//===-- X86InstrFragmentsSIMD.td - x86 SIMD ISA ------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides pattern fragments useful for SIMD instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MMX specific DAG Nodes. //===----------------------------------------------------------------------===// // Low word of MMX to GPR. def MMX_X86movd2w : SDNode<"X86ISD::MMX_MOVD2W", SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, x86mmx>]>>; // GPR to low word of MMX. def MMX_X86movw2d : SDNode<"X86ISD::MMX_MOVW2D", SDTypeProfile<1, 1, [SDTCisVT<0, x86mmx>, SDTCisVT<1, i32>]>>; //===----------------------------------------------------------------------===// // MMX Pattern Fragments //===----------------------------------------------------------------------===// def load_mmx : PatFrag<(ops node:$ptr), (x86mmx (load node:$ptr))>; def load_mvmmx : PatFrag<(ops node:$ptr), (x86mmx (MMX_X86movw2d (load node:$ptr)))>; def bc_mmx : PatFrag<(ops node:$in), (x86mmx (bitconvert node:$in))>; //===----------------------------------------------------------------------===// // SSE specific DAG Nodes. //===----------------------------------------------------------------------===// def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisFP<1>, SDTCisVT<3, i8>, SDTCisVec<1>]>; def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>; def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>; // Commutative and Associative FMIN and FMAX. def X86fminc : SDNode<"X86ISD::FMINC", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fmaxc : SDNode<"X86ISD::FMAXC", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fandn : SDNode<"X86ISD::FANDN", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>; def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>; def X86fgetsign: SDNode<"X86ISD::FGETSIGNx86",SDTFPToIntOp>; def X86fhadd : SDNode<"X86ISD::FHADD", SDTFPBinOp>; def X86fhsub : SDNode<"X86ISD::FHSUB", SDTFPBinOp>; def X86hadd : SDNode<"X86ISD::HADD", SDTIntBinOp>; def X86hsub : SDNode<"X86ISD::HSUB", SDTIntBinOp>; def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>; def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>; def X86cmps : SDNode<"X86ISD::FSETCC", SDTX86Cmps>; //def X86cmpsd : SDNode<"X86ISD::FSETCCsd", SDTX86Cmpsd>; def X86cvtdq2pd: SDNode<"X86ISD::CVTDQ2PD", SDTypeProfile<1, 1, [SDTCisVT<0, v2f64>, SDTCisVT<1, v4i32>]>>; def X86cvtudq2pd: SDNode<"X86ISD::CVTUDQ2PD", SDTypeProfile<1, 1, [SDTCisVT<0, v2f64>, SDTCisVT<1, v4i32>]>>; def X86pshufb : SDNode<"X86ISD::PSHUFB", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86psadbw : SDNode<"X86ISD::PSADBW", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86dbpsadbw : SDNode<"X86ISD::DBPSADBW", SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>, SDTCisInt<3>]>>; def X86andnp : SDNode<"X86ISD::ANDNP", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86psign : SDNode<"X86ISD::PSIGN", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86pextrb : SDNode<"X86ISD::PEXTRB", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pextrw : SDNode<"X86ISD::PEXTRW", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pinsrb : SDNode<"X86ISD::PINSRB", SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86pinsrw : SDNode<"X86ISD::PINSRW", SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86insertps : SDNode<"X86ISD::INSERTPS", SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>, SDTCisVT<2, v4f32>, SDTCisVT<3, i8>]>>; def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL", SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>; def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def X86vzext : SDNode<"X86ISD::VZEXT", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>]>>; def X86vsext : SDNode<"X86ISD::VSEXT", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>]>>; def SDTVtrunc : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>]>; def X86vtrunc : SDNode<"X86ISD::VTRUNC", SDTVtrunc>; def X86vtruncs : SDNode<"X86ISD::VTRUNCS", SDTVtrunc>; def X86vtruncus : SDNode<"X86ISD::VTRUNCUS", SDTVtrunc>; def X86trunc : SDNode<"X86ISD::TRUNC", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>]>>; def X86vfpext : SDNode<"X86ISD::VFPEXT", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>]>>; def X86vfpround: SDNode<"X86ISD::VFPROUND", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>]>>; def X86vshldq : SDNode<"X86ISD::VSHLDQ", SDTIntShiftOp>; def X86vshrdq : SDNode<"X86ISD::VSRLDQ", SDTIntShiftOp>; def X86cmpp : SDNode<"X86ISD::CMPP", SDTX86VFCMP>; def X86pcmpeq : SDNode<"X86ISD::PCMPEQ", SDTIntBinOp, [SDNPCommutative]>; def X86pcmpgt : SDNode<"X86ISD::PCMPGT", SDTIntBinOp>; def X86IntCmpMask : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<1, 2>, SDTCisInt<1>]>; def X86pcmpeqm : SDNode<"X86ISD::PCMPEQM", X86IntCmpMask, [SDNPCommutative]>; def X86pcmpgtm : SDNode<"X86ISD::PCMPGTM", X86IntCmpMask>; def X86CmpMaskCC : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCVecEltisVT<0, i1>, SDTCisVec<1>, SDTCisSameAs<2, 1>, SDTCisSameNumEltsAs<0, 1>, SDTCisVT<3, i8>]>; def X86CmpMaskCCRound : SDTypeProfile<1, 4, [SDTCisVec<0>,SDTCVecEltisVT<0, i1>, SDTCisVec<1>, SDTCisSameAs<2, 1>, SDTCisSameNumEltsAs<0, 1>, SDTCisVT<3, i8>, SDTCisInt<4>]>; def X86CmpMaskCCScalar : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>; def X86cmpm : SDNode<"X86ISD::CMPM", X86CmpMaskCC>; def X86cmpmRnd : SDNode<"X86ISD::CMPM_RND", X86CmpMaskCCRound>; def X86cmpmu : SDNode<"X86ISD::CMPMU", X86CmpMaskCC>; def X86cmpms : SDNode<"X86ISD::FSETCC", X86CmpMaskCCScalar>; def X86vshl : SDNode<"X86ISD::VSHL", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>]>>; def X86vsrl : SDNode<"X86ISD::VSRL", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>]>>; def X86vsra : SDNode<"X86ISD::VSRA", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>]>>; def X86vshli : SDNode<"X86ISD::VSHLI", SDTIntShiftOp>; def X86vsrli : SDNode<"X86ISD::VSRLI", SDTIntShiftOp>; def X86vsrai : SDNode<"X86ISD::VSRAI", SDTIntShiftOp>; def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVec<1>, SDTCisSameAs<2, 1>]>; def X86addus : SDNode<"X86ISD::ADDUS", SDTIntBinOp>; def X86subus : SDNode<"X86ISD::SUBUS", SDTIntBinOp>; def X86adds : SDNode<"X86ISD::ADDS", SDTIntBinOp>; def X86subs : SDNode<"X86ISD::SUBS", SDTIntBinOp>; def X86mulhrs : SDNode<"X86ISD::MULHRS" , SDTIntBinOp>; def X86avg : SDNode<"X86ISD::AVG" , SDTIntBinOp>; def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>; def X86testp : SDNode<"X86ISD::TESTP", SDTX86CmpPTest>; def X86kortest : SDNode<"X86ISD::KORTEST", SDTX86CmpPTest>; def X86ktest : SDNode<"X86ISD::KTEST", SDTX86CmpPTest>; def X86testm : SDNode<"X86ISD::TESTM", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<2, 1>, SDTCVecEltisVT<0, i1>, SDTCisSameNumEltsAs<0, 1>]>>; def X86testnm : SDNode<"X86ISD::TESTNM", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<2, 1>, SDTCVecEltisVT<0, i1>, SDTCisSameNumEltsAs<0, 1>]>>; def X86select : SDNode<"X86ISD::SELECT" , SDTSelect>; def X86pmuludq : SDNode<"X86ISD::PMULUDQ", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>]>>; def X86pmuldq : SDNode<"X86ISD::PMULDQ", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>]>>; def X86extrqi : SDNode<"X86ISD::EXTRQI", SDTypeProfile<1, 3, [SDTCisVT<0, v2i64>, SDTCisSameAs<0,1>, SDTCisVT<2, i8>, SDTCisVT<3, i8>]>>; def X86insertqi : SDNode<"X86ISD::INSERTQI", SDTypeProfile<1, 4, [SDTCisVT<0, v2i64>, SDTCisSameAs<0,1>, SDTCisSameAs<1,2>, SDTCisVT<3, i8>, SDTCisVT<4, i8>]>>; // Specific shuffle nodes - At some point ISD::VECTOR_SHUFFLE will always get // translated into one of the target nodes below during lowering. // Note: this is a work in progress... def SDTShuff1Op : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; def SDTShuff2Op : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>; def SDTShuff3Op : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>]>; def SDTShuff2OpM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>]>; def SDTShuff2OpI : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisInt<2>]>; def SDTShuff3OpI : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisInt<3>]>; def SDTFPBinOpImmRound: SDTypeProfile<1, 4, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisInt<3>, SDTCisInt<4>]>; def SDTFPUnaryOpImmRound: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisInt<2>, SDTCisInt<3>]>; def SDTVBroadcast : SDTypeProfile<1, 1, [SDTCisVec<0>]>; def SDTVBroadcastm : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>]>; def SDTBlend : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<1,2>, SDTCisVT<3, i8>]>; def SDTFPBinOpRound : SDTypeProfile<1, 3, [ // fadd_round, fmul_round, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0>, SDTCisInt<3>]>; def SDTFPUnaryOpRound : SDTypeProfile<1, 2, [ // fsqrt_round, fgetexp_round, etc. SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2>]>; def SDTFma : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>, SDTCisSameAs<1,2>, SDTCisSameAs<1,3>]>; def SDTFmaRound : SDTypeProfile<1, 4, [SDTCisSameAs<0,1>, SDTCisSameAs<1,2>, SDTCisSameAs<1,3>, SDTCisInt<4>]>; def STDFp1SrcRm : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisVec<0>, SDTCisInt<2>]>; def STDFp2SrcRm : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>, SDTCisVec<0>, SDTCisInt<3>]>; def STDFp3SrcRm : SDTypeProfile<1, 4, [SDTCisSameAs<0,1>, SDTCisVec<0>, SDTCisInt<3>, SDTCisInt<4>]>; def X86PAlignr : SDNode<"X86ISD::PALIGNR", SDTShuff3OpI>; def X86VAlign : SDNode<"X86ISD::VALIGN", SDTShuff3OpI>; def X86Abs : SDNode<"X86ISD::ABS", SDTIntUnaryOp>; def X86Conflict : SDNode<"X86ISD::CONFLICT", SDTIntUnaryOp>; def X86PShufd : SDNode<"X86ISD::PSHUFD", SDTShuff2OpI>; def X86PShufhw : SDNode<"X86ISD::PSHUFHW", SDTShuff2OpI>; def X86PShuflw : SDNode<"X86ISD::PSHUFLW", SDTShuff2OpI>; def X86Shufp : SDNode<"X86ISD::SHUFP", SDTShuff3OpI>; def X86Shuf128 : SDNode<"X86ISD::SHUF128", SDTShuff3OpI>; def X86Movddup : SDNode<"X86ISD::MOVDDUP", SDTShuff1Op>; def X86Movshdup : SDNode<"X86ISD::MOVSHDUP", SDTShuff1Op>; def X86Movsldup : SDNode<"X86ISD::MOVSLDUP", SDTShuff1Op>; def X86Movsd : SDNode<"X86ISD::MOVSD", SDTShuff2Op>; def X86Movss : SDNode<"X86ISD::MOVSS", SDTShuff2Op>; def X86Movlhps : SDNode<"X86ISD::MOVLHPS", SDTShuff2Op>; def X86Movlhpd : SDNode<"X86ISD::MOVLHPD", SDTShuff2Op>; def X86Movhlps : SDNode<"X86ISD::MOVHLPS", SDTShuff2Op>; def X86Movlps : SDNode<"X86ISD::MOVLPS", SDTShuff2Op>; def X86Movlpd : SDNode<"X86ISD::MOVLPD", SDTShuff2Op>; def SDTPack : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<2, 1>]>; def X86Packss : SDNode<"X86ISD::PACKSS", SDTPack>; def X86Packus : SDNode<"X86ISD::PACKUS", SDTPack>; def X86Unpckl : SDNode<"X86ISD::UNPCKL", SDTShuff2Op>; def X86Unpckh : SDNode<"X86ISD::UNPCKH", SDTShuff2Op>; def X86vpmaddubsw : SDNode<"X86ISD::VPMADDUBSW" , SDTPack>; def X86vpmaddwd : SDNode<"X86ISD::VPMADDWD" , SDTPack>; def X86VPermilpv : SDNode<"X86ISD::VPERMILPV", SDTShuff2OpM>; def X86VPermilpi : SDNode<"X86ISD::VPERMILPI", SDTShuff2OpI>; def X86VPermv : SDNode<"X86ISD::VPERMV", SDTShuff2Op>; def X86VPermi : SDNode<"X86ISD::VPERMI", SDTShuff2OpI>; def X86VPermv3 : SDNode<"X86ISD::VPERMV3", SDTShuff3Op>; def X86VPermiv3 : SDNode<"X86ISD::VPERMIV3", SDTShuff3Op>; def X86VPerm2x128 : SDNode<"X86ISD::VPERM2X128", SDTShuff3OpI>; def X86VFixupimm : SDNode<"X86ISD::VFIXUPIMM", SDTFPBinOpImmRound>; def X86VRange : SDNode<"X86ISD::VRANGE", SDTFPBinOpImmRound>; def X86VReduce : SDNode<"X86ISD::VREDUCE", SDTFPUnaryOpImmRound>; def X86VRndScale : SDNode<"X86ISD::VRNDSCALE", SDTFPUnaryOpImmRound>; def X86VGetMant : SDNode<"X86ISD::VGETMANT", SDTFPUnaryOpImmRound>; def X86SubVBroadcast : SDNode<"X86ISD::SUBV_BROADCAST", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSubVecOfVec<1, 0>]>, []>; def X86VBroadcast : SDNode<"X86ISD::VBROADCAST", SDTVBroadcast>; def X86Vinsert : SDNode<"X86ISD::VINSERT", SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; def X86Vextract : SDNode<"X86ISD::VEXTRACT", SDTypeProfile<1, 2, [SDTCisVec<1>, SDTCisPtrTy<2>]>, []>; def X86Blendi : SDNode<"X86ISD::BLENDI", SDTBlend>; def X86Addsub : SDNode<"X86ISD::ADDSUB", SDTFPBinOp>; def X86faddRnd : SDNode<"X86ISD::FADD_RND", SDTFPBinOpRound>; def X86fsubRnd : SDNode<"X86ISD::FSUB_RND", SDTFPBinOpRound>; def X86fmulRnd : SDNode<"X86ISD::FMUL_RND", SDTFPBinOpRound>; def X86fdivRnd : SDNode<"X86ISD::FDIV_RND", SDTFPBinOpRound>; def X86fmaxRnd : SDNode<"X86ISD::FMAX_RND", SDTFPBinOpRound>; def X86scalef : SDNode<"X86ISD::SCALEF", SDTFPBinOpRound>; def X86fminRnd : SDNode<"X86ISD::FMIN_RND", SDTFPBinOpRound>; def X86fsqrtRnd : SDNode<"X86ISD::FSQRT_RND", SDTFPUnaryOpRound>; def X86fgetexpRnd : SDNode<"X86ISD::FGETEXP_RND", SDTFPUnaryOpRound>; def X86fgetexpRnds : SDNode<"X86ISD::FGETEXP_RND", STDFp2SrcRm>; def X86Fmadd : SDNode<"X86ISD::FMADD", SDTFma>; def X86Fnmadd : SDNode<"X86ISD::FNMADD", SDTFma>; def X86Fmsub : SDNode<"X86ISD::FMSUB", SDTFma>; def X86Fnmsub : SDNode<"X86ISD::FNMSUB", SDTFma>; def X86Fmaddsub : SDNode<"X86ISD::FMADDSUB", SDTFma>; def X86Fmsubadd : SDNode<"X86ISD::FMSUBADD", SDTFma>; def X86FmaddRnd : SDNode<"X86ISD::FMADD_RND", SDTFmaRound>; def X86FnmaddRnd : SDNode<"X86ISD::FNMADD_RND", SDTFmaRound>; def X86FmsubRnd : SDNode<"X86ISD::FMSUB_RND", SDTFmaRound>; def X86FnmsubRnd : SDNode<"X86ISD::FNMSUB_RND", SDTFmaRound>; def X86FmaddsubRnd : SDNode<"X86ISD::FMADDSUB_RND", SDTFmaRound>; def X86FmsubaddRnd : SDNode<"X86ISD::FMSUBADD_RND", SDTFmaRound>; def X86rsqrt28 : SDNode<"X86ISD::RSQRT28", STDFp1SrcRm>; def X86rcp28 : SDNode<"X86ISD::RCP28", STDFp1SrcRm>; def X86exp2 : SDNode<"X86ISD::EXP2", STDFp1SrcRm>; def X86rsqrt28s : SDNode<"X86ISD::RSQRT28", STDFp2SrcRm>; def X86rcp28s : SDNode<"X86ISD::RCP28", STDFp2SrcRm>; def X86RndScales : SDNode<"X86ISD::VRNDSCALE", STDFp3SrcRm>; def X86Reduces : SDNode<"X86ISD::VREDUCE", STDFp3SrcRm>; def X86GetMants : SDNode<"X86ISD::VGETMANT", STDFp3SrcRm>; def SDT_PCMPISTRI : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, v16i8>, SDTCisVT<3, v16i8>, SDTCisVT<4, i8>]>; def SDT_PCMPESTRI : SDTypeProfile<2, 5, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, v16i8>, SDTCisVT<3, i32>, SDTCisVT<4, v16i8>, SDTCisVT<5, i32>, SDTCisVT<6, i8>]>; def X86pcmpistri : SDNode<"X86ISD::PCMPISTRI", SDT_PCMPISTRI>; def X86pcmpestri : SDNode<"X86ISD::PCMPESTRI", SDT_PCMPESTRI>; def X86compress: SDNode<"X86ISD::COMPRESS", SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisVec<1>]>, []>; def X86expand : SDNode<"X86ISD::EXPAND", SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisVec<1>]>, []>; def SDTintToFPRound: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisFP<0>, SDTCisSameAs<0,1>, SDTCisInt<2>, SDTCisInt<3>]>; def SDTDoubleToInt: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCVecEltisVT<1, f64>]>; def SDTFloatToInt: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCVecEltisVT<1, f32>]>; def SDTDoubleToIntRnd: SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCVecEltisVT<1, f64>]>; def SDTFloatToIntRnd: SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCVecEltisVT<1, f32>]>; def SDTVintToFPRound: SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCVecEltisVT<1, i32>, SDTCisInt<2>]>; def SDTVlongToFPRound: SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCVecEltisVT<1, i64>, SDTCisInt<2>]>; def SDTVFPToIntRound: SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<1>, SDTCVecEltisVT<0, i32>, SDTCisInt<2>]>; def SDTVFPToLongRound: SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<1>, SDTCVecEltisVT<0, i64>, SDTCisInt<2>]>; // Scalar def X86SintToFpRnd : SDNode<"X86ISD::SINT_TO_FP_RND", SDTintToFPRound>; def X86UintToFpRnd : SDNode<"X86ISD::UINT_TO_FP_RND", SDTintToFPRound>; // Vector with rounding mode // cvtt fp-to-int staff def X86VFpToSintRnd : SDNode<"ISD::FP_TO_SINT", SDTVFPToIntRound>; def X86VFpToUintRnd : SDNode<"ISD::FP_TO_UINT", SDTVFPToIntRound>; def X86VFpToSlongRnd : SDNode<"ISD::FP_TO_SINT", SDTVFPToLongRound>; def X86VFpToUlongRnd : SDNode<"ISD::FP_TO_UINT", SDTVFPToLongRound>; def X86VSintToFpRnd : SDNode<"ISD::SINT_TO_FP", SDTVintToFPRound>; def X86VUintToFpRnd : SDNode<"ISD::UINT_TO_FP", SDTVintToFPRound>; def X86VSlongToFpRnd : SDNode<"ISD::SINT_TO_FP", SDTVlongToFPRound>; def X86VUlongToFpRnd : SDNode<"ISD::UINT_TO_FP", SDTVlongToFPRound>; // cvt fp-to-int staff def X86cvtps2IntRnd : SDNode<"X86ISD::FP_TO_SINT_RND", SDTFloatToIntRnd>; def X86cvtps2UIntRnd : SDNode<"X86ISD::FP_TO_UINT_RND", SDTFloatToIntRnd>; def X86cvtpd2IntRnd : SDNode<"X86ISD::FP_TO_SINT_RND", SDTDoubleToIntRnd>; def X86cvtpd2UIntRnd : SDNode<"X86ISD::FP_TO_UINT_RND", SDTDoubleToIntRnd>; // Vector without rounding mode def X86cvtps2Int : SDNode<"X86ISD::FP_TO_SINT_RND", SDTFloatToInt>; def X86cvtps2UInt : SDNode<"X86ISD::FP_TO_UINT_RND", SDTFloatToInt>; def X86cvtpd2Int : SDNode<"X86ISD::FP_TO_SINT_RND", SDTDoubleToInt>; def X86cvtpd2UInt : SDNode<"X86ISD::FP_TO_UINT_RND", SDTDoubleToInt>; def X86vfpextRnd : SDNode<"X86ISD::VFPEXT", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisInt<2>]>>; def X86vfproundRnd: SDNode<"X86ISD::VFPROUND", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCisFP<1>, SDTCVecEltisVT<0, f32>, SDTCVecEltisVT<1, f64>, SDTCisInt<2>]>>; //===----------------------------------------------------------------------===// // SSE Complex Patterns //===----------------------------------------------------------------------===// // These are 'extloads' from a scalar to the low element of a vector, zeroing // the top elements. These are used for the SSE 'ss' and 'sd' instruction // forms. def sse_load_f32 : ComplexPattern; def sse_load_f64 : ComplexPattern; def ssmem : Operand { let PrintMethod = "printf32mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86Mem32AsmOperand; let OperandType = "OPERAND_MEMORY"; } def sdmem : Operand { let PrintMethod = "printf64mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86Mem64AsmOperand; let OperandType = "OPERAND_MEMORY"; } //===----------------------------------------------------------------------===// // SSE pattern fragments //===----------------------------------------------------------------------===// // 128-bit load pattern fragments // NOTE: all 128-bit integer vector loads are promoted to v2i64 def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>; def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>; def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>; // 256-bit load pattern fragments // NOTE: all 256-bit integer vector loads are promoted to v4i64 def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>; def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>; def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>; // 512-bit load pattern fragments def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (load node:$ptr))>; def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (load node:$ptr))>; def loadv64i8 : PatFrag<(ops node:$ptr), (v64i8 (load node:$ptr))>; def loadv32i16 : PatFrag<(ops node:$ptr), (v32i16 (load node:$ptr))>; def loadv16i32 : PatFrag<(ops node:$ptr), (v16i32 (load node:$ptr))>; def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (load node:$ptr))>; // 128-/256-/512-bit extload pattern fragments def extloadv2f32 : PatFrag<(ops node:$ptr), (v2f64 (extloadvf32 node:$ptr))>; def extloadv4f32 : PatFrag<(ops node:$ptr), (v4f64 (extloadvf32 node:$ptr))>; def extloadv8f32 : PatFrag<(ops node:$ptr), (v8f64 (extloadvf32 node:$ptr))>; // These are needed to match a scalar load that is used in a vector-only // math instruction such as the FP logical ops: andps, andnps, orps, xorps. // The memory operand is required to be a 128-bit load, so it must be converted // from a vector to a scalar. def loadf32_128 : PatFrag<(ops node:$ptr), (f32 (vector_extract (loadv4f32 node:$ptr), (iPTR 0)))>; def loadf64_128 : PatFrag<(ops node:$ptr), (f64 (vector_extract (loadv2f64 node:$ptr), (iPTR 0)))>; // Like 'store', but always requires 128-bit vector alignment. def alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; // Like 'store', but always requires 256-bit vector alignment. def alignedstore256 : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 32; }]>; // Like 'store', but always requires 512-bit vector alignment. def alignedstore512 : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 64; }]>; // Like 'load', but always requires 128-bit vector alignment. def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; // Like 'X86vzload', but always requires 128-bit vector alignment. def alignedX86vzload : PatFrag<(ops node:$ptr), (X86vzload node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; // Like 'load', but always requires 256-bit vector alignment. def alignedload256 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 32; }]>; // Like 'load', but always requires 512-bit vector alignment. def alignedload512 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 64; }]>; def alignedloadfsf32 : PatFrag<(ops node:$ptr), (f32 (alignedload node:$ptr))>; def alignedloadfsf64 : PatFrag<(ops node:$ptr), (f64 (alignedload node:$ptr))>; // 128-bit aligned load pattern fragments // NOTE: all 128-bit integer vector loads are promoted to v2i64 def alignedloadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (alignedload node:$ptr))>; def alignedloadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (alignedload node:$ptr))>; def alignedloadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (alignedload node:$ptr))>; // 256-bit aligned load pattern fragments // NOTE: all 256-bit integer vector loads are promoted to v4i64 def alignedloadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (alignedload256 node:$ptr))>; def alignedloadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (alignedload256 node:$ptr))>; def alignedloadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (alignedload256 node:$ptr))>; // 512-bit aligned load pattern fragments def alignedloadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (alignedload512 node:$ptr))>; def alignedloadv16i32 : PatFrag<(ops node:$ptr), (v16i32 (alignedload512 node:$ptr))>; def alignedloadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (alignedload512 node:$ptr))>; def alignedloadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (alignedload512 node:$ptr))>; // Like 'load', but uses special alignment checks suitable for use in // memory operands in most SSE instructions, which are required to // be naturally aligned on some targets but not on others. If the subtarget // allows unaligned accesses, match any load, though this may require // setting a feature bit in the processor (on startup, for example). // Opteron 10h and later implement such a feature. def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return Subtarget->hasSSEUnalignedMem() || cast(N)->getAlignment() >= 16; }]>; def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>; def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>; // 128-bit memop pattern fragments // NOTE: all 128-bit integer vector loads are promoted to v2i64 def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>; def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>; def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>; // These are needed to match a scalar memop that is used in a vector-only // math instruction such as the FP logical ops: andps, andnps, orps, xorps. // The memory operand is required to be a 128-bit load, so it must be converted // from a vector to a scalar. def memopfsf32_128 : PatFrag<(ops node:$ptr), (f32 (vector_extract (memopv4f32 node:$ptr), (iPTR 0)))>; def memopfsf64_128 : PatFrag<(ops node:$ptr), (f64 (vector_extract (memopv2f64 node:$ptr), (iPTR 0)))>; // SSSE3 uses MMX registers for some instructions. They aren't aligned on a // 16-byte boundary. // FIXME: 8 byte alignment for mmx reads is not required def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 8; }]>; def memopmmx : PatFrag<(ops node:$ptr), (x86mmx (memop64 node:$ptr))>; // MOVNT Support // Like 'store', but requires the non-temporal bit to be set def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->isNonTemporal(); }]>; def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (nontemporalstore node:$val, node:$ptr), [{ StoreSDNode *St = cast(N); return St->getAlignment() >= St->getMemoryVT().getStoreSize(); }]>; def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (nontemporalstore node:$val, node:$ptr), [{ StoreSDNode *St = cast(N); return St->getAlignment() < St->getMemoryVT().getStoreSize(); }]>; def mgatherv4i32 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_gather node:$src1, node:$src2, node:$src3) , [{ if (MaskedGatherSDNode *Mgt = dyn_cast(N)) return (Mgt->getIndex().getValueType() == MVT::v4i32 || Mgt->getBasePtr().getValueType() == MVT::v4i32); return false; }]>; def mgatherv8i32 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_gather node:$src1, node:$src2, node:$src3) , [{ if (MaskedGatherSDNode *Mgt = dyn_cast(N)) return (Mgt->getIndex().getValueType() == MVT::v8i32 || Mgt->getBasePtr().getValueType() == MVT::v8i32); return false; }]>; def mgatherv2i64 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_gather node:$src1, node:$src2, node:$src3) , [{ if (MaskedGatherSDNode *Mgt = dyn_cast(N)) return (Mgt->getIndex().getValueType() == MVT::v2i64 || Mgt->getBasePtr().getValueType() == MVT::v2i64); return false; }]>; def mgatherv4i64 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_gather node:$src1, node:$src2, node:$src3) , [{ if (MaskedGatherSDNode *Mgt = dyn_cast(N)) return (Mgt->getIndex().getValueType() == MVT::v4i64 || Mgt->getBasePtr().getValueType() == MVT::v4i64); return false; }]>; def mgatherv8i64 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_gather node:$src1, node:$src2, node:$src3) , [{ if (MaskedGatherSDNode *Mgt = dyn_cast(N)) return (Mgt->getIndex().getValueType() == MVT::v8i64 || Mgt->getBasePtr().getValueType() == MVT::v8i64); return false; }]>; def mgatherv16i32 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_gather node:$src1, node:$src2, node:$src3) , [{ if (MaskedGatherSDNode *Mgt = dyn_cast(N)) return (Mgt->getIndex().getValueType() == MVT::v16i32 || Mgt->getBasePtr().getValueType() == MVT::v16i32); return false; }]>; def mscatterv2i64 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_scatter node:$src1, node:$src2, node:$src3) , [{ if (MaskedScatterSDNode *Sc = dyn_cast(N)) return (Sc->getIndex().getValueType() == MVT::v2i64 || Sc->getBasePtr().getValueType() == MVT::v2i64); return false; }]>; def mscatterv4i32 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_scatter node:$src1, node:$src2, node:$src3) , [{ if (MaskedScatterSDNode *Sc = dyn_cast(N)) return (Sc->getIndex().getValueType() == MVT::v4i32 || Sc->getBasePtr().getValueType() == MVT::v4i32); return false; }]>; def mscatterv4i64 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_scatter node:$src1, node:$src2, node:$src3) , [{ if (MaskedScatterSDNode *Sc = dyn_cast(N)) return (Sc->getIndex().getValueType() == MVT::v4i64 || Sc->getBasePtr().getValueType() == MVT::v4i64); return false; }]>; def mscatterv8i32 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_scatter node:$src1, node:$src2, node:$src3) , [{ if (MaskedScatterSDNode *Sc = dyn_cast(N)) return (Sc->getIndex().getValueType() == MVT::v8i32 || Sc->getBasePtr().getValueType() == MVT::v8i32); return false; }]>; def mscatterv8i64 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_scatter node:$src1, node:$src2, node:$src3) , [{ if (MaskedScatterSDNode *Sc = dyn_cast(N)) return (Sc->getIndex().getValueType() == MVT::v8i64 || Sc->getBasePtr().getValueType() == MVT::v8i64); return false; }]>; def mscatterv16i32 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_scatter node:$src1, node:$src2, node:$src3) , [{ if (MaskedScatterSDNode *Sc = dyn_cast(N)) return (Sc->getIndex().getValueType() == MVT::v16i32 || Sc->getBasePtr().getValueType() == MVT::v16i32); return false; }]>; // 128-bit bitconvert pattern fragments def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>; def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>; def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>; def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>; def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>; def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>; // 256-bit bitconvert pattern fragments def bc_v32i8 : PatFrag<(ops node:$in), (v32i8 (bitconvert node:$in))>; def bc_v16i16 : PatFrag<(ops node:$in), (v16i16 (bitconvert node:$in))>; def bc_v8i32 : PatFrag<(ops node:$in), (v8i32 (bitconvert node:$in))>; def bc_v4i64 : PatFrag<(ops node:$in), (v4i64 (bitconvert node:$in))>; def bc_v8f32 : PatFrag<(ops node:$in), (v8f32 (bitconvert node:$in))>; // 512-bit bitconvert pattern fragments def bc_v16i32 : PatFrag<(ops node:$in), (v16i32 (bitconvert node:$in))>; def bc_v8i64 : PatFrag<(ops node:$in), (v8i64 (bitconvert node:$in))>; def bc_v8f64 : PatFrag<(ops node:$in), (v8f64 (bitconvert node:$in))>; def bc_v16f32 : PatFrag<(ops node:$in), (v16f32 (bitconvert node:$in))>; def vzmovl_v2i64 : PatFrag<(ops node:$src), (bitconvert (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 node:$src))))))>; def vzmovl_v4i32 : PatFrag<(ops node:$src), (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 node:$src))))))>; def vzload_v2i64 : PatFrag<(ops node:$src), (bitconvert (v2i64 (X86vzload node:$src)))>; def fp32imm0 : PatLeaf<(f32 fpimm), [{ return N->isExactlyValue(+0.0); }]>; def I8Imm : SDNodeXFormgetZExtValue(), SDLoc(N)); }]>; def FROUND_NO_EXC : ImmLeaf; def FROUND_CURRENT : ImmLeaf; // BYTE_imm - Transform bit immediates into byte immediates. def BYTE_imm : SDNodeXForm> 3 return getI32Imm(N->getZExtValue() >> 3, SDLoc(N)); }]>; // EXTRACT_get_vextract128_imm xform function: convert extract_subvector index // to VEXTRACTF128/VEXTRACTI128 imm. def EXTRACT_get_vextract128_imm : SDNodeXForm; // INSERT_get_vinsert128_imm xform function: convert insert_subvector index to // VINSERTF128/VINSERTI128 imm. def INSERT_get_vinsert128_imm : SDNodeXForm; // EXTRACT_get_vextract256_imm xform function: convert extract_subvector index // to VEXTRACTF64x4 imm. def EXTRACT_get_vextract256_imm : SDNodeXForm; // INSERT_get_vinsert256_imm xform function: convert insert_subvector index to // VINSERTF64x4 imm. def INSERT_get_vinsert256_imm : SDNodeXForm; def vextract128_extract : PatFrag<(ops node:$bigvec, node:$index), (extract_subvector node:$bigvec, node:$index), [{ return X86::isVEXTRACT128Index(N); }], EXTRACT_get_vextract128_imm>; def vinsert128_insert : PatFrag<(ops node:$bigvec, node:$smallvec, node:$index), (insert_subvector node:$bigvec, node:$smallvec, node:$index), [{ return X86::isVINSERT128Index(N); }], INSERT_get_vinsert128_imm>; def vextract256_extract : PatFrag<(ops node:$bigvec, node:$index), (extract_subvector node:$bigvec, node:$index), [{ return X86::isVEXTRACT256Index(N); }], EXTRACT_get_vextract256_imm>; def vinsert256_insert : PatFrag<(ops node:$bigvec, node:$smallvec, node:$index), (insert_subvector node:$bigvec, node:$smallvec, node:$index), [{ return X86::isVINSERT256Index(N); }], INSERT_get_vinsert256_imm>; def masked_load_aligned128 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_load node:$src1, node:$src2, node:$src3), [{ if (auto *Load = dyn_cast(N)) return Load->getAlignment() >= 16; return false; }]>; def masked_load_aligned256 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_load node:$src1, node:$src2, node:$src3), [{ if (auto *Load = dyn_cast(N)) return Load->getAlignment() >= 32; return false; }]>; def masked_load_aligned512 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_load node:$src1, node:$src2, node:$src3), [{ if (auto *Load = dyn_cast(N)) return Load->getAlignment() >= 64; return false; }]>; def masked_load_unaligned : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_load node:$src1, node:$src2, node:$src3), [{ return isa(N); }]>; // masked store fragments. // X86mstore can't be implemented in core DAG files because some targets // doesn't support vector type ( llvm-tblgen will fail) def X86mstore : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_store node:$src1, node:$src2, node:$src3), [{ return !cast(N)->isTruncatingStore(); }]>; def masked_store_aligned128 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (X86mstore node:$src1, node:$src2, node:$src3), [{ if (auto *Store = dyn_cast(N)) return Store->getAlignment() >= 16; return false; }]>; def masked_store_aligned256 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (X86mstore node:$src1, node:$src2, node:$src3), [{ if (auto *Store = dyn_cast(N)) return Store->getAlignment() >= 32; return false; }]>; def masked_store_aligned512 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (X86mstore node:$src1, node:$src2, node:$src3), [{ if (auto *Store = dyn_cast(N)) return Store->getAlignment() >= 64; return false; }]>; def masked_store_unaligned : PatFrag<(ops node:$src1, node:$src2, node:$src3), (X86mstore node:$src1, node:$src2, node:$src3), [{ return isa(N); }]>; // masked truncstore fragments // X86mtruncstore can't be implemented in core DAG files because some targets // doesn't support vector type ( llvm-tblgen will fail) def X86mtruncstore : PatFrag<(ops node:$src1, node:$src2, node:$src3), (masked_store node:$src1, node:$src2, node:$src3), [{ return cast(N)->isTruncatingStore(); }]>; def masked_truncstorevi8 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (X86mtruncstore node:$src1, node:$src2, node:$src3), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def masked_truncstorevi16 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (X86mtruncstore node:$src1, node:$src2, node:$src3), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i16; }]>; def masked_truncstorevi32 : PatFrag<(ops node:$src1, node:$src2, node:$src3), (X86mtruncstore node:$src1, node:$src2, node:$src3), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i32; }]>;