagon::LDriw_f: case Hexagon::STriw_indexed: case Hexagon::STriw: case Hexagon::STriw_f: return (Offset >= Hexagon_MEMW_OFFSET_MIN) && (Offset <= Hexagon_MEMW_OFFSET_MAX); case Hexagon::LDrid: case Hexagon::LDrid_indexed: case Hexagon::LDrid_f: case Hexagon::STrid: case Hexagon::STrid_indexed: case Hexagon::STrid_f: return (Offset >= Hexagon_MEMD_OFFSET_MIN) && (Offset <= Hexagon_MEMD_OFFSET_MAX); case Hexagon::LDrih: case Hexagon::LDriuh: case Hexagon::STrih: return (Offset >= Hexagon_MEMH_OFFSET_MIN) && (Offset <= Hexagon_MEMH_OFFSET_MAX); case Hexagon::LDrib: case Hexagon::STrib: case Hexagon::LDriub: return (Offset >= Hexagon_MEMB_OFFSET_MIN) && (Offset <= Hexagon_MEMB_OFFSET_MAX); case Hexagon::ADD_ri: case Hexagon::TFR_FI: return (Offset >= Hexagon_ADDI_OFFSET_MIN) && (Offset <= Hexagon_ADDI_OFFSET_MAX); case Hexagon::MemOPw_ADDi_V4 : case Hexagon::MemOPw_SUBi_V4 : case Hexagon::MemOPw_ADDr_V4 : case Hexagon::MemOPw_SUBr_V4 : case Hexagon::MemOPw_ANDr_V4 : case Hexagon::MemOPw_ORr_V4 : return (0 <= Offset && Offset <= 255); case Hexagon::MemOPh_ADDi_V4 : case Hexagon::MemOPh_SUBi_V4 : case Hexagon::MemOPh_ADDr_V4 : case Hexagon::MemOPh_SUBr_V4 : case Hexagon::MemOPh_ANDr_V4 : case Hexagon::MemOPh_ORr_V4 : return (0 <= Offset && Offset <= 127); case Hexagon::MemOPb_ADDi_V4 : case Hexagon::MemOPb_SUBi_V4 : case Hexagon::MemOPb_ADDr_V4 : case Hexagon::MemOPb_SUBr_V4 : case Hexagon::MemOPb_ANDr_V4 : case Hexagon::MemOPb_ORr_V4 : return (0 <= Offset && Offset <= 63); // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of // any size. Later pass knows how to handle it. case Hexagon::STriw_pred: case Hexagon::LDriw_pred: return true; case Hexagon::LOOP0_i: return isUInt<10>(Offset); // INLINEASM is very special. case Hexagon::INLINEASM: return true; } llvm_unreachable("No offset range is defined for this opcode. " "Please define it in the above switch statement!"); } // // Check if the Offset is a valid auto-inc imm by Load/Store Type. // bool HexagonInstrInfo:: isValidAutoIncImm(const EVT VT, const int Offset) const { if (VT == MVT::i64) { return (Offset >= Hexagon_MEMD_AUTOINC_MIN && Offset <= Hexagon_MEMD_AUTOINC_MAX && (Offset & 0x7) == 0); } if (VT == MVT::i32) { return (Offset >= Hexagon_MEMW_AUTOINC_MIN && Offset <= Hexagon_MEMW_AUTOINC_MAX && (Offset & 0x3) == 0); } if (VT == MVT::i16) { return (Offset >= Hexagon_MEMH_AUTOINC_MIN && Offset <= Hexagon_MEMH_AUTOINC_MAX && (Offset & 0x1) == 0); } if (VT == MVT::i8) { return (Offset >= Hexagon_MEMB_AUTOINC_MIN && Offset <= Hexagon_MEMB_AUTOINC_MAX); } llvm_unreachable("Not an auto-inc opc!"); } bool HexagonInstrInfo:: isMemOp(const MachineInstr *MI) const { // return MI->getDesc().mayLoad() && MI->getDesc().mayStore(); switch (MI->getOpcode()) { default: return false; case Hexagon::MemOPw_ADDi_V4 : case Hexagon::MemOPw_SUBi_V4 : case Hexagon::MemOPw_ADDr_V4 : case Hexagon::MemOPw_SUBr_V4 : case Hexagon::MemOPw_ANDr_V4 : case Hexagon::MemOPw_ORr_V4 : case Hexagon::MemOPh_ADDi_V4 : case Hexagon::MemOPh_SUBi_V4 : case Hexagon::MemOPh_ADDr_V4 : case Hexagon::MemOPh_SUBr_V4 : case Hexagon::MemOPh_ANDr_V4 : case Hexagon::MemOPh_ORr_V4 : case Hexagon::MemOPb_ADDi_V4 : case Hexagon::MemOPb_SUBi_V4 : case Hexagon::MemOPb_ADDr_V4 : case Hexagon::MemOPb_SUBr_V4 : case Hexagon::MemOPb_ANDr_V4 : case Hexagon::MemOPb_ORr_V4 : case Hexagon::MemOPb_SETBITi_V4: case Hexagon::MemOPh_SETBITi_V4: case Hexagon::MemOPw_SETBITi_V4: case Hexagon::MemOPb_CLRBITi_V4: case Hexagon::MemOPh_CLRBITi_V4: case Hexagon::MemOPw_CLRBITi_V4: return true; } return false; } bool HexagonInstrInfo:: isSpillPredRegOp(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::STriw_pred : case Hexagon::LDriw_pred : return true; } } bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::CMPEQrr: case Hexagon::CMPEQri: case Hexagon::CMPGTrr: case Hexagon::CMPGTri: case Hexagon::CMPGTUrr: case Hexagon::CMPGTUri: return true; } } bool HexagonInstrInfo:: isConditionalTransfer (const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::TFR_cPt: case Hexagon::TFR_cNotPt: case Hexagon::TFRI_cPt: case Hexagon::TFRI_cNotPt: case Hexagon::TFR_cdnPt: case Hexagon::TFR_cdnNotPt: case Hexagon::TFRI_cdnPt: case Hexagon::TFRI_cdnNotPt: return true; } } bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const { const HexagonRegisterInfo& QRI = getRegisterInfo(); switch (MI->getOpcode()) { default: return false; case Hexagon::ADD_ri_cPt: case Hexagon::ADD_ri_cNotPt: case Hexagon::ADD_rr_cPt: case Hexagon::ADD_rr_cNotPt: case Hexagon::XOR_rr_cPt: case Hexagon::XOR_rr_cNotPt: case Hexagon::AND_rr_cPt: case Hexagon::AND_rr_cNotPt: case Hexagon::OR_rr_cPt: case Hexagon::OR_rr_cNotPt: case Hexagon::SUB_rr_cPt: case Hexagon::SUB_rr_cNotPt: case Hexagon::COMBINE_rr_cPt: case Hexagon::COMBINE_rr_cNotPt: return true; case Hexagon::ASLH_cPt_V4: case Hexagon::ASLH_cNotPt_V4: case Hexagon::ASRH_cPt_V4: case Hexagon::ASRH_cNotPt_V4: case Hexagon::SXTB_cPt_V4: case Hexagon::SXTB_cNotPt_V4: case Hexagon::SXTH_cPt_V4: case Hexagon::SXTH_cNotPt_V4: case Hexagon::ZXTB_cPt_V4: case Hexagon::ZXTB_cNotPt_V4: case Hexagon::ZXTH_cPt_V4: case Hexagon::ZXTH_cNotPt_V4: return QRI.Subtarget.hasV4TOps(); } } bool HexagonInstrInfo:: isConditionalLoad (const MachineInstr* MI) const { const HexagonRegisterInfo& QRI = getRegisterInfo(); switch (MI->getOpcode()) { default: return false; case Hexagon::LDrid_cPt : case Hexagon::LDrid_cNotPt : case Hexagon::LDrid_indexed_cPt : case Hexagon::LDrid_indexed_cNotPt : case Hexagon::LDriw_cPt : case Hexagon::LDriw_cNotPt : case Hexagon::LDriw_indexed_cPt : case Hexagon::LDriw_indexed_cNotPt : case Hexagon::LDrih_cPt : case Hexagon::LDrih_cNotPt : case Hexagon::LDrih_indexed_cPt : case Hexagon::LDrih_indexed_cNotPt : case Hexagon::LDrib_cPt : case Hexagon::LDrib_cNotPt : case Hexagon::LDrib_indexed_cPt : case Hexagon::LDrib_indexed_cNotPt : case Hexagon::LDriuh_cPt : case Hexagon::LDriuh_cNotPt : case Hexagon::LDriuh_indexed_cPt : case Hexagon::LDriuh_indexed_cNotPt : case Hexagon::LDriub_cPt : case Hexagon::LDriub_cNotPt : case Hexagon::LDriub_indexed_cPt : case Hexagon::LDriub_indexed_cNotPt : return true; case Hexagon::POST_LDrid_cPt : case Hexagon::POST_LDrid_cNotPt : case Hexagon::POST_LDriw_cPt : case Hexagon::POST_LDriw_cNotPt : case Hexagon::POST_LDrih_cPt : case Hexagon::POST_LDrih_cNotPt : case Hexagon::POST_LDrib_cPt : case Hexagon::POST_LDrib_cNotPt : case Hexagon::POST_LDriuh_cPt : case Hexagon::POST_LDriuh_cNotPt : case Hexagon::POST_LDriub_cPt : case Hexagon::POST_LDriub_cNotPt : return QRI.Subtarget.hasV4TOps(); case Hexagon::LDrid_indexed_shl_cPt_V4 : case Hexagon::LDrid_indexed_shl_cNotPt_V4 : case Hexagon::LDrib_indexed_shl_cPt_V4 : case Hexagon::LDrib_indexed_shl_cNotPt_V4 : case Hexagon::LDriub_indexed_shl_cPt_V4 : case Hexagon::LDriub_indexed_shl_cNotPt_V4 : case Hexagon::LDrih_indexed_shl_cPt_V4 : case Hexagon::LDrih_indexed_shl_cNotPt_V4 : case Hexagon::LDriuh_indexed_shl_cPt_V4 : case Hexagon::LDriuh_indexed_shl_cNotPt_V4 : case Hexagon::LDriw_indexed_shl_cPt_V4 : case Hexagon::LDriw_indexed_shl_cNotPt_V4 : return QRI.Subtarget.hasV4TOps(); } } // Returns true if an instruction is a conditional store. // // Note: It doesn't include conditional new-value stores as they can't be // converted to .new predicate. // // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] // ^ ^ // / \ (not OK. it will cause new-value store to be // / X conditional on p0.new while R2 producer is // / \ on p0) // / \. // p.new store p.old NV store // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] // ^ ^ // \ / // \ / // \ / // p.old store // [if (p0)memw(R0+#0)=R2] // // The above diagram shows the steps involoved in the conversion of a predicated // store instruction to its .new predicated new-value form. // // The following set of instructions further explains the scenario where // conditional new-value store becomes invalid when promoted to .new predicate // form. // // { 1) if (p0) r0 = add(r1, r2) // 2) p0 = cmp.eq(r3, #0) } // // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with // the first two instructions because in instr 1, r0 is conditional on old value // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which // is not valid for new-value stores. bool HexagonInstrInfo:: isConditionalStore (const MachineInstr* MI) const { const HexagonRegisterInfo& QRI = getRegisterInfo(); switch (MI->getOpcode()) { default: return false; case Hexagon::STrib_imm_cPt_V4 : case Hexagon::STrib_imm_cNotPt_V4 : case Hexagon::STrib_indexed_shl_cPt_V4 : case Hexagon::STrib_indexed_shl_cNotPt_V4 : case Hexagon::STrib_cPt : case Hexagon::STrib_cNotPt : case Hexagon::POST_STbri_cPt : case Hexagon::POST_STbri_cNotPt : case Hexagon::STrid_indexed_cPt : case Hexagon::STrid_indexed_cNotPt : case Hexagon::STrid_indexed_shl_cPt_V4 : case Hexagon::POST_STdri_cPt : case Hexagon::POST_STdri_cNotPt : case Hexagon::STrih_cPt : case Hexagon::STrih_cNotPt : case Hexagon::STrih_indexed_cPt : case Hexagon::STrih_indexed_cNotPt : case Hexagon::STrih_imm_cPt_V4 : case Hexagon::STrih_imm_cNotPt_V4 : case Hexagon::STrih_indexed_shl_cPt_V4 : case Hexagon::STrih_indexed_shl_cNotPt_V4 : case Hexagon::POST_SThri_cPt : case Hexagon::POST_SThri_cNotPt : case Hexagon::STriw_cPt : case Hexagon::STriw_cNotPt : case Hexagon::STriw_indexed_cPt : case Hexagon::STriw_indexed_cNotPt : case Hexagon::STriw_imm_cPt_V4 : case Hexagon::STriw_imm_cNotPt_V4 : case Hexagon::STriw_indexed_shl_cPt_V4 : case Hexagon::STriw_indexed_shl_cNotPt_V4 : case Hexagon::POST_STwri_cPt : case Hexagon::POST_STwri_cNotPt : return QRI.Subtarget.hasV4TOps(); // V4 global address store before promoting to dot new. case Hexagon::STd_GP_cPt_V4 : case Hexagon::STd_GP_cNotPt_V4 : case Hexagon::STb_GP_cPt_V4 : case Hexagon::STb_GP_cNotPt_V4 : case Hexagon::STh_GP_cPt_V4 : case Hexagon::STh_GP_cNotPt_V4 : case Hexagon::STw_GP_cPt_V4 : case Hexagon::STw_GP_cNotPt_V4 : return QRI.Subtarget.hasV4TOps(); // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded // from the "Conditional Store" list. Because a predicated new value store // would NOT be promoted to a double dot new store. See diagram below: // This function returns yes for those stores that are predicated but not // yet promoted to predicate dot new instructions. // // +---------------------+ // /-----| if (p0) memw(..)=r0 |---------\~ // || +---------------------+ || // promote || /\ /\ || promote // || /||\ /||\ || // \||/ demote || \||/ // \/ || || \/ // +-------------------------+ || +-------------------------+ // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | // +-------------------------+ || +-------------------------+ // || || || // || demote \||/ // promote || \/ NOT possible // || || /\~ // \||/ || /||\~ // \/ || || // +-----------------------------+ // | if (p0.new) memw(..)=r0.new | // +-----------------------------+ // Double Dot New Store // } } bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const { if (isNewValue(MI) && isBranch(MI)) return true; return false; } bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const { return (getAddrMode(MI) == HexagonII::PostInc); } bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); } // Returns true, if any one of the operands is a dot new // insn, whether it is predicated dot new or register dot new. bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const { return (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))); } // Return the new value instruction for a given store. int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const { int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode()); if (NVOpcode >= 0) // Valid new-value store instruction. return NVOpcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unknown .new type"); // store new value byte case Hexagon::STrib_shl_V4: return Hexagon::STrib_shl_nv_V4; case Hexagon::STrih_shl_V4: return Hexagon::STrih_shl_nv_V4; case Hexagon::STriw_f: return Hexagon::STriw_nv_V4; case Hexagon::STriw_indexed_f: return Hexagon::STriw_indexed_nv_V4; case Hexagon::STriw_shl_V4: return Hexagon::STriw_shl_nv_V4; } return 0; } // Return .new predicate version for an instruction. int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI, const MachineBranchProbabilityInfo *MBPI) const { int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode()); if (NewOpcode >= 0) // Valid predicate new instruction return NewOpcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unknown .new type"); // Condtional Jumps case Hexagon::JMP_t: case Hexagon::JMP_f: return getDotNewPredJumpOp(MI, MBPI); case Hexagon::JMPR_t: return Hexagon::JMPR_tnew_tV3; case Hexagon::JMPR_f: return Hexagon::JMPR_fnew_tV3; case Hexagon::JMPret_t: return Hexagon::JMPret_tnew_tV3; case Hexagon::JMPret_f: return Hexagon::JMPret_fnew_tV3; // Conditional combine case Hexagon::COMBINE_rr_cPt : return Hexagon::COMBINE_rr_cdnPt; case Hexagon::COMBINE_rr_cNotPt : return Hexagon::COMBINE_rr_cdnNotPt; } } unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const { const uint64_t F = MI->getDesc().TSFlags; return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); } /// immediateExtend - Changes the instruction in place to one using an immediate /// extender. void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const { assert((isExtendable(MI)||isConstExtended(MI)) && "Instruction must be extendable"); // Find which operand is extendable. short ExtOpNum = getCExtOpNum(MI); MachineOperand &MO = MI->getOperand(ExtOpNum); // This needs to be something we understand. assert((MO.isMBB() || MO.isImm()) && "Branch with unknown extendable field type"); // Mark given operand as extended. MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); } DFAPacketizer *HexagonInstrInfo:: CreateTargetScheduleState(const TargetMachine *TM, const ScheduleDAG *DAG) const { const InstrItineraryData *II = TM->getInstrItineraryData(); return TM->getSubtarget().createDFAPacketizer(II); } bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // Debug info is never a scheduling boundary. It's necessary to be explicit // due to the special treatment of IT instructions below, otherwise a // dbg_value followed by an IT will result in the IT instruction being // considered a scheduling hazard, which is wrong. It should be the actual // instruction preceding the dbg_value instruction(s), just like it is // when debug info is not present. if (MI->isDebugValue()) return false; // Terminators and labels can't be scheduled around. if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm()) return true; return false; } bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const { // Constant extenders are allowed only for V4 and above. if (!Subtarget.hasV4TOps()) return false; const uint64_t F = MI->getDesc().TSFlags; unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; if (isExtended) // Instruction must be extended. return true; unsigned isExtendable = (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; if (!isExtendable) return false; short ExtOpNum = getCExtOpNum(MI); const MachineOperand &MO = MI->getOperand(ExtOpNum); // Use MO operand flags to determine if MO // has the HMOTF_ConstExtended flag set. if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended) return true; // If this is a Machine BB address we are talking about, and it is // not marked as extended, say so. if (MO.isMBB()) return false; // We could be using an instruction with an extendable immediate and shoehorn // a global address into it. If it is a global address it will be constant // extended. We do this for COMBINE. // We currently only handle isGlobal() because it is the only kind of // object we are going to end up with here for now. // In the future we probably should add isSymbol(), etc. if (MO.isGlobal() || MO.isSymbol()) return true; // If the extendable operand is not 'Immediate' type, the instruction should // have 'isExtended' flag set. assert(MO.isImm() && "Extendable operand must be Immediate type"); int MinValue = getMinValue(MI); int MaxValue = getMaxValue(MI); int ImmValue = MO.getImm(); return (ImmValue < MinValue || ImmValue > MaxValue); } // Returns the opcode to use when converting MI, which is a conditional jump, // into a conditional instruction which uses the .new value of the predicate. // We also use branch probabilities to add a hint to the jump. int HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI, const MachineBranchProbabilityInfo *MBPI) const { // We assume that block can have at most two successors. bool taken = false; MachineBasicBlock *Src = MI->getParent(); MachineOperand *BrTarget = &MI->getOperand(1); MachineBasicBlock *Dst = BrTarget->getMBB(); const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst); if (Prediction >= BranchProbability(1,2)) taken = true; switch (MI->getOpcode()) { case Hexagon::JMP_t: return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt; case Hexagon::JMP_f: return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt; default: llvm_unreachable("Unexpected jump instruction."); } } // Returns true if a particular operand is extendable for an instruction. bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI, unsigned short OperandNum) const { // Constant extenders are allowed only for V4 and above. if (!Subtarget.hasV4TOps()) return false; const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) == OperandNum; } // Returns Operand Index for the constant extended instruction. unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); } // Returns the min value that doesn't need to be extended. int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return -1 << (bits - 1); else return 0; } // Returns the max value that doesn't need to be extended. int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return ~(-1 << (bits - 1)); else return ~(-1 << bits); } // Returns true if an instruction can be converted into a non-extended // equivalent instruction. bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const { short NonExtOpcode; // Check if the instruction has a register form that uses register in place // of the extended operand, if so return that as the non-extended form. if (Hexagon::getRegForm(MI->getOpcode()) >= 0) return true; if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { // Check addressing mode and retreive non-ext equivalent instruction. switch (getAddrMode(MI)) { case HexagonII::Absolute : // Load/store with absolute addressing mode can be converted into // base+offset mode. NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode()); break; case HexagonII::BaseImmOffset : // Load/store with base+offset addressing mode can be converted into // base+register offset addressing mode. However left shift operand should // be set to 0. NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode()); break; default: return false; } if (NonExtOpcode < 0) return false; return true; } return false; } // Returns opcode of the non-extended equivalent instruction. short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const { // Check if the instruction has a register form that uses register in place // of the extended operand, if so return that as the non-extended form. short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode()); if (NonExtOpcode >= 0) return NonExtOpcode; if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { // Check addressing mode and retreive non-ext equivalent instruction. switch (getAddrMode(MI)) { case HexagonII::Absolute : return Hexagon::getBasedWithImmOffset(MI->getOpcode()); case HexagonII::BaseImmOffset : return Hexagon::getBaseWithRegOffset(MI->getOpcode()); default: return -1; } } return -1; } bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const { return (Opcode == Hexagon::JMP_t) || (Opcode == Hexagon::JMP_f) || (Opcode == Hexagon::JMP_tnew_t) || (Opcode == Hexagon::JMP_fnew_t) || (Opcode == Hexagon::JMP_tnew_nt) || (Opcode == Hexagon::JMP_fnew_nt); } bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const { return (Opcode == Hexagon::JMP_f) || (Opcode == Hexagon::JMP_fnew_t) || (Opcode == Hexagon::JMP_fnew_nt); }