//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions. This destroys SSA information, but is the desired input for // some register allocators. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "phielim" #include "PHIElimination.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Function.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; STATISTIC(NumAtomic, "Number of atomic phis lowered"); STATISTIC(NumSplits, "Number of critical edges split on demand"); static cl::opt SplitEdges("split-phi-edges", cl::desc("Split critical edges during phi elimination"), cl::init(false), cl::Hidden); char PHIElimination::ID = 0; static RegisterPass X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); const PassInfo *const llvm::PHIEliminationID = &X; void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreserved(); if (SplitEdges) { AU.addRequired(); } else { AU.setPreservesCFG(); AU.addPreservedID(MachineLoopInfoID); } MachineFunctionPass::getAnalysisUsage(AU); } bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) { MRI = &Fn.getRegInfo(); PHIDefs.clear(); PHIKills.clear(); bool Changed = false; // Split critical edges to help the coalescer if (SplitEdges) for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) Changed |= SplitPHIEdges(Fn, *I); // Populate VRegPHIUseCount analyzePHINodes(Fn); // Eliminate PHI instructions by inserting copies into predecessor blocks. for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) Changed |= EliminatePHINodes(Fn, *I); // Remove dead IMPLICIT_DEF instructions. for (SmallPtrSet::iterator I = ImpDefs.begin(), E = ImpDefs.end(); I != E; ++I) { MachineInstr *DefMI = *I; unsigned DefReg = DefMI->getOperand(0).getReg(); if (MRI->use_empty(DefReg)) DefMI->eraseFromParent(); } ImpDefs.clear(); VRegPHIUseCount.clear(); return Changed; } /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in /// predecessor basic blocks. /// bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) return false; // Quick exit for basic blocks without PHIs. // Get an iterator to the first instruction after the last PHI node (this may // also be the end of the basic block). MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin()); while (MBB.front().getOpcode() == TargetInstrInfo::PHI) LowerAtomicPHINode(MBB, AfterPHIsIt); return true; } /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node /// are implicit_def's. static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, const MachineRegisterInfo *MRI) { for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { unsigned SrcReg = MPhi->getOperand(i).getReg(); const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) return false; } return true; } // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg // when following the CFG edge to SuccMBB. This needs to be after any def of // SrcReg, but before any subsequent point where control flow might jump out of // the basic block. MachineBasicBlock::iterator llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB, MachineBasicBlock &SuccMBB, unsigned SrcReg) { // Handle the trivial case trivially. if (MBB.empty()) return MBB.begin(); // Usually, we just want to insert the copy before the first terminator // instruction. However, for the edge going to a landing pad, we must insert // the copy before the call/invoke instruction. if (!SuccMBB.isLandingPad()) return MBB.getFirstTerminator(); // Discover any definitions in this basic block. SmallPtrSet DefUsesInMBB; for (MachineRegisterInfo::def_iterator RI = MRI->def_begin(SrcReg), RE = MRI->def_end(); RI != RE; ++RI) { MachineInstr *DefUseMI = &*RI; if (DefUseMI->getParent() == &MBB) DefUsesInMBB.insert(DefUseMI); } MachineBasicBlock::iterator InsertPoint; if (DefUsesInMBB.empty()) { // No defs. Insert the copy at the start of the basic block. InsertPoint = MBB.begin(); } else if (DefUsesInMBB.size() == 1) { // Insert the copy immediately after the def. InsertPoint = *DefUsesInMBB.begin(); ++InsertPoint; } else { // Insert the copy immediately after the last def. InsertPoint = MBB.end(); while (!DefUsesInMBB.count(&*--InsertPoint)) {} ++InsertPoint; } // Make sure the copy goes after any phi nodes however. return SkipPHIsAndLabels(MBB, InsertPoint); } /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, /// under the assuption that it needs to be lowered in a way that supports /// atomic execution of PHIs. This lowering method is always correct all of the /// time. /// void llvm::PHIElimination::LowerAtomicPHINode( MachineBasicBlock &MBB, MachineBasicBlock::iterator AfterPHIsIt) { // Unlink the PHI node from the basic block, but don't delete the PHI yet. MachineInstr *MPhi = MBB.remove(MBB.begin()); unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; unsigned DestReg = MPhi->getOperand(0).getReg(); bool isDead = MPhi->getOperand(0).isDead(); // Create a new register for the incoming PHI arguments. MachineFunction &MF = *MBB.getParent(); const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); unsigned IncomingReg = 0; // Insert a register to register copy at the top of the current block (but // after any remaining phi nodes) which copies the new incoming register // into the phi node destination. const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); if (isSourceDefinedByImplicitDef(MPhi, MRI)) // If all sources of a PHI node are implicit_def, just emit an // implicit_def instead of a copy. BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg); else { IncomingReg = MF.getRegInfo().createVirtualRegister(RC); TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC); } // Record PHI def. assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?"); PHIDefs[DestReg] = &MBB; // Update live variable information if there is any. LiveVariables *LV = getAnalysisIfAvailable(); if (LV) { MachineInstr *PHICopy = prior(AfterPHIsIt); if (IncomingReg) { // Increment use count of the newly created virtual register. LV->getVarInfo(IncomingReg).NumUses++; // Add information to LiveVariables to know that the incoming value is // killed. Note that because the value is defined in several places (once // each for each incoming block), the "def" block and instruction fields // for the VarInfo is not filled in. LV->addVirtualRegisterKilled(IncomingReg, PHICopy); } // Since we are going to be deleting the PHI node, if it is the last use of // any registers, or if the value itself is dead, we need to move this // information over to the new copy we just inserted. LV->removeVirtualRegistersKilled(MPhi); // If the result is dead, update LV. if (isDead) { LV->addVirtualRegisterDead(DestReg, PHICopy); LV->removeVirtualRegisterDead(DestReg, MPhi); } } // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(), MPhi->getOperand(i).getReg())]; // Now loop over all of the incoming arguments, changing them to copy into the // IncomingReg register in the corresponding predecessor basic block. SmallPtrSet MBBsInsertedInto; for (int i = NumSrcs - 1; i >= 0; --i) { unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && "Machine PHI Operands must all be virtual registers!"); // Get the MachineBasicBlock equivalent of the BasicBlock that is the source // path the PHI. MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); // Record the kill. PHIKills[SrcReg].insert(&opBlock); // If source is defined by an implicit def, there is no need to insert a // copy. MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { ImpDefs.insert(DefMI); continue; } // Check to make sure we haven't already emitted the copy for this block. // This can happen because PHI nodes may have multiple entries for the same // basic block. if (!MBBsInsertedInto.insert(&opBlock)) continue; // If the copy has already been emitted, we're done. // Find a safe location to insert the copy, this may be the first terminator // in the block (or end()). MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, MBB, SrcReg); // Insert the copy. TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC); // Now update live variable information if we have it. Otherwise we're done if (!LV) continue; // We want to be able to insert a kill of the register if this PHI (aka, the // copy we just inserted) is the last use of the source value. Live // variable analysis conservatively handles this by saying that the value is // live until the end of the block the PHI entry lives in. If the value // really is dead at the PHI copy, there will be no successor blocks which // have the value live-in. // Also check to see if this register is in use by another PHI node which // has not yet been eliminated. If so, it will be killed at an appropriate // point later. // Is it used by any PHI instructions in this block? bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0; // Okay, if we now know that the value is not live out of the block, we can // add a kill marker in this block saying that it kills the incoming value! if (!ValueIsUsed && !isLiveOut(SrcReg, opBlock, *LV)) { // In our final twist, we have to decide which instruction kills the // register. In most cases this is the copy, however, the first // terminator instruction at the end of the block may also use the value. // In this case, we should mark *it* as being the killing block, not the // copy. MachineBasicBlock::iterator KillInst = prior(InsertPos); MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); if (Term != opBlock.end()) { if (Term->readsRegister(SrcReg)) KillInst = Term; // Check that no other terminators use values. #ifndef NDEBUG for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end(); ++TI) { assert(!TI->readsRegister(SrcReg) && "Terminator instructions cannot use virtual registers unless" "they are the first terminator in a block!"); } #endif } // Finally, mark it killed. LV->addVirtualRegisterKilled(SrcReg, KillInst); // This vreg no longer lives all of the way through opBlock. unsigned opBlockNum = opBlock.getNumber(); LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); } } // Really delete the PHI instruction now! MF.DeleteMachineInstr(MPhi); ++NumAtomic; } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the number of uses of a virtual register which is /// used in a PHI node. We map that to the BB the vreg is coming from. This is /// used later to determine when the vreg is killed in the BB. /// void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(), BBI->getOperand(i).getReg())]; } bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB) { if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) return false; // Quick exit for basic blocks without PHIs. LiveVariables &LV = getAnalysis(); for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) { for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { unsigned Reg = BBI->getOperand(i).getReg(); MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); // We break edges when registers are live out from the predecessor block // (not considering PHI nodes). If the register is live in to this block // anyway, we would gain nothing from splitting. if (isLiveOut(Reg, *PreMBB, LV) && !isLiveIn(Reg, MBB, LV)) SplitCriticalEdge(PreMBB, &MBB); } } return true; } bool llvm::PHIElimination::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB, LiveVariables &LV) { LiveVariables::VarInfo &VI = LV.getVarInfo(Reg); // Loop over all of the successors of the basic block, checking to see if // the value is either live in the block, or if it is killed in the block. std::vector OpSuccBlocks; for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), E = MBB.succ_end(); SI != E; ++SI) { MachineBasicBlock *SuccMBB = *SI; // Is it alive in this successor? unsigned SuccIdx = SuccMBB->getNumber(); if (VI.AliveBlocks.test(SuccIdx)) return true; OpSuccBlocks.push_back(SuccMBB); } // Check to see if this value is live because there is a use in a successor // that kills it. switch (OpSuccBlocks.size()) { case 1: { MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) if (VI.Kills[i]->getParent() == SuccMBB) return true; break; } case 2: { MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) if (VI.Kills[i]->getParent() == SuccMBB1 || VI.Kills[i]->getParent() == SuccMBB2) return true; break; } default: std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), VI.Kills[i]->getParent())) return true; } return false; } bool llvm::PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock &MBB, LiveVariables &LV) { LiveVariables::VarInfo &VI = LV.getVarInfo(Reg); if (VI.AliveBlocks.test(MBB.getNumber())) return true; // defined in MBB? const MachineInstr *Def = MRI->getVRegDef(Reg); if (Def && Def->getParent() == &MBB) return false; // killed in MBB? return VI.findKill(&MBB); } MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A, MachineBasicBlock *B) { assert(A && B && "Missing MBB end point"); ++NumSplits; MachineFunction *MF = A->getParent(); MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); MF->push_back(NMBB); DEBUG(errs() << "PHIElimination splitting critical edge:" " BB#" << A->getNumber() << " -- BB#" << NMBB->getNumber() << " -- BB#" << B->getNumber() << '\n'); A->ReplaceUsesOfBlockWith(B, NMBB); // If A may fall through to B, we may have to insert a branch. if (A->isLayoutSuccessor(B)) A->updateTerminator(); // Insert unconditional "jump B" instruction in NMBB. NMBB->addSuccessor(B); SmallVector Cond; MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond); // Fix PHI nodes in B so they refer to NMBB instead of A for (MachineBasicBlock::iterator i = B->begin(), e = B->end(); i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i) for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) if (i->getOperand(ni+1).getMBB() == A) i->getOperand(ni+1).setMBB(NMBB); if (LiveVariables *LV=getAnalysisIfAvailable()) LV->addNewBlock(NMBB, A); if (MachineDominatorTree *MDT=getAnalysisIfAvailable()) MDT->addNewBlock(NMBB, A); return NMBB; }