//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPCISelLowering class. // //===----------------------------------------------------------------------===// #include "PPCISelLowering.h" #include "PPCMachineFunctionInfo.h" #include "PPCPerfectShuffle.h" #include "PPCPredicates.h" #include "PPCTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/DerivedTypes.h" using namespace llvm; static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT, EVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT, EVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); static cl::opt EnablePPCPreinc("enable-ppc-preinc", cl::desc("enable preincrement load/store generation on PPC (experimental)"), cl::Hidden); static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { if (TM.getSubtargetImpl()->isDarwin()) return new TargetLoweringObjectFileMachO(); return new TargetLoweringObjectFileELF(); } PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { setPow2DivIsCheap(); // Use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); // Set up the register classes. addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); // PowerPC has an i16 but no i8 (or i1) SEXTLOAD setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); // PowerPC has pre-inc load and store's. setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); // This is used in the ppcf128->int sequence. Note it has different semantics // from FP_ROUND: that rounds to nearest, this rounds to zero. setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); // PowerPC has no SREM/UREM instructions setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); // We don't support sin/cos/sqrt/fmod/pow setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FPOW , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::FPOW , MVT::f32, Expand); setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); // If we're enabling GP optimizations, use hardware square root if (!TM.getSubtarget().hasFSQRT()) { setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); } setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); // PowerPC does not have BSWAP, CTPOP or CTTZ setOperationAction(ISD::BSWAP, MVT::i32 , Expand); setOperationAction(ISD::CTPOP, MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::BSWAP, MVT::i64 , Expand); setOperationAction(ISD::CTPOP, MVT::i64 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Expand); // PowerPC does not have ROTR setOperationAction(ISD::ROTR, MVT::i32 , Expand); setOperationAction(ISD::ROTR, MVT::i64 , Expand); // PowerPC does not have Select setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::i64, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); // PowerPC wants to turn select_cc of FP into fsel when possible. setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); // PowerPC wants to optimize integer setcc a bit setOperationAction(ISD::SETCC, MVT::i32, Custom); // PowerPC does not have BRCOND which requires SetCC setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); // PowerPC does not have [U|S]INT_TO_FP setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); // We cannot sextinreg(i1). Expand to shifts. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); // We want to legalize GlobalAddress and ConstantPool nodes into the // appropriate instructions to materialize the address. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::BlockAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); // TRAP is legal. setOperationAction(ISD::TRAP, MVT::Other, Legal); // TRAMPOLINE is custom lowered. setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); // VAARG is custom lowered with the 32-bit SVR4 ABI. if ( TM.getSubtarget().isSVR4ABI() && !TM.getSubtarget().isPPC64()) setOperationAction(ISD::VAARG, MVT::Other, Custom); else setOperationAction(ISD::VAARG, MVT::Other, Expand); // Use the default implementation. setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); // Comparisons that require checking two conditions. setCondCodeAction(ISD::SETULT, MVT::f32, Expand); setCondCodeAction(ISD::SETULT, MVT::f64, Expand); setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); setCondCodeAction(ISD::SETONE, MVT::f32, Expand); setCondCodeAction(ISD::SETONE, MVT::f64, Expand); if (TM.getSubtarget().has64BitSupport()) { // They also have instructions for converting between i64 and fp. setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); // This is just the low 32 bits of a (signed) fp->i64 conversion. // We cannot do this with Promote because i64 is not a legal type. setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); // FIXME: disable this lowered code. This generates 64-bit register values, // and we don't model the fact that the top part is clobbered by calls. We // need to flag these together so that the value isn't live across a call. //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); } else { // PowerPC does not have FP_TO_UINT on 32-bit implementations. setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); } if (TM.getSubtarget().use64BitRegs()) { // 64-bit PowerPC implementations can support i64 types directly addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); // BUILD_PAIR can't be handled natively, and should be expanded to shl/or setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // 64-bit PowerPC wants to expand i128 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); } else { // 32-bit PowerPC wants to expand i64 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); } if (TM.getSubtarget().hasAltivec()) { // First set operation action for all vector types to expand. Then we // will selectively turn on ones that can be effectively codegen'd. for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT::SimpleValueType VT = (MVT::SimpleValueType)i; // add/sub are legal for all supported vector VT's. setOperationAction(ISD::ADD , VT, Legal); setOperationAction(ISD::SUB , VT, Legal); // We promote all shuffles to v16i8. setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); // We promote all non-typed operations to v4i32. setOperationAction(ISD::AND , VT, Promote); AddPromotedToType (ISD::AND , VT, MVT::v4i32); setOperationAction(ISD::OR , VT, Promote); AddPromotedToType (ISD::OR , VT, MVT::v4i32); setOperationAction(ISD::XOR , VT, Promote); AddPromotedToType (ISD::XOR , VT, MVT::v4i32); setOperationAction(ISD::LOAD , VT, Promote); AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType (ISD::STORE, VT, MVT::v4i32); // No other operations are legal. setOperationAction(ISD::MUL , VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::BUILD_VECTOR, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); } // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle // with merges, splats, etc. setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); setOperationAction(ISD::AND , MVT::v4i32, Legal); setOperationAction(ISD::OR , MVT::v4i32, Legal); setOperationAction(ISD::XOR , MVT::v4i32, Legal); setOperationAction(ISD::LOAD , MVT::v4i32, Legal); setOperationAction(ISD::SELECT, MVT::v4i32, Expand); setOperationAction(ISD::STORE , MVT::v4i32, Legal); addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); setOperationAction(ISD::MUL, MVT::v4f32, Legal); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); } setShiftAmountType(MVT::i32); setBooleanContents(ZeroOrOneBooleanContent); if (TM.getSubtarget().isPPC64()) { setStackPointerRegisterToSaveRestore(PPC::X1); setExceptionPointerRegister(PPC::X3); setExceptionSelectorRegister(PPC::X4); } else { setStackPointerRegisterToSaveRestore(PPC::R1); setExceptionPointerRegister(PPC::R3); setExceptionSelectorRegister(PPC::R4); } // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::BR_CC); setTargetDAGCombine(ISD::BSWAP); // Darwin long double math library functions have $LDBL128 appended. if (TM.getSubtarget().isDarwin()) { setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); } computeRegisterProperties(); } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const { const TargetMachine &TM = getTargetMachine(); // Darwin passes everything on 4 byte boundary. if (TM.getSubtarget().isDarwin()) return 4; // FIXME SVR4 TBD return 4; } const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case PPCISD::FSEL: return "PPCISD::FSEL"; case PPCISD::FCFID: return "PPCISD::FCFID"; case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; case PPCISD::STFIWX: return "PPCISD::STFIWX"; case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; case PPCISD::VPERM: return "PPCISD::VPERM"; case PPCISD::Hi: return "PPCISD::Hi"; case PPCISD::Lo: return "PPCISD::Lo"; case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; case PPCISD::LOAD: return "PPCISD::LOAD"; case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; case PPCISD::SRL: return "PPCISD::SRL"; case PPCISD::SRA: return "PPCISD::SRA"; case PPCISD::SHL: return "PPCISD::SHL"; case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; case PPCISD::STD_32: return "PPCISD::STD_32"; case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; case PPCISD::NOP: return "PPCISD::NOP"; case PPCISD::MTCTR: return "PPCISD::MTCTR"; case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; case PPCISD::MFCR: return "PPCISD::MFCR"; case PPCISD::VCMP: return "PPCISD::VCMP"; case PPCISD::VCMPo: return "PPCISD::VCMPo"; case PPCISD::LBRX: return "PPCISD::LBRX"; case PPCISD::STBRX: return "PPCISD::STBRX"; case PPCISD::LARX: return "PPCISD::LARX"; case PPCISD::STCX: return "PPCISD::STCX"; case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; case PPCISD::MFFS: return "PPCISD::MFFS"; case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; case PPCISD::MTFSF: return "PPCISD::MTFSF"; case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; } } MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const { return MVT::i32; } /// getFunctionAlignment - Return the Log2 alignment of this function. unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const { if (getTargetMachine().getSubtarget().isDarwin()) return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4; else return 2; } //===----------------------------------------------------------------------===// // Node matching predicates, for use by the tblgen matching code. //===----------------------------------------------------------------------===// /// isFloatingPointZero - Return true if this is 0.0 or -0.0. static bool isFloatingPointZero(SDValue Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->getValueAPF().isZero(); else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { // Maybe this has already been legalized into the constant pool? if (ConstantPoolSDNode *CP = dyn_cast(Op.getOperand(1))) if (const ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->getValueAPF().isZero(); } return false; } /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if it matches the specified value. static bool isConstantOrUndef(int Op, int Val) { return Op < 0 || Op == Val; } /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { if (!isUnary) { for (unsigned i = 0; i != 16; ++i) if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) return false; } else { for (unsigned i = 0; i != 8; ++i) if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) return false; } return true; } /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { if (!isUnary) { for (unsigned i = 0; i != 16; i += 2) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) return false; } else { for (unsigned i = 0; i != 8; i += 2) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) return false; } return true; } /// isVMerge - Common function, used to match vmrg* shuffles. /// static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned LHSStart, unsigned RHSStart) { assert(N->getValueType(0) == MVT::v16i8 && "PPC only supports shuffles by bytes!"); assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && "Unsupported merge size!"); for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), LHSStart+j+i*UnitSize) || !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), RHSStart+j+i*UnitSize)) return false; } return true; } /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, bool isUnary) { if (!isUnary) return isVMerge(N, UnitSize, 8, 24); return isVMerge(N, UnitSize, 8, 8); } /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, bool isUnary) { if (!isUnary) return isVMerge(N, UnitSize, 0, 16); return isVMerge(N, UnitSize, 0, 0); } /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift /// amount, otherwise return -1. int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { assert(N->getValueType(0) == MVT::v16i8 && "PPC only supports shuffles by bytes!"); ShuffleVectorSDNode *SVOp = cast(N); // Find the first non-undef value in the shuffle mask. unsigned i; for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) /*search*/; if (i == 16) return -1; // all undef. // Otherwise, check to see if the rest of the elements are consecutively // numbered from this value. unsigned ShiftAmt = SVOp->getMaskElt(i); if (ShiftAmt < i) return -1; ShiftAmt -= i; if (!isUnary) { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) return -1; } else { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) return -1; } return ShiftAmt; } /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// VSPLTB/VSPLTH/VSPLTW. bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { assert(N->getValueType(0) == MVT::v16i8 && (EltSize == 1 || EltSize == 2 || EltSize == 4)); // This is a splat operation if each element of the permute is the same, and // if the value doesn't reference the second vector. unsigned ElementBase = N->getMaskElt(0); // FIXME: Handle UNDEF elements too! if (ElementBase >= 16) return false; // Check that the indices are consecutive, in the case of a multi-byte element // splatted with a v16i8 mask. for (unsigned i = 1; i != EltSize; ++i) if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) return false; for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { if (N->getMaskElt(i) < 0) continue; for (unsigned j = 0; j != EltSize; ++j) if (N->getMaskElt(i+j) != N->getMaskElt(j)) return false; } return true; } /// isAllNegativeZeroVector - Returns true if all elements of build_vector /// are -0.0. bool PPC::isAllNegativeZeroVector(SDNode *N) { BuildVectorSDNode *BV = cast(N); APInt APVal, APUndef; unsigned BitSize; bool HasAnyUndefs; if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) if (ConstantFPSDNode *CFP = dyn_cast(N->getOperand(0))) return CFP->getValueAPF().isNegZero(); return false; } /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { ShuffleVectorSDNode *SVOp = cast(N); assert(isSplatShuffleMask(SVOp, EltSize)); return SVOp->getMaskElt(0) / EltSize; } /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed /// by using a vspltis[bhw] instruction of the specified element size, return /// the constant being splatted. The ByteSize field indicates the number of /// bytes of each element [124] -> [bhw]. SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { SDValue OpVal(0, 0); // If ByteSize of the splat is bigger than the element size of the // build_vector, then we have a case where we are checking for a splat where // multiple elements of the buildvector are folded together into a single // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). unsigned EltSize = 16/N->getNumOperands(); if (EltSize < ByteSize) { unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. SDValue UniquedVals[4]; assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); // See if all of the elements in the buildvector agree across. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; // If the element isn't a constant, bail fully out. if (!isa(N->getOperand(i))) return SDValue(); if (UniquedVals[i&(Multiple-1)].getNode() == 0) UniquedVals[i&(Multiple-1)] = N->getOperand(i); else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) return SDValue(); // no match. } // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains // either constant or undef values that are identical for each chunk. See // if these chunks can form into a larger vspltis*. // Check to see if all of the leading entries are either 0 or -1. If // neither, then this won't fit into the immediate field. bool LeadingZero = true; bool LeadingOnes = true; for (unsigned i = 0; i != Multiple-1; ++i) { if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. LeadingZero &= cast(UniquedVals[i])->isNullValue(); LeadingOnes &= cast(UniquedVals[i])->isAllOnesValue(); } // Finally, check the least significant entry. if (LeadingZero) { if (UniquedVals[Multiple-1].getNode() == 0) return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef int Val = cast(UniquedVals[Multiple-1])->getZExtValue(); if (Val < 16) return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) } if (LeadingOnes) { if (UniquedVals[Multiple-1].getNode() == 0) return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef int Val =cast(UniquedVals[Multiple-1])->getSExtValue(); if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) return DAG.getTargetConstant(Val, MVT::i32); } return SDValue(); } // Check to see if this buildvec has a single non-undef value in its elements. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; if (OpVal.getNode() == 0) OpVal = N->getOperand(i); else if (OpVal != N->getOperand(i)) return SDValue(); } if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. unsigned ValSizeInBytes = EltSize; uint64_t Value = 0; if (ConstantSDNode *CN = dyn_cast(OpVal)) { Value = CN->getZExtValue(); } else if (ConstantFPSDNode *CN = dyn_cast(OpVal)) { assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); Value = FloatToBits(CN->getValueAPF().convertToFloat()); } // If the splat value is larger than the element value, then we can never do // this splat. The only case that we could fit the replicated bits into our // immediate field for would be zero, and we prefer to use vxor for it. if (ValSizeInBytes < ByteSize) return SDValue(); // If the element value is larger than the splat value, cut it in half and // check to see if the two halves are equal. Continue doing this until we // get to ByteSize. This allows us to handle 0x01010101 as 0x01. while (ValSizeInBytes > ByteSize) { ValSizeInBytes >>= 1; // If the top half equals the bottom half, we're still ok. if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != (Value & ((1 << (8*ValSizeInBytes))-1))) return SDValue(); } // Properly sign extend the value. int ShAmt = (4-ByteSize)*8; int MaskVal = ((int)Value << ShAmt) >> ShAmt; // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. if (MaskVal == 0) return SDValue(); // Finally, if this value fits in a 5 bit sext field, return it if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) return DAG.getTargetConstant(MaskVal, MVT::i32); return SDValue(); } //===----------------------------------------------------------------------===// // Addressing Mode Selection //===----------------------------------------------------------------------===// /// isIntS16Immediate - This method tests to see if the node is either a 32-bit /// or 64-bit immediate, and if the value can be accurately represented as a /// sign extension from a 16-bit value. If so, this returns true and the /// immediate. static bool isIntS16Immediate(SDNode *N, short &Imm) { if (N->getOpcode() != ISD::Constant) return false; Imm = (short)cast(N)->getZExtValue(); if (N->getValueType(0) == MVT::i32) return Imm == (int32_t)cast(N)->getZExtValue(); else return Imm == (int64_t)cast(N)->getZExtValue(); } static bool isIntS16Immediate(SDValue Op, short &Imm) { return isIntS16Immediate(Op.getNode(), Imm); } /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be represented as an indexed [r+r] operation. Returns false if it /// can be more efficiently represented with [r+imm]. bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const { short imm = 0; if (N.getOpcode() == ISD::ADD) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i if (N.getOperand(1).getOpcode() == PPCISD::Lo) return false; // r+i Base = N.getOperand(0); Index = N.getOperand(1); return true; } else if (N.getOpcode() == ISD::OR) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i can fold it if we can. // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are provably // disjoint. APInt LHSKnownZero, LHSKnownOne; APInt RHSKnownZero, RHSKnownOne; DAG.ComputeMaskedBits(N.getOperand(0), APInt::getAllOnesValue(N.getOperand(0) .getValueSizeInBits()), LHSKnownZero, LHSKnownOne); if (LHSKnownZero.getBoolValue()) { DAG.ComputeMaskedBits(N.getOperand(1), APInt::getAllOnesValue(N.getOperand(1) .getValueSizeInBits()), RHSKnownZero, RHSKnownOne); // If all of the bits are known zero on the LHS or RHS, the add won't // carry. if (~(LHSKnownZero | RHSKnownZero) == 0) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } } } return false; } /// Returns true if the address N can be represented by a base register plus /// a signed 16-bit displacement [r+imm], and if it is not better /// represented as reg+reg. bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const { // FIXME dl should come from parent load or store, not from address DebugLoc dl = N.getDebugLoc(); // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG)) return false; if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm)) { Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!cast(N.getOperand(1).getOperand(1))->getZExtValue() && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm)) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. APInt LHSKnownZero, LHSKnownOne; DAG.ComputeMaskedBits(N.getOperand(0), APInt::getAllOnesValue(N.getOperand(0) .getValueSizeInBits()), LHSKnownZero, LHSKnownOne); if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. Base = N.getOperand(0); Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); return true; } } } else if (ConstantSDNode *CN = dyn_cast(N)) { // Loading from a constant address. // If this address fits entirely in a 16-bit sext immediate field, codegen // this as "d, 0" short Imm; if (isIntS16Immediate(CN, Imm)) { Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); return true; } // Handle 32-bit sext immediates with LIS + addr mode. if (CN->getValueType(0) == MVT::i32 || (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { int Addr = (int)CN->getZExtValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr, MVT::i32); Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); return true; } } Disp = DAG.getTargetConstant(0, getPointerTy()); if (FrameIndexSDNode *FI = dyn_cast(N)) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N; return true; // [r+0] } /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const { // Check to see if we can easily represent this as an [r+r] address. This // will fail if it thinks that the address is more profitably represented as // reg+imm, e.g. where imm = 0. if (SelectAddressRegReg(N, Base, Index, DAG)) return true; // If the operand is an addition, always emit this as [r+r], since this is // better (for code size, and execution, as the memop does the add for free) // than emitting an explicit add. if (N.getOpcode() == ISD::ADD) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } // Otherwise, do it the hard way, using R0 as the base register. Base = DAG.getRegister(PPC::R0, N.getValueType()); Index = N; return true; } /// SelectAddressRegImmShift - Returns true if the address N can be /// represented by a base register plus a signed 14-bit displacement /// [r+imm*4]. Suitable for use by STD and friends. bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const { // FIXME dl should come from the parent load or store, not the address DebugLoc dl = N.getDebugLoc(); // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG)) return false; if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!cast(N.getOperand(1).getOperand(1))->getZExtValue() && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. APInt LHSKnownZero, LHSKnownOne; DAG.ComputeMaskedBits(N.getOperand(0), APInt::getAllOnesValue(N.getOperand(0) .getValueSizeInBits()), LHSKnownZero, LHSKnownOne); if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. Base = N.getOperand(0); Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); return true; } } } else if (ConstantSDNode *CN = dyn_cast(N)) { // Loading from a constant address. Verify low two bits are clear. if ((CN->getZExtValue() & 3) == 0) { // If this address fits entirely in a 14-bit sext immediate field, codegen // this as "d, 0" short Imm; if (isIntS16Immediate(CN, Imm)) { Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); return true; } // Fold the low-part of 32-bit absolute addresses into addr mode. if (CN->getValueType(0) == MVT::i32 || (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { int Addr = (int)CN->getZExtValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); return true; } } } Disp = DAG.getTargetConstant(0, getPointerTy()); if (FrameIndexSDNode *FI = dyn_cast(N)) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N; return true; // [r+0] } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { // Disabled by default for now. if (!EnablePPCPreinc) return false; SDValue Ptr; EVT VT; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); } else if (StoreSDNode *ST = dyn_cast(N)) { ST = ST; Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); } else return false; // PowerPC doesn't have preinc load/store instructions for vectors. if (VT.isVector()) return false; // TODO: Check reg+reg first. // LDU/STU use reg+imm*4, others use reg+imm. if (VT != MVT::i64) { // reg + imm if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) return false; } else { // reg + imm * 4. if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) return false; } if (LoadSDNode *LD = dyn_cast(N)) { // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of // sext i32 to i64 when addr mode is r+i. if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && LD->getExtensionType() == ISD::SEXTLOAD && isa(Offset)) return false; } AM = ISD::PRE_INC; return true; } //===----------------------------------------------------------------------===// // LowerOperation implementation //===----------------------------------------------------------------------===// SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); ConstantPoolSDNode *CP = cast(Op); const Constant *C = CP->getConstVal(); SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); SDValue Zero = DAG.getConstant(0, PtrVT); // FIXME there isn't really any debug info here DebugLoc dl = Op.getDebugLoc(); const TargetMachine &TM = DAG.getTarget(); SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero); SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, DebugLoc(), PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); return Lo; } SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast(Op); SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); SDValue Zero = DAG.getConstant(0, PtrVT); // FIXME there isn't really any debug loc here DebugLoc dl = Op.getDebugLoc(); const TargetMachine &TM = DAG.getTarget(); SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero); SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, DebugLoc(), PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); return Lo; } SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { llvm_unreachable("TLS not implemented for PPC."); return SDValue(); // Not reached } SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); const BlockAddress *BA = cast(Op)->getBlockAddress(); SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true); SDValue Zero = DAG.getConstant(0, PtrVT); SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero); SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. const TargetMachine &TM = DAG.getTarget(); if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to globals. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, DebugLoc(), PtrVT), Hi); } return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); } SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); GlobalAddressSDNode *GSDN = cast(Op); const GlobalValue *GV = GSDN->getGlobal(); SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); SDValue Zero = DAG.getConstant(0, PtrVT); // FIXME there isn't really any debug info here DebugLoc dl = GSDN->getDebugLoc(); const TargetMachine &TM = DAG.getTarget(); // 64-bit SVR4 ABI code is always position-independent. // The actual address of the GlobalValue is stored in the TOC. if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA, DAG.getRegister(PPC::X2, MVT::i64)); } SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero); SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to globals. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, DebugLoc(), PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); if (!TM.getSubtarget().hasLazyResolverStub(GV, TM)) return Lo; // If the global is weak or external, we have to go through the lazy // resolution stub. return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0, false, false, 0); } SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast(Op.getOperand(2))->get(); DebugLoc dl = Op.getDebugLoc(); // If we're comparing for equality to zero, expose the fact that this is // implented as a ctlz/srl pair on ppc, so that the dag combiner can // fold the new nodes. if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { if (C->isNullValue() && CC == ISD::SETEQ) { EVT VT = Op.getOperand(0).getValueType(); SDValue Zext = Op.getOperand(0); if (VT.bitsLT(MVT::i32)) { VT = MVT::i32; Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); } unsigned Log2b = Log2_32(VT.getSizeInBits()); SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, DAG.getConstant(Log2b, MVT::i32)); return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); } // Leave comparisons against 0 and -1 alone for now, since they're usually // optimized. FIXME: revisit this when we can custom lower all setcc // optimizations. if (C->isAllOnesValue() || C->isNullValue()) return SDValue(); } // If we have an integer seteq/setne, turn it into a compare against zero // by xor'ing the rhs with the lhs, which is faster than setting a // condition register, reading it back out, and masking the correct bit. The // normal approach here uses sub to do this instead of xor. Using xor exposes // the result to other bit-twiddling opportunities. EVT LHSVT = Op.getOperand(0).getValueType(); if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { EVT VT = Op.getValueType(); SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), Op.getOperand(1)); return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); } return SDValue(); } SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!"); return SDValue(); // Not reached } SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value DebugLoc dl = Op.getDebugLoc(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = (PtrVT == MVT::i64); const Type *IntPtrTy = DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( *DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = IntPtrTy; Entry.Node = Trmp; Args.push_back(Entry); // TrampSize == (isPPC64 ? 48 : 40); Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, isPPC64 ? MVT::i64 : MVT::i32); Args.push_back(Entry); Entry.Node = FPtr; Args.push_back(Entry); Entry.Node = Nest; Args.push_back(Entry); // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) std::pair CallResult = LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol("__trampoline_setup", PtrVT), Args, DAG, dl); SDValue Ops[] = { CallResult.first, CallResult.second }; return DAG.getMergeValues(Ops, 2, dl); } SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { MachineFunction &MF = DAG.getMachineFunction(); PPCFunctionInfo *FuncInfo = MF.getInfo(); DebugLoc dl = Op.getDebugLoc(); if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0, false, false, 0); } // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. // We suppose the given va_list is already allocated. // // typedef struct { // char gpr; /* index into the array of 8 GPRs // * stored in the register save area // * gpr=0 corresponds to r3, // * gpr=1 to r4, etc. // */ // char fpr; /* index into the array of 8 FPRs // * stored in the register save area // * fpr=0 corresponds to f1, // * fpr=1 to f2, etc. // */ // char *overflow_arg_area; // /* location on stack that holds // * the next overflow argument // */ // char *reg_save_area; // /* where r3:r10 and f1:f8 (if saved) // * are stored // */ // } va_list[1]; SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), PtrVT); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); uint64_t FrameOffset = PtrVT.getSizeInBits()/8; SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); uint64_t FPROffset = 1; SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); // Store first byte : number of int regs SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), SV, 0, MVT::i8, false, false, 0); uint64_t nextOffset = FPROffset; SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), ConstFPROffset); // Store second byte : number of float regs SDValue secondStore = DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8, false, false, 0); nextOffset += StackOffset; nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); // Store second word : arguments given on stack SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset, false, false, 0); nextOffset += FrameOffset; nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); // Store third word : arguments given in registers return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset, false, false, 0); } #include "PPCGenCallingConv.inc" static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { return true; } static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT, EVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const unsigned ArgRegs[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; const unsigned NumArgRegs = array_lengthof(ArgRegs); unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); // Skip one register if the first unallocated register has an even register // number and there are still argument registers available which have not been // allocated yet. RegNum is actually an index into ArgRegs, which means we // need to skip a register if RegNum is odd. if (RegNum != NumArgRegs && RegNum % 2 == 1) { State.AllocateReg(ArgRegs[RegNum]); } // Always return false here, as this function only makes sure that the first // unallocated register has an odd register number and does not actually // allocate a register for the current argument. return false; } static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT, EVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const unsigned ArgRegs[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8 }; const unsigned NumArgRegs = array_lengthof(ArgRegs); unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); // If there is only one Floating-point register left we need to put both f64 // values of a split ppc_fp128 value on the stack. if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { State.AllocateReg(ArgRegs[RegNum]); } // Always return false here, as this function only makes sure that the two f64 // values a ppc_fp128 value is split into are both passed in registers or both // passed on the stack and does not actually allocate a register for the // current argument. return false; } /// GetFPR - Get the set of FP registers that should be allocated for arguments, /// on Darwin. static const unsigned *GetFPR() { static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; return FPR; } /// CalculateStackSlotSize - Calculates the size reserved for this argument on /// the stack. static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize) { unsigned ArgSize = ArgVT.getSizeInBits()/8; if (Flags.isByVal()) ArgSize = Flags.getByValSize(); ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; return ArgSize; } SDValue PPCTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); } else { return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); } } SDValue PPCTargetLowering::LowerFormalArguments_SVR4( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // 32-bit SVR4 ABI Stack Frame Layout: // +-----------------------------------+ // +--> | Back chain | // | +-----------------------------------+ // | | Floating-point register save area | // | +-----------------------------------+ // | | General register save area | // | +-----------------------------------+ // | | CR save word | // | +-----------------------------------+ // | | VRSAVE save word | // | +-----------------------------------+ // | | Alignment padding | // | +-----------------------------------+ // | | Vector register save area | // | +-----------------------------------+ // | | Local variable space | // | +-----------------------------------+ // | | Parameter list area | // | +-----------------------------------+ // | | LR save word | // | +-----------------------------------+ // SP--> +--- | Back chain | // +-----------------------------------+ // // Specifications: // System V Application Binary Interface PowerPC Processor Supplement // AltiVec Technology Programming Interface Manual MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Potential tail calls could cause overwriting of argument stack slots. bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); unsigned PtrByteSize = 4; // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); // Reserve space for the linkage area on the stack. CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize); CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments stored in registers. if (VA.isRegLoc()) { TargetRegisterClass *RC; EVT ValVT = VA.getValVT(); switch (ValVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("ValVT not supported by formal arguments Lowering"); case MVT::i32: RC = PPC::GPRCRegisterClass; break; case MVT::f32: RC = PPC::F4RCRegisterClass; break; case MVT::f64: RC = PPC::F8RCRegisterClass; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v4f32: RC = PPC::VRRCRegisterClass; break; } // Transform the arguments stored in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); InVals.push_back(ArgValue); } else { // Argument stored in memory. assert(VA.isMemLoc()); unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), isImmutable, false); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0, false, false, 0)); } } // Assign locations to all of the incoming aggregate by value arguments. // Aggregates passed by value are stored in the local variable space of the // caller's stack frame, right above the parameter list area. SmallVector ByValArgLocs; CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs, *DAG.getContext()); // Reserve stack space for the allocations in CCInfo. CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); // Area that is at least reserved in the caller of this function. unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); // Set the size that is at least reserved in caller of this function. Tail // call optimized function's reserved stack space needs to be aligned so that // taking the difference between two stack areas will result in an aligned // stack. PPCFunctionInfo *FI = MF.getInfo(); MinReservedArea = std::max(MinReservedArea, PPCFrameInfo::getMinCallFrameSize(false, false)); unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> getStackAlignment(); unsigned AlignMask = TargetAlign-1; MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; FI->setMinReservedArea(MinReservedArea); SmallVector MemOps; // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { static const unsigned GPArgRegs[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); static const unsigned FPArgRegs[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8 }; const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs)); FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs)); // Make room for NumGPArgRegs and NumFPArgRegs. int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; FuncInfo->setVarArgsStackOffset( MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, CCInfo.getNextStackOffset(), true, false)); FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); // The fixed integer arguments of a variadic function are // stored to the VarArgsFrameIndex on the stack. unsigned GPRIndex = 0; for (; GPRIndex != FuncInfo->getVarArgsNumGPR(); ++GPRIndex) { SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT); SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0, false, false, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing the // result of va_next. for (; GPRIndex != NumGPArgRegs; ++GPRIndex) { unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0, false, false, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 // is set. // The double arguments are stored to the VarArgsFrameIndex // on the stack. unsigned FPRIndex = 0; for (FPRIndex = 0; FPRIndex != FuncInfo->getVarArgsNumFPR(); ++FPRIndex) { SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64); SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0, false, false, 0); MemOps.push_back(Store); // Increment the address by eight for the next argument to store SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } for (; FPRIndex != NumFPArgRegs; ++FPRIndex) { unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0, false, false, 0); MemOps.push_back(Store); // Increment the address by eight for the next argument to store SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); return Chain; } SDValue PPCTargetLowering::LowerFormalArguments_Darwin( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // TODO: add description of PPC stack frame format, or at least some docs. // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; // Potential tail calls could cause overwriting of argument stack slots. bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); unsigned PtrByteSize = isPPC64 ? 8 : 4; unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true); // Area that is at least reserved in caller of this function. unsigned MinReservedArea = ArgOffset; static const unsigned GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const unsigned *FPR = GetFPR(); static const unsigned VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned Num_GPR_Regs = array_lengthof(GPR_32); const unsigned Num_FPR_Regs = 13; const unsigned Num_VR_Regs = array_lengthof( VR); unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; // In 32-bit non-varargs functions, the stack space for vectors is after the // stack space for non-vectors. We do not use this space unless we have // too many vectors to fit in registers, something that only occurs in // constructed examples:), but we have to walk the arglist to figure // that out...for the pathological case, compute VecArgOffset as the // start of the vector parameter area. Computing VecArgOffset is the // entire point of the following loop. unsigned VecArgOffset = ArgOffset; if (!isVarArg && !isPPC64) { for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { EVT ObjectVT = Ins[ArgNo].VT; unsigned ObjSize = ObjectVT.getSizeInBits()/8; ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; if (Flags.isByVal()) { // ObjSize is the true size, ArgSize rounded up to multiple of regs. ObjSize = Flags.getByValSize(); unsigned ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; VecArgOffset += ArgSize; continue; } switch(ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i32: case MVT::f32: VecArgOffset += isPPC64 ? 8 : 4; break; case MVT::i64: // PPC64 case MVT::f64: VecArgOffset += 8; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: // Nothing to do, we're only looking at Nonvector args here. break; } } } // We've found where the vector parameter area in memory is. Skip the // first 12 parameters; these don't use that memory. VecArgOffset = ((VecArgOffset+15)/16)*16; VecArgOffset += 12*16; // Add DAG nodes to load the arguments or copy them out of registers. On // entry to a function on PPC, the arguments start after the linkage area, // although the first ones are often in registers. SmallVector MemOps; unsigned nAltivecParamsAtEnd = 0; for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { SDValue ArgVal; bool needsLoad = false; EVT ObjectVT = Ins[ArgNo].VT; unsigned ObjSize = ObjectVT.getSizeInBits()/8; unsigned ArgSize = ObjSize; ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; unsigned CurArgOffset = ArgOffset; // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { if (isVarArg || isPPC64) { MinReservedArea = ((MinReservedArea+15)/16)*16; MinReservedArea += CalculateStackSlotSize(ObjectVT, Flags, PtrByteSize); } else nAltivecParamsAtEnd++; } else // Calculate min reserved area. MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, Flags, PtrByteSize); // FIXME the codegen can be much improved in some cases. // We do not have to keep everything in memory. if (Flags.isByVal()) { // ObjSize is the true size, ArgSize rounded up to multiple of registers. ObjSize = Flags.getByValSize(); ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; // Objects of size 1 and 2 are right justified, everything else is // left justified. This means the memory address is adjusted forwards. if (ObjSize==1 || ObjSize==2) { CurArgOffset = CurArgOffset + (4 - ObjSize); } // The value of the object is its address. int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true, false); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(FIN); if (ObjSize==1 || ObjSize==2) { if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16, false, false, 0); MemOps.push_back(Store); ++GPR_idx; } ArgOffset += PtrByteSize; continue; } for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { // Store whatever pieces of the object are in registers // to memory. ArgVal will be address of the beginning of // the object. if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true, false); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0, false, false, 0); MemOps.push_back(Store); ++GPR_idx; ArgOffset += PtrByteSize; } else { ArgOffset += ArgSize - (ArgOffset-CurArgOffset); break; } } continue; } switch (ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i32: if (!isPPC64) { if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); ++GPR_idx; } else { needsLoad = true; ArgSize = PtrByteSize; } // All int arguments reserve stack space in the Darwin ABI. ArgOffset += PtrByteSize; break; } // FALLTHROUGH case MVT::i64: // PPC64 if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); if (ObjectVT == MVT::i32) { // PPC64 passes i8, i16, and i32 values in i64 registers. Promote // value to MVT::i64 and then truncate to the correct register size. if (Flags.isSExt()) ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); else if (Flags.isZExt()) ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); } ++GPR_idx; } else { needsLoad = true; ArgSize = PtrByteSize; } // All int arguments reserve stack space in the Darwin ABI. ArgOffset += 8; break; case MVT::f32: case MVT::f64: // Every 4 bytes of argument space consumes one of the GPRs available for // argument passing. if (GPR_idx != Num_GPR_Regs) { ++GPR_idx; if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) ++GPR_idx; } if (FPR_idx != Num_FPR_Regs) { unsigned VReg; if (ObjectVT == MVT::f32) VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); else VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); ++FPR_idx; } else { needsLoad = true; } // All FP arguments reserve stack space in the Darwin ABI. ArgOffset += isPPC64 ? 8 : ObjSize; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: // Note that vector arguments in registers don't reserve stack space, // except in varargs functions. if (VR_idx != Num_VR_Regs) { unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); if (isVarArg) { while ((ArgOffset % 16) != 0) { ArgOffset += PtrByteSize; if (GPR_idx != Num_GPR_Regs) GPR_idx++; } ArgOffset += 16; GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? } ++VR_idx; } else { if (!isVarArg && !isPPC64) { // Vectors go after all the nonvectors. CurArgOffset = VecArgOffset; VecArgOffset += 16; } else { // Vectors are aligned. ArgOffset = ((ArgOffset+15)/16)*16; CurArgOffset = ArgOffset; ArgOffset += 16; } needsLoad = true; } break; } // We need to load the argument to a virtual register if we determined above // that we ran out of physical registers of the appropriate type. if (needsLoad) { int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset + (ArgSize - ObjSize), isImmutable, false); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0, false, false, 0); } InVals.push_back(ArgVal); } // Set the size that is at least reserved in caller of this function. Tail // call optimized function's reserved stack space needs to be aligned so that // taking the difference between two stack areas will result in an aligned // stack. PPCFunctionInfo *FI = MF.getInfo(); // Add the Altivec parameters at the end, if needed. if (nAltivecParamsAtEnd) { MinReservedArea = ((MinReservedArea+15)/16)*16; MinReservedArea += 16*nAltivecParamsAtEnd; } MinReservedArea = std::max(MinReservedArea, PPCFrameInfo::getMinCallFrameSize(isPPC64, true)); unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> getStackAlignment(); unsigned AlignMask = TargetAlign-1; MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; FI->setMinReservedArea(MinReservedArea); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { int Depth = ArgOffset; FuncInfo->setVarArgsFrameIndex( MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, Depth, true, false)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing the // result of va_next. for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { unsigned VReg; if (isPPC64) VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); else VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0, false, false, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); return Chain; } /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus /// linkage area for the Darwin ABI. static unsigned CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, bool isPPC64, bool isVarArg, unsigned CC, const SmallVectorImpl &Outs, unsigned &nAltivecParamsAtEnd) { // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. We start with 24/48 bytes, which is // prereserved space for [SP][CR][LR][3 x unused]. unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true); unsigned NumOps = Outs.size(); unsigned PtrByteSize = isPPC64 ? 8 : 4; // Add up all the space actually used. // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually // they all go in registers, but we must reserve stack space for them for // possible use by the caller. In varargs or 64-bit calls, parameters are // assigned stack space in order, with padding so Altivec parameters are // 16-byte aligned. nAltivecParamsAtEnd = 0; for (unsigned i = 0; i != NumOps; ++i) { SDValue Arg = Outs[i].Val; ISD::ArgFlagsTy Flags = Outs[i].Flags; EVT ArgVT = Arg.getValueType(); // Varargs Altivec parameters are padded to a 16 byte boundary. if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { if (!isVarArg && !isPPC64) { // Non-varargs Altivec parameters go after all the non-Altivec // parameters; handle those later so we know how much padding we need. nAltivecParamsAtEnd++; continue; } // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. NumBytes = ((NumBytes+15)/16)*16; } NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); } // Allow for Altivec parameters at the end, if needed. if (nAltivecParamsAtEnd) { NumBytes = ((NumBytes+15)/16)*16; NumBytes += 16*nAltivecParamsAtEnd; } // The prolog code of the callee may store up to 8 GPR argument registers to // the stack, allowing va_start to index over them in memory if its varargs. // Because we cannot tell if this is needed on the caller side, we have to // conservatively assume that it is needed. As such, make sure we have at // least enough stack space for the caller to store the 8 GPRs. NumBytes = std::max(NumBytes, PPCFrameInfo::getMinCallFrameSize(isPPC64, true)); // Tail call needs the stack to be aligned. if (CC==CallingConv::Fast && GuaranteedTailCallOpt) { unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()-> getStackAlignment(); unsigned AlignMask = TargetAlign-1; NumBytes = (NumBytes + AlignMask) & ~AlignMask; } return NumBytes; } /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be /// adjusted to accomodate the arguments for the tailcall. static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, unsigned ParamSize) { if (!isTailCall) return 0; PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo(); unsigned CallerMinReservedArea = FI->getMinReservedArea(); int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; // Remember only if the new adjustement is bigger. if (SPDiff < FI->getTailCallSPDelta()) FI->setTailCallSPDelta(SPDiff); return SPDiff; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl &Ins, SelectionDAG& DAG) const { if (!GuaranteedTailCallOpt) return false; // Variable argument functions are not supported. if (isVarArg) return false; MachineFunction &MF = DAG.getMachineFunction(); CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { // Functions containing by val parameters are not supported. for (unsigned i = 0; i != Ins.size(); i++) { ISD::ArgFlagsTy Flags = Ins[i].Flags; if (Flags.isByVal()) return false; } // Non PIC/GOT tail calls are supported. if (getTargetMachine().getRelocationModel() != Reloc::PIC_) return true; // At the moment we can only do local tail calls (in same module, hidden // or protected) if we are generating PIC. if (GlobalAddressSDNode *G = dyn_cast(Callee)) return G->getGlobal()->hasHiddenVisibility() || G->getGlobal()->hasProtectedVisibility(); } return false; } /// isCallCompatibleAddress - Return the immediate to use if the specified /// 32-bit value is representable in the immediate field of a BxA instruction. static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { ConstantSDNode *C = dyn_cast(Op); if (!C) return 0; int Addr = C->getZExtValue(); if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. (Addr << 6 >> 6) != Addr) return 0; // Top 6 bits have to be sext of immediate. return DAG.getConstant((int)C->getZExtValue() >> 2, DAG.getTargetLoweringInfo().getPointerTy()).getNode(); } namespace { struct TailCallArgumentInfo { SDValue Arg; SDValue FrameIdxOp; int FrameIdx; TailCallArgumentInfo() : FrameIdx(0) {} }; } /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. static void StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, SDValue Chain, const SmallVector &TailCallArgs, SmallVector &MemOpChains, DebugLoc dl) { for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { SDValue Arg = TailCallArgs[i].Arg; SDValue FIN = TailCallArgs[i].FrameIdxOp; int FI = TailCallArgs[i].FrameIdx; // Store relative to framepointer. MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, PseudoSourceValue::getFixedStack(FI), 0, false, false, 0)); } } /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to /// the appropriate stack slot for the tail call optimized function call. static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue OldRetAddr, SDValue OldFP, int SPDiff, bool isPPC64, bool isDarwinABI, DebugLoc dl) { if (SPDiff) { // Calculate the new stack slot for the return address. int SlotSize = isPPC64 ? 8 : 4; int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI); int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewRetAddrLoc, true, false); EVT VT = isPPC64 ? MVT::i64 : MVT::i32; SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, PseudoSourceValue::getFixedStack(NewRetAddr), 0, false, false, 0); // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack // slot as the FP is never overwritten. if (isDarwinABI) { int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI); int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, true, false); SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, PseudoSourceValue::getFixedStack(NewFPIdx), 0, false, false, 0); } } return Chain; } /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate /// the position of the argument. static void CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, SDValue Arg, int SPDiff, unsigned ArgOffset, SmallVector& TailCallArguments) { int Offset = ArgOffset + SPDiff; uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true,false); EVT VT = isPPC64 ? MVT::i64 : MVT::i32; SDValue FIN = DAG.getFrameIndex(FI, VT); TailCallArgumentInfo Info; Info.Arg = Arg; Info.FrameIdxOp = FIN; Info.FrameIdx = FI; TailCallArguments.push_back(Info); } /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address /// stack slot. Returns the chain as result and the loaded frame pointers in /// LROpOut/FPOpout. Used when tail calling. SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, SDValue &FPOpOut, bool isDarwinABI, DebugLoc dl) const { if (SPDiff) { // Load the LR and FP stack slot for later adjusting. EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; LROpOut = getReturnAddrFrameIndex(DAG); LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0, false, false, 0); Chain = SDValue(LROpOut.getNode(), 1); // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack // slot as the FP is never overwritten. if (isDarwinABI) { FPOpOut = getFramePointerFrameIndex(DAG); FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0, false, false, 0); Chain = SDValue(FPOpOut.getNode(), 1); } } return Chain; } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. /// Sometimes what we are copying is the end of a larger object, the part that /// does not fit in registers. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, DebugLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), false, false, NULL, 0, NULL, 0); } /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of /// tail calls. static void LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, bool isTailCall, bool isVector, SmallVector &MemOpChains, SmallVector& TailCallArguments, DebugLoc dl) { EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); if (!isTailCall) { if (isVector) { SDValue StackPtr; if (isPPC64) StackPtr = DAG.getRegister(PPC::X1, MVT::i64); else StackPtr = DAG.getRegister(PPC::R1, MVT::i32); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, DAG.getConstant(ArgOffset, PtrVT)); } MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0, false, false, 0)); // Calculate and remember argument location. } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, TailCallArguments); } static void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, SDValue LROp, SDValue FPOp, bool isDarwinABI, SmallVector &TailCallArguments) { MachineFunction &MF = DAG.getMachineFunction(); // Emit a sequence of copyto/copyfrom virtual registers for arguments that // might overwrite each other in case of tail call optimization. SmallVector MemOpChains2; // Do not flag preceeding copytoreg stuff together with the following stuff. InFlag = SDValue(); StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, MemOpChains2, dl); if (!MemOpChains2.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains2[0], MemOpChains2.size()); // Store the return address to the appropriate stack slot. Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, isPPC64, isDarwinABI, dl); // Emit callseq_end just before tailcall node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag); InFlag = Chain.getValue(1); } static unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, SmallVector, 8> &RegsToPass, SmallVector &Ops, std::vector &NodeTys, bool isPPC64, bool isSVR4ABI) { EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) // If this is an absolute destination address, use the munged value. Callee = SDValue(Dest, 0); else { // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair // to do the call, we can't use PPCISD::CALL. SDValue MTCTROps[] = {Chain, Callee, InFlag}; if (isSVR4ABI && isPPC64) { // Function pointers in the 64-bit SVR4 ABI do not point to the function // entry point, but to the function descriptor (the function entry point // address is part of the function descriptor though). // The function descriptor is a three doubleword structure with the // following fields: function entry point, TOC base address and // environment pointer. // Thus for a call through a function pointer, the following actions need // to be performed: // 1. Save the TOC of the caller in the TOC save area of its stack // frame (this is done in LowerCall_Darwin()). // 2. Load the address of the function entry point from the function // descriptor. // 3. Load the TOC of the callee from the function descriptor into r2. // 4. Load the environment pointer from the function descriptor into // r11. // 5. Branch to the function entry point address. // 6. On return of the callee, the TOC of the caller needs to be // restored (this is done in FinishCall()). // // All those operations are flagged together to ensure that no other // operations can be scheduled in between. E.g. without flagging the // operations together, a TOC access in the caller could be scheduled // between the load of the callee TOC and the branch to the callee, which // results in the TOC access going through the TOC of the callee instead // of going through the TOC of the caller, which leads to incorrect code. // Load the address of the function entry point from the function // descriptor. SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag); SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, InFlag.getNode() ? 3 : 2); Chain = LoadFuncPtr.getValue(1); InFlag = LoadFuncPtr.getValue(2); // Load environment pointer into r11. // Offset of the environment pointer within the function descriptor. SDValue PtrOff = DAG.getIntPtrConstant(16); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, InFlag); Chain = LoadEnvPtr.getValue(1); InFlag = LoadEnvPtr.getValue(2); SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, InFlag); Chain = EnvVal.getValue(0); InFlag = EnvVal.getValue(1); // Load TOC of the callee into r2. We are using a target-specific load // with r2 hard coded, because the result of a target-independent load // would never go directly into r2, since r2 is a reserved register (which // prevents the register allocator from allocating it), resulting in an // additional register being allocated and an unnecessary move instruction // being generated. VTs = DAG.getVTList(MVT::Other, MVT::Flag); SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, Callee, InFlag); Chain = LoadTOCPtr.getValue(0); InFlag = LoadTOCPtr.getValue(1); MTCTROps[0] = Chain; MTCTROps[1] = LoadFuncPtr; MTCTROps[2] = InFlag; } Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2 + (InFlag.getNode() != 0)); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); NodeTys.push_back(MVT::Flag); Ops.push_back(Chain); CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; Callee.setNode(0); // Add CTR register as callee so a bctr can be emitted later. if (isTailCall) Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT)); } // If this is a direct call, pass the chain and the callee. if (Callee.getNode()) { Ops.push_back(Chain); Ops.push_back(Callee); } // If this is a tail call add stack pointer delta. if (isTailCall) Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); return CallOpc; } SDValue PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { SmallVector RVLocs; CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; EVT VT = VA.getValVT(); assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VT, InFlag).getValue(1); InVals.push_back(Chain.getValue(0)); InFlag = Chain.getValue(2); } return Chain; } SDValue PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall, bool isVarArg, SelectionDAG &DAG, SmallVector, 8> &RegsToPass, SDValue InFlag, SDValue Chain, SDValue &Callee, int SPDiff, unsigned NumBytes, const SmallVectorImpl &Ins, SmallVectorImpl &InVals) const { std::vector NodeTys; SmallVector Ops; unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, isTailCall, RegsToPass, Ops, NodeTys, PPCSubTarget.isPPC64(), PPCSubTarget.isSVR4ABI()); // When performing tail call optimization the callee pops its arguments off // the stack. Account for this here so these bytes can be pushed back on in // PPCRegisterInfo::eliminateCallFramePseudoInstr. int BytesCalleePops = (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0; if (InFlag.getNode()) Ops.push_back(InFlag); // Emit tail call. if (isTailCall) { // If this is the first return lowered for this function, add the regs // to the liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); for (unsigned i = 0; i != RVLocs.size(); ++i) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } assert(((Callee.getOpcode() == ISD::Register && cast(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa(Callee)) && "Expecting an global address, external symbol, absolute value or register"); return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); } Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Add a NOP immediately after the branch instruction when using the 64-bit // SVR4 ABI. At link time, if caller and callee are in a different module and // thus have a different TOC, the call will be replaced with a call to a stub // function which saves the current TOC, loads the TOC of the callee and // branches to the callee. The NOP will be replaced with a load instruction // which restores the TOC of the caller from the TOC save slot of the current // stack frame. If caller and callee belong to the same module (and have the // same TOC), the NOP will remain unchanged. if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag); if (CallOpc == PPCISD::BCTRL_SVR4) { // This is a call through a function pointer. // Restore the caller TOC from the save area into R2. // See PrepareCall() for more information about calls through function // pointers in the 64-bit SVR4 ABI. // We are using a target-specific load with r2 hard coded, because the // result of a target-independent load would never go directly into r2, // since r2 is a reserved register (which prevents the register allocator // from allocating it), resulting in an additional register being // allocated and an unnecessary move instruction being generated. Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); InFlag = Chain.getValue(1); } else { // Otherwise insert NOP. InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag); } } Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(BytesCalleePops, true), InFlag); if (!Ins.empty()) InFlag = Chain.getValue(1); return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } SDValue PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { if (isTailCall) isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG); if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, isTailCall, Outs, Ins, dl, DAG, InVals); } else { return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, isTailCall, Outs, Ins, dl, DAG, InVals); } } SDValue PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description // of the 32-bit SVR4 ABI stack frame layout. assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && "Unknown calling convention!"); unsigned PtrByteSize = 4; MachineFunction &MF = DAG.getMachineFunction(); // Mark this function as potentially containing a function that contains a // tail call. As a consequence the frame pointer will be used for dynamicalloc // and restoring the callers stack pointer in this functions epilog. This is // done because by tail calling the called function might overwrite the value // in this function's (MF) stack pointer stack slot 0(SP). if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) MF.getInfo()->setHasFastCall(); // Count how many bytes are to be pushed on the stack, including the linkage // area, parameter list area and the part of the local variable space which // contains copies of aggregates which are passed by value. // Assign locations to all of the outgoing arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); // Reserve space for the linkage area on the stack. CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize); if (isVarArg) { // Handle fixed and variable vector arguments differently. // Fixed vector arguments go into registers as long as registers are // available. Variable vector arguments always go into memory. unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { EVT ArgVT = Outs[i].Val.getValueType(); ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; bool Result; if (Outs[i].IsFixed) { Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); } else { Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); } if (Result) { #ifndef NDEBUG errs() << "Call operand #" << i << " has unhandled type " << ArgVT.getEVTString() << "\n"; #endif llvm_unreachable(0); } } } else { // All arguments are treated the same. CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); } // Assign locations to all of the outgoing aggregate by value arguments. SmallVector ByValArgLocs; CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs, *DAG.getContext()); // Reserve stack space for the allocations in CCInfo. CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); // Size of the linkage area, parameter list area and the part of the local // space variable where copies of aggregates which are passed by value are // stored. unsigned NumBytes = CCByValInfo.getNextStackOffset(); // Calculate by how many bytes the stack has to be adjusted in case of tail // call optimization. int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SDValue CallSeqStart = Chain; // Load the return address and frame pointer so it can be moved somewhere else // later. SDValue LROp, FPOp; Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, dl); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); SmallVector, 8> RegsToPass; SmallVector TailCallArguments; SmallVector MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = Outs[i].Val; ISD::ArgFlagsTy Flags = Outs[i].Flags; if (Flags.isByVal()) { // Argument is an aggregate which is passed by value, thus we need to // create a copy of it in the local variable space of the current stack // frame (which is the stack frame of the caller) and pass the address of // this copy to the callee. assert((j < ByValArgLocs.size()) && "Index out of bounds!"); CCValAssign &ByValVA = ByValArgLocs[j++]; assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); // Memory reserved in the local variable space of the callers stack frame. unsigned LocMemOffset = ByValVA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); // Create a copy of the argument in the local area of the current // stack frame. SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, CallSeqStart.getNode()->getOperand(0), Flags, DAG, dl); // This must go outside the CALLSEQ_START..END. SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, CallSeqStart.getNode()->getOperand(1)); DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); Chain = CallSeqStart = NewCallSeqStart; // Pass the address of the aggregate copy on the stack either in a // physical register or in the parameter list area of the current stack // frame to the callee. Arg = PtrOff; } if (VA.isRegLoc()) { // Put argument in a physical register. RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { // Put argument in the parameter list area of the current stack frame. assert(VA.isMemLoc()); unsigned LocMemOffset = VA.getLocMemOffset(); if (!isTailCall) { SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, PseudoSourceValue::getStack(), LocMemOffset, false, false, 0)); } else { // Calculate and remember argument location. CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, TailCallArguments); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // Set CR6 to true if this is a vararg call. if (isVarArg) { SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0); Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag); InFlag = Chain.getValue(1); } if (isTailCall) { PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, false, TailCallArguments); } return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, Ins, InVals); } SDValue PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { unsigned NumOps = Outs.size(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; unsigned PtrByteSize = isPPC64 ? 8 : 4; MachineFunction &MF = DAG.getMachineFunction(); // Mark this function as potentially containing a function that contains a // tail call. As a consequence the frame pointer will be used for dynamicalloc // and restoring the callers stack pointer in this functions epilog. This is // done because by tail calling the called function might overwrite the value // in this function's (MF) stack pointer stack slot 0(SP). if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) MF.getInfo()->setHasFastCall(); unsigned nAltivecParamsAtEnd = 0; // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. We start with 24/48 bytes, which is // prereserved space for [SP][CR][LR][3 x unused]. unsigned NumBytes = CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, Outs, nAltivecParamsAtEnd); // Calculate by how many bytes the stack has to be adjusted in case of tail // call optimization. int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); // To protect arguments on the stack from being clobbered in a tail call, // force all the loads to happen before doing any other lowering. if (isTailCall) Chain = DAG.getStackArgumentTokenFactor(Chain); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SDValue CallSeqStart = Chain; // Load the return address and frame pointer so it can be move somewhere else // later. SDValue LROp, FPOp; Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, dl); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDValue StackPtr; if (isPPC64) StackPtr = DAG.getRegister(PPC::X1, MVT::i64); else StackPtr = DAG.getRegister(PPC::R1, MVT::i32); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true); unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; static const unsigned GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const unsigned *FPR = GetFPR(); static const unsigned VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned NumGPRs = array_lengthof(GPR_32); const unsigned NumFPRs = 13; const unsigned NumVRs = array_lengthof(VR); const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; SmallVector, 8> RegsToPass; SmallVector TailCallArguments; SmallVector MemOpChains; for (unsigned i = 0; i != NumOps; ++i) { SDValue Arg = Outs[i].Val; ISD::ArgFlagsTy Flags = Outs[i].Flags; // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDValue PtrOff; PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); // On PPC64, promote integers to 64-bit values. if (isPPC64 && Arg.getValueType() == MVT::i32) { // FIXME: Should this use ANY_EXTEND if neither sext nor zext? unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); } // FIXME memcpy is used way more than necessary. Correctness first. if (Flags.isByVal()) { unsigned Size = Flags.getByValSize(); if (Size==1 || Size==2) { // Very small objects are passed right-justified. // Everything else is passed left-justified. EVT VT = (Size==1) ? MVT::i8 : MVT::i16; if (GPR_idx != NumGPRs) { SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, NULL, 0, VT, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); ArgOffset += PtrByteSize; } else { SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, CallSeqStart.getNode()->getOperand(0), Flags, DAG, dl); // This must go outside the CALLSEQ_START..END. SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, CallSeqStart.getNode()->getOperand(1)); DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); Chain = CallSeqStart = NewCallSeqStart; ArgOffset += PtrByteSize; } continue; } // Copy entire object into memory. There are cases where gcc-generated // code assumes it is there, even if it could be put entirely into // registers. (This is not what the doc says.) SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, CallSeqStart.getNode()->getOperand(0), Flags, DAG, dl); // This must go outside the CALLSEQ_START..END. SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, CallSeqStart.getNode()->getOperand(1)); DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); Chain = CallSeqStart = NewCallSeqStart; // And copy the pieces of it that fit into registers. for (unsigned j=0; j NumVRs) { unsigned j = 0; // Offset is aligned; skip 1st 12 params which go in V registers. ArgOffset = ((ArgOffset+15)/16)*16; ArgOffset += 12*16; for (unsigned i = 0; i != NumOps; ++i) { SDValue Arg = Outs[i].Val; EVT ArgType = Arg.getValueType(); if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { if (++j > NumVRs) { SDValue PtrOff; // We are emitting Altivec params in order. LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, isPPC64, isTailCall, true, MemOpChains, TailCallArguments, dl); ArgOffset += 16; } } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Check if this is an indirect call (MTCTR/BCTRL). // See PrepareCall() for more information about calls through function // pointers in the 64-bit SVR4 ABI. if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && !dyn_cast(Callee) && !dyn_cast(Callee) && !isBLACompatibleAddress(Callee, DAG)) { // Load r2 into a virtual register and store it to the TOC save area. SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); // TOC save area offset. SDValue PtrOff = DAG.getIntPtrConstant(40); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, NULL, 0, false, false, 0); } // On Darwin, R12 must contain the address of an indirect callee. This does // not mean the MTCTR instruction must use R12; it's easier to model this as // an extra parameter, so do that. if (!isTailCall && !dyn_cast(Callee) && !dyn_cast(Callee) && !isBLACompatibleAddress(Callee, DAG)) RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : PPC::R12), Callee)); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (isTailCall) { PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, FPOp, true, TailCallArguments); } return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, Ins, InVals); } SDValue PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, DebugLoc dl, SelectionDAG &DAG) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_PPC); // If this is the first return lowered for this function, add the regs to the // liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { for (unsigned i = 0; i != RVLocs.size(); ++i) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } SDValue Flag; // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Outs[i].Val, Flag); Flag = Chain.getValue(1); } if (Flag.getNode()) return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); else return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); } SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { // When we pop the dynamic allocation we need to restore the SP link. DebugLoc dl = Op.getDebugLoc(); // Get the corect type for pointers. EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Construct the stack pointer operand. bool isPPC64 = Subtarget.isPPC64(); unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; SDValue StackPtr = DAG.getRegister(SP, PtrVT); // Get the operands for the STACKRESTORE. SDValue Chain = Op.getOperand(0); SDValue SaveSP = Op.getOperand(1); // Load the old link SP. SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0, false, false, 0); // Restore the stack pointer. Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); // Store the old link SP. return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0, false, false, 0); } SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isPPC64 = PPCSubTarget.isPPC64(); bool isDarwinABI = PPCSubTarget.isDarwinABI(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int RASI = FI->getReturnAddrSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!RASI) { // Find out what the fix offset of the frame pointer save area. int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI); // Allocate the frame index for frame pointer save area. RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true, false); // Save the result. FI->setReturnAddrSaveIndex(RASI); } return DAG.getFrameIndex(RASI, PtrVT); } SDValue PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isPPC64 = PPCSubTarget.isPPC64(); bool isDarwinABI = PPCSubTarget.isDarwinABI(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int FPSI = FI->getFramePointerSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!FPSI) { // Find out what the fix offset of the frame pointer save area. int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI); // Allocate the frame index for frame pointer save area. FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true, false); // Save the result. FI->setFramePointerSaveIndex(FPSI); } return DAG.getFrameIndex(FPSI, PtrVT); } SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); // Get the corect type for pointers. EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Negate the size. SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, DAG.getConstant(0, PtrVT), Size); // Construct a node for the frame pointer save index. SDValue FPSIdx = getFramePointerFrameIndex(DAG); // Build a DYNALLOC node. SDValue Ops[3] = { Chain, NegSize, FPSIdx }; SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); } /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when /// possible. SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { // Not FP? Not a fsel. if (!Op.getOperand(0).getValueType().isFloatingPoint() || !Op.getOperand(2).getValueType().isFloatingPoint()) return Op; ISD::CondCode CC = cast(Op.getOperand(4))->get(); // Cannot handle SETEQ/SETNE. if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; EVT ResVT = Op.getValueType(); EVT CmpVT = Op.getOperand(0).getValueType(); SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); DebugLoc dl = Op.getDebugLoc(); // If the RHS of the comparison is a 0.0, we don't need to do the // subtraction at all. if (isFloatingPointZero(RHS)) switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETULT: case ISD::SETLT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETOGE: case ISD::SETGE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); case ISD::SETUGT: case ISD::SETGT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETOLE: case ISD::SETLE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, dl, ResVT, DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); } SDValue Cmp; switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETULT: case ISD::SETLT: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); case ISD::SETOGE: case ISD::SETGE: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); case ISD::SETUGT: case ISD::SETGT: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); case ISD::SETOLE: case ISD::SETLE: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); } return Op; } // FIXME: Split this code up when LegalizeDAGTypes lands. SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const { assert(Op.getOperand(0).getValueType().isFloatingPoint()); SDValue Src = Op.getOperand(0); if (Src.getValueType() == MVT::f32) Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); SDValue Tmp; switch (Op.getValueType().getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); case MVT::i32: Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : PPCISD::FCTIDZ, dl, MVT::f64, Src); break; case MVT::i64: Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); break; } // Convert the FP value to an int value through memory. SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); // Emit a store to the stack slot. SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0, false, false, 0); // Result is a load from the stack slot. If loading 4 bytes, make sure to // add in a bias. if (Op.getValueType() == MVT::i32) FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, DAG.getConstant(4, FIPtr.getValueType())); return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0, false, false, 0); } SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); // Don't handle ppc_fp128 here; let it be lowered to a libcall. if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) return SDValue(); if (Op.getOperand(0).getValueType() == MVT::i64) { SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op.getOperand(0)); SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); if (Op.getValueType() == MVT::f32) FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); return FP; } assert(Op.getOperand(0).getValueType() == MVT::i32 && "Unhandled SINT_TO_FP type in custom expander!"); // Since we only generate this in 64-bit mode, we can take advantage of // 64-bit registers. In particular, sign extend the input value into the // 64-bit register with extsw, store the WHOLE 64-bit value into the stack // then lfd it and fcfid it. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *FrameInfo = MF.getFrameInfo(); int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, Op.getOperand(0)); // STD the extended value into the stack slot. MachineMemOperand *MMO = MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx), MachineMemOperand::MOStore, 0, 8, 8); SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), Ops, 4, MVT::i64, MMO); // Load the value as a double. SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0, false, false, 0); // FCFID it and return it. SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); if (Op.getValueType() == MVT::f32) FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); return FP; } SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); /* The rounding mode is in bits 30:31 of FPSR, and has the following settings: 00 Round to nearest 01 Round to 0 10 Round to +inf 11 Round to -inf FLT_ROUNDS, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) */ MachineFunction &MF = DAG.getMachineFunction(); EVT VT = Op.getValueType(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); std::vector NodeTys; SDValue MFFSreg, InFlag; // Save FP Control Word to register NodeTys.push_back(MVT::f64); // return register NodeTys.push_back(MVT::Flag); // unused in this context SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); // Save FP register to stack slot int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, NULL, 0, false, false, 0); // Load FP Control Word from low 32 bits of stack slot. SDValue Four = DAG.getConstant(4, PtrVT); SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0, false, false, 0); // Transform as necessary SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, CWD, DAG.getConstant(3, MVT::i32)); SDValue CWD2 = DAG.getNode(ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::AND, dl, MVT::i32, DAG.getNode(ISD::XOR, dl, MVT::i32, CWD, DAG.getConstant(3, MVT::i32)), DAG.getConstant(3, MVT::i32)), DAG.getConstant(1, MVT::i32)); SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); return DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); } SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SHL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, 2, dl); } SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); unsigned BitWidth = VT.getSizeInBits(); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, 2, dl); } SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRA!"); // Expand into a bunch of logical ops, followed by a select_cc. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), Tmp4, Tmp6, ISD::SETLE); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, 2, dl); } //===----------------------------------------------------------------------===// // Vector related lowering. // /// BuildSplatI - Build a canonical splati of Val with an element size of /// SplatSize. Cast the result to VT. static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, SelectionDAG &DAG, DebugLoc dl) { assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); static const EVT VTys[] = { // canonical VT to use for each size. MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 }; EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. if (Val == -1) SplatSize = 1; EVT CanonicalVT = VTys[SplatSize-1]; // Build a canonical splat for this value. SDValue Elt = DAG.getConstant(Val, MVT::i32); SmallVector Ops; Ops.assign(CanonicalVT.getVectorNumElements(), Elt); SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0], Ops.size()); return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res); } /// BuildIntrinsicOp - Return a binary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, SelectionDAG &DAG, DebugLoc dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = LHS.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, MVT::i32), LHS, RHS); } /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, SDValue Op2, SelectionDAG &DAG, DebugLoc dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = Op0.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); } /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified /// amount. The result has the specified value type. static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, SelectionDAG &DAG, DebugLoc dl) { // Force LHS/RHS to be the right type. LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS); RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS); int Ops[16]; for (unsigned i = 0; i != 16; ++i) Ops[i] = i + Amt; SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T); } // If this is a case we can't handle, return null and let the default // expansion code take care of it. If we CAN select this case, and if it // selects to a single instruction, return Op. Otherwise, if we can codegen // this case more efficiently than a constant pool load, lower it to the // sequence of ops that should be used. SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); // Check if this is a splat of a constant value. APInt APSplatBits, APSplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, true) || SplatBitSize > 32) return SDValue(); unsigned SplatBits = APSplatBits.getZExtValue(); unsigned SplatUndef = APSplatUndef.getZExtValue(); unsigned SplatSize = SplatBitSize / 8; // First, handle single instruction cases. // All zeros? if (SplatBits == 0) { // Canonicalize all zero vectors to be v4i32. if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { SDValue Z = DAG.getConstant(0, MVT::i32); Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z); } return Op; } // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> (32-SplatBitSize)); if (SextVal >= -16 && SextVal <= 15) return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); // Two instruction sequences. // If this value is in the range [-32,30] and is even, use: // tmp = VSPLTI[bhw], result = add tmp, tmp if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); } // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important // for fneg/fabs. if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { // Make -1 and vspltisw -1: SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); // Make the VSLW intrinsic, computing 0x8000_0000. SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, OnesV, DAG, dl); // xor by OnesV to invert it. Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); } // Check to see if this is a wide variety of vsplti*, binop self cases. static const signed char SplatCsts[] = { -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 }; for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { // Indirect through the SplatCsts array so that we favor 'vsplti -1' for // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' int i = SplatCsts[idx]; // Figure out what shift amount will be used by altivec if shifted by i in // this splat size. unsigned TypeShiftAmt = i & (SplatBitSize-1); // vsplti + shl self. if (SextVal == (i << (int)TypeShiftAmt)) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, Intrinsic::ppc_altivec_vslw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); } // vsplti + srl self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, Intrinsic::ppc_altivec_vsrw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); } // vsplti + sra self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, Intrinsic::ppc_altivec_vsraw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); } // vsplti + rol self. if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, Intrinsic::ppc_altivec_vrlw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res); } // t = vsplti c, result = vsldoi t, t, 1 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); } // t = vsplti c, result = vsldoi t, t, 2 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); } // t = vsplti c, result = vsldoi t, t, 3 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); } } // Three instruction sequences. // Odd, in range [17,31]: (vsplti C)-(vsplti -16). if (SextVal >= 0 && SextVal <= 31) { SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS); } // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). if (SextVal >= -31 && SextVal <= 0) { SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS); } return SDValue(); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, DebugLoc dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); enum { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VMRGHW, OP_VMRGLW, OP_VSPLTISW0, OP_VSPLTISW1, OP_VSPLTISW2, OP_VSPLTISW3, OP_VSLDOI4, OP_VSLDOI8, OP_VSLDOI12 }; if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); int ShufIdxs[16]; switch (OpNum) { default: llvm_unreachable("Unknown i32 permute!"); case OP_VMRGHW: ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; break; case OP_VMRGLW: ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; break; case OP_VSPLTISW0: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+0; break; case OP_VSPLTISW1: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+4; break; case OP_VSPLTISW2: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+8; break; case OP_VSPLTISW3: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+12; break; case OP_VSLDOI4: return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); case OP_VSLDOI8: return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); case OP_VSLDOI12: return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); } EVT VT = OpLHS.getValueType(); OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS); OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS); SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T); } /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this /// is a shuffle we can handle in a single instruction, return it. Otherwise, /// return the code it can be lowered into. Worst case, it can always be /// lowered into a vperm. SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); ShuffleVectorSDNode *SVOp = cast(Op); EVT VT = Op.getValueType(); // Cases that are handled by instructions that take permute immediates // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be // selected by the instruction selector. if (V2.getOpcode() == ISD::UNDEF) { if (PPC::isSplatShuffleMask(SVOp, 1) || PPC::isSplatShuffleMask(SVOp, 2) || PPC::isSplatShuffleMask(SVOp, 4) || PPC::isVPKUWUMShuffleMask(SVOp, true) || PPC::isVPKUHUMShuffleMask(SVOp, true) || PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || PPC::isVMRGLShuffleMask(SVOp, 1, true) || PPC::isVMRGLShuffleMask(SVOp, 2, true) || PPC::isVMRGLShuffleMask(SVOp, 4, true) || PPC::isVMRGHShuffleMask(SVOp, 1, true) || PPC::isVMRGHShuffleMask(SVOp, 2, true) || PPC::isVMRGHShuffleMask(SVOp, 4, true)) { return Op; } } // Altivec has a variety of "shuffle immediates" that take two vector inputs // and produce a fixed permutation. If any of these match, do not lower to // VPERM. if (PPC::isVPKUWUMShuffleMask(SVOp, false) || PPC::isVPKUHUMShuffleMask(SVOp, false) || PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || PPC::isVMRGLShuffleMask(SVOp, 1, false) || PPC::isVMRGLShuffleMask(SVOp, 2, false) || PPC::isVMRGLShuffleMask(SVOp, 4, false) || PPC::isVMRGHShuffleMask(SVOp, 1, false) || PPC::isVMRGHShuffleMask(SVOp, 2, false) || PPC::isVMRGHShuffleMask(SVOp, 4, false)) return Op; // Check to see if this is a shuffle of 4-byte values. If so, we can use our // perfect shuffle table to emit an optimal matching sequence. SmallVector PermMask; SVOp->getMask(PermMask); unsigned PFIndexes[4]; bool isFourElementShuffle = true; for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number unsigned EltNo = 8; // Start out undef. for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. if (PermMask[i*4+j] < 0) continue; // Undef, ignore it. unsigned ByteSource = PermMask[i*4+j]; if ((ByteSource & 3) != j) { isFourElementShuffle = false; break; } if (EltNo == 8) { EltNo = ByteSource/4; } else if (EltNo != ByteSource/4) { isFourElementShuffle = false; break; } } PFIndexes[i] = EltNo; } // If this shuffle can be expressed as a shuffle of 4-byte elements, use the // perfect shuffle vector to determine if it is cost effective to do this as // discrete instructions, or whether we should use a vperm. if (isFourElementShuffle) { // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); // Determining when to avoid vperm is tricky. Many things affect the cost // of vperm, particularly how many times the perm mask needs to be computed. // For example, if the perm mask can be hoisted out of a loop or is already // used (perhaps because there are multiple permutes with the same shuffle // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of // the loop requires an extra register. // // As a compromise, we only emit discrete instructions if the shuffle can be // generated in 3 or fewer operations. When we have loop information // available, if this block is within a loop, we should avoid using vperm // for 3-operation perms and use a constant pool load instead. if (Cost < 3) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant // vector that will get spilled to the constant pool. if (V2.getOpcode() == ISD::UNDEF) V2 = V1; // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except // that it is in input element units, not in bytes. Convert now. EVT EltVT = V1.getValueType().getVectorElementType(); unsigned BytesPerElement = EltVT.getSizeInBits()/8; SmallVector ResultMask; for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; for (unsigned j = 0; j != BytesPerElement; ++j) ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, MVT::i32)); } SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &ResultMask[0], ResultMask.size()); return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); } /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an /// altivec comparison. If it is, return true and fill in Opc/isDot with /// information about the intrinsic. static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, bool &isDot) { unsigned IntrinsicID = cast(Intrin.getOperand(0))->getZExtValue(); CompareOpc = -1; isDot = false; switch (IntrinsicID) { default: return false; // Comparison predicates. case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; // Normal Comparisons. case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; } return true; } /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom /// lower, do it, otherwise return null. SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { // If this is a lowered altivec predicate compare, CompareOpc is set to the // opcode number of the comparison. DebugLoc dl = Op.getDebugLoc(); int CompareOpc; bool isDot; if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) return SDValue(); // Don't custom lower most intrinsics. // If this is a non-dot comparison, make the VCMP node and we are done. if (!isDot) { SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), Op.getOperand(1), Op.getOperand(2), DAG.getConstant(CompareOpc, MVT::i32)); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp); } // Create the PPCISD altivec 'dot' comparison node. SDValue Ops[] = { Op.getOperand(2), // LHS Op.getOperand(3), // RHS DAG.getConstant(CompareOpc, MVT::i32) }; std::vector VTs; VTs.push_back(Op.getOperand(2).getValueType()); VTs.push_back(MVT::Flag); SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); // Now that we have the comparison, emit a copy from the CR to a GPR. // This is flagged to the above dot comparison. SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, DAG.getRegister(PPC::CR6, MVT::i32), CompNode.getValue(1)); // Unpack the result based on how the target uses it. unsigned BitNo; // Bit # of CR6. bool InvertBit; // Invert result? switch (cast(Op.getOperand(1))->getZExtValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Return the value of the EQ bit of CR6. BitNo = 0; InvertBit = false; break; case 1: // Return the inverted value of the EQ bit of CR6. BitNo = 0; InvertBit = true; break; case 2: // Return the value of the LT bit of CR6. BitNo = 2; InvertBit = false; break; case 3: // Return the inverted value of the LT bit of CR6. BitNo = 2; InvertBit = true; break; } // Shift the bit into the low position. Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, DAG.getConstant(8-(3-BitNo), MVT::i32)); // Isolate the bit. Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); // If we are supposed to, toggle the bit. if (InvertBit) Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); return Flags; } SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); // Create a stack slot that is 16-byte aligned. MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); EVT PtrVT = getPointerTy(); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); // Store the input value into Value#0 of the stack slot. SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, NULL, 0, false, false, 0); // Load it out. return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0, false, false, 0); } SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); if (Op.getValueType() == MVT::v4i32) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. SDValue RHSSwap = // = vrlw RHS, 16 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); // Shrinkify inputs to v8i16. LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS); RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS); RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap); // Low parts multiplied together, generating 32-bit results (we ignore the // top parts). SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, LHS, RHS, DAG, dl, MVT::v4i32); SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); // Shift the high parts up 16 bits. HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG, dl); return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); } else if (Op.getValueType() == MVT::v8i16) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, LHS, RHS, Zero, DAG, dl); } else if (Op.getValueType() == MVT::v16i8) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); // Multiply the even 8-bit parts, producing 16-bit sums. SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, LHS, RHS, DAG, dl, MVT::v8i16); EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts); // Multiply the odd 8-bit parts, producing 16-bit sums. SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, LHS, RHS, DAG, dl, MVT::v8i16); OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts); // Merge the results together. int Ops[16]; for (unsigned i = 0; i != 8; ++i) { Ops[i*2 ] = 2*i+1; Ops[i*2+1] = 2*i+1+16; } return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); } else { llvm_unreachable("Unknown mul to lower!"); } } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Wasn't expecting to be able to lower this!"); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, PPCSubTarget); case ISD::VAARG: return LowerVAARG(Op, DAG, PPCSubTarget); case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, Op.getDebugLoc()); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); // Lower 64-bit shifts. case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); // Vector-related lowering. case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); // Frame & Return address. case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); } return SDValue(); } void PPCTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const { DebugLoc dl = N->getDebugLoc(); switch (N->getOpcode()) { default: assert(false && "Do not know how to custom type legalize this operation!"); return; case ISD::FP_ROUND_INREG: { assert(N->getValueType(0) == MVT::ppcf128); assert(N->getOperand(0).getValueType() == MVT::ppcf128); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, N->getOperand(0), DAG.getIntPtrConstant(0)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, N->getOperand(0), DAG.getIntPtrConstant(1)); // This sequence changes FPSCR to do round-to-zero, adds the two halves // of the long double, and puts FPSCR back the way it was. We do not // actually model FPSCR. std::vector NodeTys; SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; NodeTys.push_back(MVT::f64); // Return register NodeTys.push_back(MVT::Flag); // Returns a flag for later insns Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); MFFSreg = Result.getValue(0); InFlag = Result.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Flag); // Returns a flag Ops[0] = DAG.getConstant(31, MVT::i32); Ops[1] = InFlag; Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); InFlag = Result.getValue(0); NodeTys.clear(); NodeTys.push_back(MVT::Flag); // Returns a flag Ops[0] = DAG.getConstant(30, MVT::i32); Ops[1] = InFlag; Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); InFlag = Result.getValue(0); NodeTys.clear(); NodeTys.push_back(MVT::f64); // result of add NodeTys.push_back(MVT::Flag); // Returns a flag Ops[0] = Lo; Ops[1] = Hi; Ops[2] = InFlag; Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); FPreg = Result.getValue(0); InFlag = Result.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::f64); Ops[0] = DAG.getConstant(1, MVT::i32); Ops[1] = MFFSreg; Ops[2] = FPreg; Ops[3] = InFlag; Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); FPreg = Result.getValue(0); // We know the low half is about to be thrown away, so just use something // convenient. Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, FPreg, FPreg)); return; } case ISD::FP_TO_SINT: Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); return; } } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// MachineBasicBlock * PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, bool is64bit, unsigned BinOpcode) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *F = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned incr = MI->getOperand(3).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loopMBB); F->insert(It, exitMBB); exitMBB->transferSuccessors(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); unsigned TmpReg = (!BinOpcode) ? incr : RegInfo.createVirtualRegister( is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : (const TargetRegisterClass *) &PPC::GPRCRegClass); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // l[wd]arx dest, ptr // add r0, dest, incr // st[wd]cx. r0, ptr // bne- loopMBB // fallthrough --> exitMBB BB = loopMBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) .addReg(ptrA).addReg(ptrB); if (BinOpcode) BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) .addReg(TmpReg).addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; return BB; } MachineBasicBlock * PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, bool is8bit, // operation unsigned BinOpcode) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); // In 64 bit mode we have to use 64 bits for addresses, even though the // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address // registers without caring whether they're 32 or 64, but here we're // doing actual arithmetic on the addresses. bool is64bit = PPCSubTarget.isPPC64(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *F = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned incr = MI->getOperand(3).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loopMBB); F->insert(It, exitMBB); exitMBB->transferSuccessors(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); const TargetRegisterClass *RC = is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : (const TargetRegisterClass *) &PPC::GPRCRegClass; unsigned PtrReg = RegInfo.createVirtualRegister(RC); unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); unsigned ShiftReg = RegInfo.createVirtualRegister(RC); unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); unsigned MaskReg = RegInfo.createVirtualRegister(RC); unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); unsigned Ptr1Reg; unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // The 4-byte load must be aligned, while a char or short may be // anywhere in the word. Hence all this nasty bookkeeping code. // add ptr1, ptrA, ptrB [copy if ptrA==0] // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] // xori shift, shift1, 24 [16] // rlwinm ptr, ptr1, 0, 0, 29 // slw incr2, incr, shift // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] // slw mask, mask2, shift // loopMBB: // lwarx tmpDest, ptr // add tmp, tmpDest, incr2 // andc tmp2, tmpDest, mask // and tmp3, tmp, mask // or tmp4, tmp3, tmp2 // stwcx. tmp4, ptr // bne- loopMBB // fallthrough --> exitMBB // srw dest, tmpDest, shift if (ptrA!=PPC::R0) { Ptr1Reg = RegInfo.createVirtualRegister(RC); BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) .addReg(ptrA).addReg(ptrB); } else { Ptr1Reg = ptrB; } BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); if (is64bit) BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(61); else BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) .addReg(incr).addReg(ShiftReg); if (is8bit) BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); else { BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); } BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) .addReg(Mask2Reg).addReg(ShiftReg); BB = loopMBB; BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) .addReg(PPC::R0).addReg(PtrReg); if (BinOpcode) BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) .addReg(Incr2Reg).addReg(TmpDestReg); BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) .addReg(TmpDestReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) .addReg(TmpReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) .addReg(Tmp3Reg).addReg(Tmp2Reg); BuildMI(BB, dl, TII->get(PPC::STWCX)) .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg); return BB; } MachineBasicBlock * PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); // To "insert" these instructions we actually have to insert their // control-flow patterns. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; MachineFunction *F = BB->getParent(); if (MI->getOpcode() == PPC::SELECT_CC_I4 || MI->getOpcode() == PPC::SELECT_CC_I8 || MI->getOpcode() == PPC::SELECT_CC_F4 || MI->getOpcode() == PPC::SELECT_CC_F8 || MI->getOpcode() == PPC::SELECT_CC_VRRC) { // The incoming instruction knows the destination vreg to set, the // condition code register to branch on, the true/false values to // select between, and a branch opcode to use. // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); unsigned SelectPred = MI->getOperand(4).getImm(); DebugLoc dl = MI->getDebugLoc(); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) sinkMBB->addSuccessor(*I); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while (!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); } else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::AND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::OR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, 0); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, 0); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) BB = EmitAtomicBinary(MI, BB, false, 0); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) BB = EmitAtomicBinary(MI, BB, true, 0); else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned oldval = MI->getOperand(3).getReg(); unsigned newval = MI->getOperand(4).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loop1MBB); F->insert(It, loop2MBB); F->insert(It, midMBB); F->insert(It, exitMBB); exitMBB->transferSuccessors(BB); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loop1MBB); // loop1MBB: // l[wd]arx dest, ptr // cmp[wd] dest, oldval // bne- midMBB // loop2MBB: // st[wd]cx. newval, ptr // bne- loopMBB // b exitBB // midMBB: // st[wd]cx. dest, ptr // exitBB: BB = loop1MBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) .addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) .addReg(oldval).addReg(dest); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(midMBB); BB = loop2MBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) .addReg(newval).addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); BB = midMBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) .addReg(dest).addReg(ptrA).addReg(ptrB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { // We must use 64-bit registers for addresses when targeting 64-bit, // since we're actually doing arithmetic on them. Other registers // can be 32-bit. bool is64bit = PPCSubTarget.isPPC64(); bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned oldval = MI->getOperand(3).getReg(); unsigned newval = MI->getOperand(4).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loop1MBB); F->insert(It, loop2MBB); F->insert(It, midMBB); F->insert(It, exitMBB); exitMBB->transferSuccessors(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); const TargetRegisterClass *RC = is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : (const TargetRegisterClass *) &PPC::GPRCRegClass; unsigned PtrReg = RegInfo.createVirtualRegister(RC); unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); unsigned ShiftReg = RegInfo.createVirtualRegister(RC); unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); unsigned MaskReg = RegInfo.createVirtualRegister(RC); unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); unsigned Ptr1Reg; unsigned TmpReg = RegInfo.createVirtualRegister(RC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loop1MBB); // The 4-byte load must be aligned, while a char or short may be // anywhere in the word. Hence all this nasty bookkeeping code. // add ptr1, ptrA, ptrB [copy if ptrA==0] // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] // xori shift, shift1, 24 [16] // rlwinm ptr, ptr1, 0, 0, 29 // slw newval2, newval, shift // slw oldval2, oldval,shift // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] // slw mask, mask2, shift // and newval3, newval2, mask // and oldval3, oldval2, mask // loop1MBB: // lwarx tmpDest, ptr // and tmp, tmpDest, mask // cmpw tmp, oldval3 // bne- midMBB // loop2MBB: // andc tmp2, tmpDest, mask // or tmp4, tmp2, newval3 // stwcx. tmp4, ptr // bne- loop1MBB // b exitBB // midMBB: // stwcx. tmpDest, ptr // exitBB: // srw dest, tmpDest, shift if (ptrA!=PPC::R0) { Ptr1Reg = RegInfo.createVirtualRegister(RC); BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) .addReg(ptrA).addReg(ptrB); } else { Ptr1Reg = ptrB; } BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); if (is64bit) BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(61); else BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) .addReg(newval).addReg(ShiftReg); BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) .addReg(oldval).addReg(ShiftReg); if (is8bit) BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); else { BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) .addReg(Mask3Reg).addImm(65535); } BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) .addReg(Mask2Reg).addReg(ShiftReg); BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) .addReg(NewVal2Reg).addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) .addReg(OldVal2Reg).addReg(MaskReg); BB = loop1MBB; BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) .addReg(PPC::R0).addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) .addReg(TmpDestReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) .addReg(TmpReg).addReg(OldVal3Reg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(midMBB); BB = loop2MBB; BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) .addReg(TmpDestReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) .addReg(Tmp2Reg).addReg(NewVal3Reg); BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) .addReg(PPC::R0).addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); BB = midMBB; BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) .addReg(PPC::R0).addReg(PtrReg); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg); } else { llvm_unreachable("Unexpected instr type to insert"); } F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Target Optimization Hooks //===----------------------------------------------------------------------===// SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { const TargetMachine &TM = getTargetMachine(); SelectionDAG &DAG = DCI.DAG; DebugLoc dl = N->getDebugLoc(); switch (N->getOpcode()) { default: break; case PPCISD::SHL: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->isNullValue()) // 0 << V -> 0. return N->getOperand(0); } break; case PPCISD::SRL: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->isNullValue()) // 0 >>u V -> 0. return N->getOperand(0); } break; case PPCISD::SRA: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->isNullValue() || // 0 >>s V -> 0. C->isAllOnesValue()) // -1 >>s V -> -1. return N->getOperand(0); } break; case ISD::SINT_TO_FP: if (TM.getSubtarget().has64BitSupport()) { if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. // We allow the src/dst to be either f32/f64, but the intermediate // type must be i64. if (N->getOperand(0).getValueType() == MVT::i64 && N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { SDValue Val = N->getOperand(0).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); } Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); if (N->getValueType(0) == MVT::f32) { Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, DAG.getIntPtrConstant(0)); DCI.AddToWorklist(Val.getNode()); } return Val; } else if (N->getOperand(0).getValueType() == MVT::i32) { // If the intermediate type is i32, we can avoid the load/store here // too. } } } break; case ISD::STORE: // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). if (TM.getSubtarget().hasSTFIWX() && !cast(N)->isTruncatingStore() && N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && N->getOperand(1).getValueType() == MVT::i32 && N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { SDValue Val = N->getOperand(1).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); } Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, N->getOperand(2), N->getOperand(3)); DCI.AddToWorklist(Val.getNode()); return Val; } // Turn STORE (BSWAP) -> sthbrx/stwbrx. if (cast(N)->isUnindexed() && N->getOperand(1).getOpcode() == ISD::BSWAP && N->getOperand(1).getNode()->hasOneUse() && (N->getOperand(1).getValueType() == MVT::i32 || N->getOperand(1).getValueType() == MVT::i16)) { SDValue BSwapOp = N->getOperand(1).getOperand(0); // Do an any-extend to 32-bits if this is a half-word input. if (BSwapOp.getValueType() == MVT::i16) BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); SDValue Ops[] = { N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(N->getOperand(1).getValueType()) }; return DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops), cast(N)->getMemoryVT(), cast(N)->getMemOperand()); } break; case ISD::BSWAP: // Turn BSWAP (LOAD) -> lhbrx/lwbrx. if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && N->getOperand(0).hasOneUse() && (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { SDValue Load = N->getOperand(0); LoadSDNode *LD = cast(Load); // Create the byte-swapping load. SDValue Ops[] = { LD->getChain(), // Chain LD->getBasePtr(), // Ptr DAG.getValueType(N->getValueType(0)) // VT }; SDValue BSLoad = DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, LD->getMemoryVT(), LD->getMemOperand()); // If this is an i16 load, insert the truncate. SDValue ResVal = BSLoad; if (N->getValueType(0) == MVT::i16) ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); // First, combine the bswap away. This makes the value produced by the // load dead. DCI.CombineTo(N, ResVal); // Next, combine the load away, we give it a bogus result value but a real // chain result. The result value is dead because the bswap is dead. DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); // Return N so it doesn't get rechecked! return SDValue(N, 0); } break; case PPCISD::VCMP: { // If a VCMPo node already exists with exactly the same operands as this // node, use its result instead of this node (VCMPo computes both a CR6 and // a normal output). // if (!N->getOperand(0).hasOneUse() && !N->getOperand(1).hasOneUse() && !N->getOperand(2).hasOneUse()) { // Scan all of the users of the LHS, looking for VCMPo's that match. SDNode *VCMPoNode = 0; SDNode *LHSN = N->getOperand(0).getNode(); for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); UI != E; ++UI) if (UI->getOpcode() == PPCISD::VCMPo && UI->getOperand(1) == N->getOperand(1) && UI->getOperand(2) == N->getOperand(2) && UI->getOperand(0) == N->getOperand(0)) { VCMPoNode = *UI; break; } // If there is no VCMPo node, or if the flag value has a single use, don't // transform this. if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) break; // Look at the (necessarily single) use of the flag value. If it has a // chain, this transformation is more complex. Note that multiple things // could use the value result, which we should ignore. SDNode *FlagUser = 0; for (SDNode::use_iterator UI = VCMPoNode->use_begin(); FlagUser == 0; ++UI) { assert(UI != VCMPoNode->use_end() && "Didn't find user!"); SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { FlagUser = User; break; } } } // If the user is a MFCR instruction, we know this is safe. Otherwise we // give up for right now. if (FlagUser->getOpcode() == PPCISD::MFCR) return SDValue(VCMPoNode, 0); } break; } case ISD::BR_CC: { // If this is a branch on an altivec predicate comparison, lower this so // that we don't have to do a MFCR: instead, branch directly on CR6. This // lowering is done pre-legalize, because the legalizer lowers the predicate // compare down to code that is difficult to reassemble. ISD::CondCode CC = cast(N->getOperand(1))->get(); SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); int CompareOpc; bool isDot; if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && isa(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && getAltivecCompareInfo(LHS, CompareOpc, isDot)) { assert(isDot && "Can't compare against a vector result!"); // If this is a comparison against something other than 0/1, then we know // that the condition is never/always true. unsigned Val = cast(RHS)->getZExtValue(); if (Val != 0 && Val != 1) { if (CC == ISD::SETEQ) // Cond never true, remove branch. return N->getOperand(0); // Always !=, turn it into an unconditional branch. return DAG.getNode(ISD::BR, dl, MVT::Other, N->getOperand(0), N->getOperand(4)); } bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); // Create the PPCISD altivec 'dot' comparison node. std::vector VTs; SDValue Ops[] = { LHS.getOperand(2), // LHS of compare LHS.getOperand(3), // RHS of compare DAG.getConstant(CompareOpc, MVT::i32) }; VTs.push_back(LHS.getOperand(2).getValueType()); VTs.push_back(MVT::Flag); SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); // Unpack the result based on how the target uses it. PPC::Predicate CompOpc; switch (cast(LHS.getOperand(1))->getZExtValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Branch on the value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; break; case 1: // Branch on the inverted value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; break; case 2: // Branch on the value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; break; case 3: // Branch on the inverted value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; break; } return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), DAG.getConstant(CompOpc, MVT::i32), DAG.getRegister(PPC::CR6, MVT::i32), N->getOperand(4), CompNode.getValue(1)); } break; } } return SDValue(); } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); switch (Op.getOpcode()) { default: break; case PPCISD::LBRX: { // lhbrx is known to have the top bits cleared out. if (cast(Op.getOperand(2))->getVT() == MVT::i16) KnownZero = 0xFFFF0000; break; } case ISD::INTRINSIC_WO_CHAIN: { switch (cast(Op.getOperand(0))->getZExtValue()) { default: break; case Intrinsic::ppc_altivec_vcmpbfp_p: case Intrinsic::ppc_altivec_vcmpeqfp_p: case Intrinsic::ppc_altivec_vcmpequb_p: case Intrinsic::ppc_altivec_vcmpequh_p: case Intrinsic::ppc_altivec_vcmpequw_p: case Intrinsic::ppc_altivec_vcmpgefp_p: case Intrinsic::ppc_altivec_vcmpgtfp_p: case Intrinsic::ppc_altivec_vcmpgtsb_p: case Intrinsic::ppc_altivec_vcmpgtsh_p: case Intrinsic::ppc_altivec_vcmpgtsw_p: case Intrinsic::ppc_altivec_vcmpgtub_p: case Intrinsic::ppc_altivec_vcmpgtuh_p: case Intrinsic::ppc_altivec_vcmpgtuw_p: KnownZero = ~1U; // All bits but the low one are known to be zero. break; } } } } /// getConstraintType - Given a constraint, return the type of /// constraint it is for this target. PPCTargetLowering::ConstraintType PPCTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'b': case 'r': case 'f': case 'v': case 'y': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::pair PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() == 1) { // GCC RS6000 Constraint Letters switch (Constraint[0]) { case 'b': // R1-R31 case 'r': // R0-R31 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) return std::make_pair(0U, PPC::G8RCRegisterClass); return std::make_pair(0U, PPC::GPRCRegisterClass); case 'f': if (VT == MVT::f32) return std::make_pair(0U, PPC::F4RCRegisterClass); else if (VT == MVT::f64) return std::make_pair(0U, PPC::F8RCRegisterClass); break; case 'v': return std::make_pair(0U, PPC::VRRCRegisterClass); case 'y': // crrc return std::make_pair(0U, PPC::CRRCRegisterClass); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result(0,0); switch (Letter) { default: break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': { ConstantSDNode *CST = dyn_cast(Op); if (!CST) return; // Must be an immediate to match. unsigned Value = CST->getZExtValue(); switch (Letter) { default: llvm_unreachable("Unknown constraint letter!"); case 'I': // "I" is a signed 16-bit constant. if ((short)Value == (int)Value) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'J': // "J" is a constant with only the high-order 16 bits nonzero. case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. if ((short)Value == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'K': // "K" is a constant with only the low-order 16 bits nonzero. if ((Value >> 16) == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'M': // "M" is a constant that is greater than 31. if (Value > 31) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'N': // "N" is a positive constant that is an exact power of two. if ((int)Value > 0 && isPowerOf2_32(Value)) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'O': // "O" is the constant zero. if (Value == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'P': // "P" is a constant whose negation is a signed 16-bit constant. if ((short)-Value == (int)-Value) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; } break; } } if (Result.getNode()) { Ops.push_back(Result); return; } // Handle standard constraint letters. TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG); } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const { // FIXME: PPC does not allow r+i addressing modes for vectors! // PPC allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; // No global is ever allowed as a base. if (AM.BaseGV) return false; // PPC only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; default: // No other scales are supported. return false; } return true; } /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode for load / store of the /// given type. bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ // PPC allows a sign-extended 16-bit immediate field. return (V > -(1 << 16) && V < (1 << 16)-1); } bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { return false; } SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setReturnAddressIsTaken(true); DebugLoc dl = Op.getDebugLoc(); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); // Make sure the function does not optimize away the store of the RA to // the stack. PPCFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setLRStoreRequired(); bool isPPC64 = PPCSubTarget.isPPC64(); bool isDarwinABI = PPCSubTarget.isDarwinABI(); if (Depth > 0) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI), isPPC64? MVT::i64 : MVT::i32); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, getPointerTy(), FrameAddr, Offset), NULL, 0, false, false, 0); } // Just load the return address off the stack. SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), RetAddrFI, NULL, 0, false, false, 0); } SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setFrameAddressIsTaken(true); bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) && MFI->getStackSize() && !MF.getFunction()->hasFnAttr(Attribute::Naked); unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : (is31 ? PPC::R31 : PPC::R1); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); while (Depth--) FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), FrameAddr, NULL, 0, false, false, 0); return FrameAddr; } bool PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The PowerPC target isn't yet aware of offsets. return false; } /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If /// 'NonScalarIntSafe' is true, that means it's safe to return a /// non-scalar-integer type, e.g. empty string source, constant, or loaded /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is /// constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool NonScalarIntSafe, bool MemcpyStrSrc, MachineFunction &MF) const { if (this->PPCSubTarget.isPPC64()) { return MVT::i64; } else { return MVT::i32; } }