//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// // // This transformation implements the well known scalar replacement of // aggregates transformation. This xform breaks up alloca instructions of // aggregate type (structure or array) into individual alloca instructions for // each member (if possible). Then, if possible, it transforms the individual // alloca instructions into nice clean scalar SSA form. // // This combines a simple SRoA algorithm with the Mem2Reg algorithm because // often interact, especially for C++ programs. As such, iterating between // SRoA, then Mem2Reg until we run out of things to promote works well. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Pass.h" #include "llvm/iMemory.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/StringExtras.h" namespace { Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up"); Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted"); struct SROA : public FunctionPass { bool runOnFunction(Function &F); bool performScalarRepl(Function &F); bool performPromotion(Function &F); // getAnalysisUsage - This pass does not require any passes, but we know it // will not alter the CFG, so say so. virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } private: bool isSafeElementUse(Value *Ptr); bool isSafeUseOfAllocation(Instruction *User); bool isSafeStructAllocaToPromote(AllocationInst *AI); bool isSafeArrayAllocaToPromote(AllocationInst *AI); AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base); }; RegisterOpt X("scalarrepl", "Scalar Replacement of Aggregates"); } Pass *createScalarReplAggregatesPass() { return new SROA(); } bool SROA::runOnFunction(Function &F) { bool Changed = false, LocalChange; do { LocalChange = performScalarRepl(F); LocalChange |= performPromotion(F); Changed |= LocalChange; } while (LocalChange); return Changed; } bool SROA::performPromotion(Function &F) { std::vector Allocas; const TargetData &TD = getAnalysis(); BasicBlock &BB = F.getEntryNode(); // Get the entry node for the function bool Changed = false; while (1) { Allocas.clear(); // Find allocas that are safe to promote, by looking at all instructions in // the entry node for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) // Is it an alloca? if (isAllocaPromotable(AI, TD)) Allocas.push_back(AI); if (Allocas.empty()) break; PromoteMemToReg(Allocas, getAnalysis(), TD); NumPromoted += Allocas.size(); Changed = true; } return Changed; } // performScalarRepl - This algorithm is a simple worklist driven algorithm, // which runs on all of the malloc/alloca instructions in the function, removing // them if they are only used by getelementptr instructions. // bool SROA::performScalarRepl(Function &F) { std::vector WorkList; // Scan the entry basic block, adding any alloca's and mallocs to the worklist BasicBlock &BB = F.getEntryNode(); for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) if (AllocationInst *A = dyn_cast(I)) WorkList.push_back(A); // Process the worklist bool Changed = false; while (!WorkList.empty()) { AllocationInst *AI = WorkList.back(); WorkList.pop_back(); // We cannot transform the allocation instruction if it is an array // allocation (allocations OF arrays are ok though), and an allocation of a // scalar value cannot be decomposed at all. // if (AI->isArrayAllocation() || (!isa(AI->getAllocatedType()) && !isa(AI->getAllocatedType()))) continue; // Check that all of the users of the allocation are capable of being // transformed. if (isa(AI->getAllocatedType())) { if (!isSafeStructAllocaToPromote(AI)) continue; } else if (!isSafeArrayAllocaToPromote(AI)) continue; DEBUG(std::cerr << "Found inst to xform: " << *AI); Changed = true; std::vector ElementAllocas; if (const StructType *ST = dyn_cast(AI->getAllocatedType())) { ElementAllocas.reserve(ST->getNumContainedTypes()); for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, AI->getName() + "." + utostr(i), AI); ElementAllocas.push_back(NA); WorkList.push_back(NA); // Add to worklist for recursive processing } } else { const ArrayType *AT = cast(AI->getAllocatedType()); ElementAllocas.reserve(AT->getNumElements()); const Type *ElTy = AT->getElementType(); for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getName() + "." + utostr(i), AI); ElementAllocas.push_back(NA); WorkList.push_back(NA); // Add to worklist for recursive processing } } // Now that we have created the alloca instructions that we want to use, // expand the getelementptr instructions to use them. // for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; ++I) { Instruction *User = cast(*I); if (GetElementPtrInst *GEPI = dyn_cast(User)) { // We now know that the GEP is of the form: GEP , 0, uint64_t Idx = cast(GEPI->getOperand(2))->getRawValue(); assert(Idx < ElementAllocas.size() && "Index out of range?"); AllocaInst *AllocaToUse = ElementAllocas[Idx]; Value *RepValue; if (GEPI->getNumOperands() == 3) { // Do not insert a new getelementptr instruction with zero indices, // only to have it optimized out later. RepValue = AllocaToUse; } else { // We are indexing deeply into the structure, so we still need a // getelement ptr instruction to finish the indexing. This may be // expanded itself once the worklist is rerun. // std::string OldName = GEPI->getName(); // Steal the old name... std::vector NewArgs; NewArgs.push_back(Constant::getNullValue(Type::LongTy)); NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end()); GEPI->setName(""); RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI); } // Move all of the users over to the new GEP. GEPI->replaceAllUsesWith(RepValue); // Delete the old GEP GEPI->getParent()->getInstList().erase(GEPI); } else { assert(0 && "Unexpected instruction type!"); } } // Finally, delete the Alloca instruction AI->getParent()->getInstList().erase(AI); NumReplaced++; } return Changed; } /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an /// aggregate allocation. /// bool SROA::isSafeUseOfAllocation(Instruction *User) { if (GetElementPtrInst *GEPI = dyn_cast(User)) { // The GEP is safe to transform if it is of the form GEP , 0, if (GEPI->getNumOperands() <= 2 || GEPI->getOperand(1) != Constant::getNullValue(Type::LongTy) || !isa(GEPI->getOperand(2)) || isa(GEPI->getOperand(2))) return false; } else { return false; } return true; } /// isSafeElementUse - Check to see if this use is an allowed use for a /// getelementptr instruction of an array aggregate allocation. /// bool SROA::isSafeElementUse(Value *Ptr) { for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end(); I != E; ++I) { Instruction *User = cast(*I); switch (User->getOpcode()) { case Instruction::Load: return true; case Instruction::Store: return User->getOperand(0) != Ptr; case Instruction::GetElementPtr: { GetElementPtrInst *GEP = cast(User); if (GEP->getNumOperands() > 1) { if (!isa(GEP->getOperand(1)) || !cast(GEP->getOperand(1))->isNullValue()) return false; // Using pointer arithmetic to navigate the array... } return isSafeElementUse(GEP); } default: DEBUG(std::cerr << " Transformation preventing inst: " << *User); return false; } } return true; // All users look ok :) } /// isSafeStructAllocaToPromote - Check to see if the specified allocation of a /// structure can be broken down into elements. /// bool SROA::isSafeStructAllocaToPromote(AllocationInst *AI) { // Loop over the use list of the alloca. We can only transform it if all of // the users are safe to transform. // for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; ++I) { if (!isSafeUseOfAllocation(cast(*I))) { DEBUG(std::cerr << "Cannot transform: " << *AI << " due to user: " << *I); return false; } // Pedantic check to avoid breaking broken programs... if (GetElementPtrInst *GEPI = dyn_cast(*I)) if (GEPI->getNumOperands() == 3 && !isSafeElementUse(GEPI)) return false; } return true; } /// isSafeArrayAllocaToPromote - Check to see if the specified allocation of a /// structure can be broken down into elements. /// bool SROA::isSafeArrayAllocaToPromote(AllocationInst *AI) { const ArrayType *AT = cast(AI->getAllocatedType()); int64_t NumElements = AT->getNumElements(); // Loop over the use list of the alloca. We can only transform it if all of // the users are safe to transform. Array allocas have extra constraints to // meet though. // for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; ++I) { Instruction *User = cast(*I); if (!isSafeUseOfAllocation(User)) { DEBUG(std::cerr << "Cannot transform: " << *AI << " due to user: " << User); return false; } // Check to make sure that getelementptr follow the extra rules for arrays: if (GetElementPtrInst *GEPI = dyn_cast(User)) { // Check to make sure that index falls within the array. If not, // something funny is going on, so we won't do the optimization. // if (cast(GEPI->getOperand(2))->getValue() >= NumElements) return false; // Check to make sure that the only thing that uses the resultant pointer // is safe for an array access. For example, code that looks like: // P = &A[0]; P = P + 1 // is legal, and should prevent promotion. // if (!isSafeElementUse(GEPI)) { DEBUG(std::cerr << "Cannot transform: " << *AI << " due to uses of user: " << *GEPI); return false; } } } return true; }