//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // // This file defines the interleaved-load-combine pass. The pass searches for // ShuffleVectorInstruction that execute interleaving loads. If a matching // pattern is found, it adds a combined load and further instructions in a // pattern that is detectable by InterleavedAccesPass. The old instructions are // left dead to be removed later. The pass is specifically designed to be // executed just before InterleavedAccesPass to find any left-over instances // that are not detected within former passes. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "interleaved-load-combine" namespace { /// Statistic counter STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); /// Option to disable the pass static cl::opt DisableInterleavedLoadCombine( "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, cl::desc("Disable combining of interleaved loads")); struct VectorInfo; struct InterleavedLoadCombineImpl { public: InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, TargetMachine &TM) : F(F), DT(DT), MSSA(MSSA), TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), TTI(TM.getTargetTransformInfo(F)) {} /// Scan the function for interleaved load candidates and execute the /// replacement if applicable. bool run(); private: /// Function this pass is working on Function &F; /// Dominator Tree Analysis DominatorTree &DT; /// Memory Alias Analyses MemorySSA &MSSA; /// Target Lowering Information const TargetLowering &TLI; /// Target Transform Information const TargetTransformInfo TTI; /// Find the instruction in sets LIs that dominates all others, return nullptr /// if there is none. LoadInst *findFirstLoad(const std::set &LIs); /// Replace interleaved load candidates. It does additional /// analyses if this makes sense. Returns true on success and false /// of nothing has been changed. bool combine(std::list &InterleavedLoad, OptimizationRemarkEmitter &ORE); /// Given a set of VectorInfo containing candidates for a given interleave /// factor, find a set that represents a 'factor' interleaved load. bool findPattern(std::list &Candidates, std::list &InterleavedLoad, unsigned Factor, const DataLayout &DL); }; // InterleavedLoadCombine /// First Order Polynomial on an n-Bit Integer Value /// /// Polynomial(Value) = Value * B + A + E*2^(n-e) /// /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most /// significant bits. It is introduced if an exact computation cannot be proven /// (e.q. division by 2). /// /// As part of this optimization multiple loads will be combined. It necessary /// to prove that loads are within some relative offset to each other. This /// class is used to prove relative offsets of values loaded from memory. /// /// Representing an integer in this form is sound since addition in two's /// complement is associative (trivial) and multiplication distributes over the /// addition (see Proof(1) in Polynomial::mul). Further, both operations /// commute. // // Example: // declare @fn(i64 %IDX, <4 x float>* %PTR) { // %Pa1 = add i64 %IDX, 2 // %Pa2 = lshr i64 %Pa1, 1 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 // %Va = load <4 x float>, <4 x float>* %Pa3 // // %Pb1 = add i64 %IDX, 4 // %Pb2 = lshr i64 %Pb1, 1 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 // %Vb = load <4 x float>, <4 x float>* %Pb3 // ... } // // The goal is to prove that two loads load consecutive addresses. // // In this case the polynomials are constructed by the following // steps. // // The number tag #e specifies the error bits. // // Pa_0 = %IDX #0 // Pa_1 = %IDX + 2 #0 | add 2 // Pa_2 = %IDX/2 + 1 #1 | lshr 1 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components // // Pb_0 = %IDX #0 // Pb_1 = %IDX + 4 #0 | add 2 // Pb_2 = %IDX/2 + 2 #1 | lshr 1 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components // // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset // // Remark: %PTR is not maintained within this class. So in this instance the // offset of 16 can only be assumed if the pointers are equal. // class Polynomial { /// Operations on B enum BOps { LShr, Mul, SExt, Trunc, }; /// Number of Error Bits e unsigned ErrorMSBs; /// Value Value *V; /// Coefficient B SmallVector, 4> B; /// Coefficient A APInt A; public: Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() { IntegerType *Ty = dyn_cast(V->getType()); if (Ty) { ErrorMSBs = 0; this->V = V; A = APInt(Ty->getBitWidth(), 0); } } Polynomial(const APInt &A, unsigned ErrorMSBs = 0) : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {} Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {} Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {} /// Increment and clamp the number of undefined bits. void incErrorMSBs(unsigned amt) { if (ErrorMSBs == (unsigned)-1) return; ErrorMSBs += amt; if (ErrorMSBs > A.getBitWidth()) ErrorMSBs = A.getBitWidth(); } /// Decrement and clamp the number of undefined bits. void decErrorMSBs(unsigned amt) { if (ErrorMSBs == (unsigned)-1) return; if (ErrorMSBs > amt) ErrorMSBs -= amt; else ErrorMSBs = 0; } /// Apply an add on the polynomial Polynomial &add(const APInt &C) { // Note: Addition is associative in two's complement even when in case of // signed overflow. // // Error bits can only propagate into higher significant bits. As these are // already regarded as undefined, there is no change. // // Theorem: Adding a constant to a polynomial does not change the error // term. // // Proof: // // Since the addition is associative and commutes: // // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) // [qed] if (C.getBitWidth() != A.getBitWidth()) { ErrorMSBs = (unsigned)-1; return *this; } A += C; return *this; } /// Apply a multiplication onto the polynomial. Polynomial &mul(const APInt &C) { // Note: Multiplication distributes over the addition // // Theorem: Multiplication distributes over the addition // // Proof(1): // // (B+A)*C =- // = (B + A) + (B + A) + .. {C Times} // addition is associative and commutes, hence // = B + B + .. {C Times} .. + A + A + .. {C times} // = B*C + A*C // (see (function add) for signed values and overflows) // [qed] // // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out // to the left. // // Proof(2): // // Let B' and A' be the n-Bit inputs with some unknown errors EA, // EB at e leading bits. B' and A' can be written down as: // // B' = B + 2^(n-e)*EB // A' = A + 2^(n-e)*EA // // Let C' be an input with c trailing zero bits. C' can be written as // // C' = C*2^c // // Therefore we can compute the result by using distributivity and // commutativity. // // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = // = (B'+A') * C' = // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = // // Let EC be the final error with EC = C*(EB + EA) // // = (B + A)*C' + EC*2^(n-e)*2^c = // = (B + A)*C' + EC*2^(n-(e-c)) // // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c // less error bits than the input. c bits are shifted out to the left. // [qed] if (C.getBitWidth() != A.getBitWidth()) { ErrorMSBs = (unsigned)-1; return *this; } // Multiplying by one is a no-op. if (C.isOneValue()) { return *this; } // Multiplying by zero removes the coefficient B and defines all bits. if (C.isNullValue()) { ErrorMSBs = 0; deleteB(); } // See Proof(2): Trailing zero bits indicate a left shift. This removes // leading bits from the result even if they are undefined. decErrorMSBs(C.countTrailingZeros()); A *= C; pushBOperation(Mul, C); return *this; } /// Apply a logical shift right on the polynomial Polynomial &lshr(const APInt &C) { // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') // where // e' = e + 1, // E is a e-bit number, // E' is a e'-bit number, // holds under the following precondition: // pre(1): A % 2 = 0 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) // where >> expresses a logical shift to the right, with adding zeros. // // We need to show that for every, E there is a E' // // B = b_h * 2^(n-1) + b_m * 2 + b_l // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) // // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers // // Let X = (B + A + E*2^(n-e)) >> 1 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 // // X = [B + A + E*2^(n-e)] >> 1 = // = [ b_h * 2^(n-1) + b_m * 2 + b_l + // + a_h * 2^(n-1) + a_m * 2 + // + E * 2^(n-e) ] >> 1 = // // The sum is built by putting the overflow of [a_m + b+n] into the term // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within // this bit is discarded. This is expressed by % 2. // // The bit in position 0 cannot overflow into the term (b_m + a_m). // // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + // + ((b_m + a_m) % 2^(n-2)) * 2 + // + b_l + E * 2^(n-e) ] >> 1 = // // The shift is computed by dividing the terms by 2 and by cutting off // b_l. // // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + // + ((b_m + a_m) % 2^(n-2)) + // + E * 2^(n-(e+1)) = // // by the definition in the Theorem e+1 = e' // // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + // + ((b_m + a_m) % 2^(n-2)) + // + E * 2^(n-e') = // // Compute Y by applying distributivity first // // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + // + (a_h * 2^(n-1) + a_m * 2) >> 1 + // + E * 2^(n-e) >> 1 = // // Again, the shift is computed by dividing the terms by 2 and by cutting // off b_l. // // = b_h * 2^(n-2) + b_m + // + a_h * 2^(n-2) + a_m + // + E * 2^(n-(e+1)) = // // Again, the sum is built by putting the overflow of [a_m + b+n] into // the term 2^(n-1). But this time there is room for a second bit in the // term 2^(n-2) we add this bit to a new term and denote it o_h in a // second step. // // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + // + ((b_m + a_m) % 2^(n-2)) + // + E * 2^(n-(e+1)) = // // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 // Further replace e+1 by e'. // // = o_h * 2^(n-1) + // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + // + ((b_m + a_m) % 2^(n-2)) + // + E * 2^(n-e') = // // Move o_h into the error term and construct E'. To ensure that there is // no 2^x with negative x, this step requires pre(2) (e < n). // // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + // + ((b_m + a_m) % 2^(n-2)) + // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) // | out of the old exponent // + E * 2^(n-e') = // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + // + ((b_m + a_m) % 2^(n-2)) + // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of // | the old exponent // // Let E' = o_h * 2^(e'-1) + E // // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + // + ((b_m + a_m) % 2^(n-2)) + // + E' * 2^(n-e') // // Because X and Y are distinct only in there error terms and E' can be // constructed as shown the theorem holds. // [qed] // // For completeness in case of the case e=n it is also required to show that // distributivity can be applied. // // In this case Theorem(1) transforms to (the pre-condition on A can also be // dropped) // // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' // where // A, B, E, E' are two's complement numbers with the same bit // width // // Let A + B + E = X // Let (B >> 1) + (A >> 1) = Y // // Therefore we need to show that for every X and Y there is an E' which // makes the equation // // X = Y + E' // // hold. This is trivially the case for E' = X - Y. // // [qed] // // Remark: Distributing lshr with and arbitrary number n can be expressed as // ((((B + A) lshr 1) lshr 1) ... ) {n times}. // This construction induces n additional error bits at the left. if (C.getBitWidth() != A.getBitWidth()) { ErrorMSBs = (unsigned)-1; return *this; } if (C.isNullValue()) return *this; // Test if the result will be zero unsigned shiftAmt = C.getZExtValue(); if (shiftAmt >= C.getBitWidth()) return mul(APInt(C.getBitWidth(), 0)); // The proof that shiftAmt LSBs are zero for at least one summand is only // possible for the constant number. // // If this can be proven add shiftAmt to the error counter // `ErrorMSBs`. Otherwise set all bits as undefined. if (A.countTrailingZeros() < shiftAmt) ErrorMSBs = A.getBitWidth(); else incErrorMSBs(shiftAmt); // Apply the operation. pushBOperation(LShr, C); A = A.lshr(shiftAmt); return *this; } /// Apply a sign-extend or truncate operation on the polynomial. Polynomial &sextOrTrunc(unsigned n) { if (n < A.getBitWidth()) { // Truncate: Clearly undefined Bits on the MSB side are removed // if there are any. decErrorMSBs(A.getBitWidth() - n); A = A.trunc(n); pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); } if (n > A.getBitWidth()) { // Extend: Clearly extending first and adding later is different // to adding first and extending later in all extended bits. incErrorMSBs(n - A.getBitWidth()); A = A.sext(n); pushBOperation(SExt, APInt(sizeof(n) * 8, n)); } return *this; } /// Test if there is a coefficient B. bool isFirstOrder() const { return V != nullptr; } /// Test coefficient B of two Polynomials are equal. bool isCompatibleTo(const Polynomial &o) const { // The polynomial use different bit width. if (A.getBitWidth() != o.A.getBitWidth()) return false; // If neither Polynomial has the Coefficient B. if (!isFirstOrder() && !o.isFirstOrder()) return true; // The index variable is different. if (V != o.V) return false; // Check the operations. if (B.size() != o.B.size()) return false; auto ob = o.B.begin(); for (auto &b : B) { if (b != *ob) return false; ob++; } return true; } /// Subtract two polynomials, return an undefined polynomial if /// subtraction is not possible. Polynomial operator-(const Polynomial &o) const { // Return an undefined polynomial if incompatible. if (!isCompatibleTo(o)) return Polynomial(); // If the polynomials are compatible (meaning they have the same // coefficient on B), B is eliminated. Thus a polynomial solely // containing A is returned return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); } /// Subtract a constant from a polynomial, Polynomial operator-(uint64_t C) const { Polynomial Result(*this); Result.A -= C; return Result; } /// Add a constant to a polynomial, Polynomial operator+(uint64_t C) const { Polynomial Result(*this); Result.A += C; return Result; } /// Returns true if it can be proven that two Polynomials are equal. bool isProvenEqualTo(const Polynomial &o) { // Subtract both polynomials and test if it is fully defined and zero. Polynomial r = *this - o; return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue()); } /// Print the polynomial into a stream. void print(raw_ostream &OS) const { OS << "[{#ErrBits:" << ErrorMSBs << "} "; if (V) { for (auto b : B) OS << "("; OS << "(" << *V << ") "; for (auto b : B) { switch (b.first) { case LShr: OS << "LShr "; break; case Mul: OS << "Mul "; break; case SExt: OS << "SExt "; break; case Trunc: OS << "Trunc "; break; } OS << b.second << ") "; } } OS << "+ " << A << "]"; } private: void deleteB() { V = nullptr; B.clear(); } void pushBOperation(const BOps Op, const APInt &C) { if (isFirstOrder()) { B.push_back(std::make_pair(Op, C)); return; } } }; /// VectorInfo stores abstract the following information for each vector /// element: /// /// 1) The the memory address loaded into the element as Polynomial /// 2) a set of load instruction necessary to construct the vector, /// 3) a set of all other instructions that are necessary to create the vector and /// 4) a pointer value that can be used as relative base for all elements. struct VectorInfo { private: VectorInfo(const VectorInfo &c) : VTy(c.VTy) { llvm_unreachable( "Copying VectorInfo is neither implemented nor necessary,"); } public: /// Information of a Vector Element struct ElementInfo { /// Offset Polynomial. Polynomial Ofs; /// The Load Instruction used to Load the entry. LI is null if the pointer /// of the load instruction does not point on to the entry LoadInst *LI; ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) : Ofs(Offset), LI(LI) {} }; /// Basic-block the load instructions are within BasicBlock *BB; /// Pointer value of all participation load instructions Value *PV; /// Participating load instructions std::set LIs; /// Participating instructions std::set Is; /// Final shuffle-vector instruction ShuffleVectorInst *SVI; /// Information of the offset for each vector element ElementInfo *EI; /// Vector Type VectorType *const VTy; VectorInfo(VectorType *VTy) : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) { EI = new ElementInfo[VTy->getNumElements()]; } virtual ~VectorInfo() { delete[] EI; } unsigned getDimension() const { return VTy->getNumElements(); } /// Test if the VectorInfo can be part of an interleaved load with the /// specified factor. /// /// \param Factor of the interleave /// \param DL Targets Datalayout /// /// \returns true if this is possible and false if not bool isInterleaved(unsigned Factor, const DataLayout &DL) const { unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); for (unsigned i = 1; i < getDimension(); i++) { if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { return false; } } return true; } /// Recursively computes the vector information stored in V. /// /// This function delegates the work to specialized implementations /// /// \param V Value to operate on /// \param Result Result of the computation /// /// \returns false if no sensible information can be gathered. static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { ShuffleVectorInst *SVI = dyn_cast(V); if (SVI) return computeFromSVI(SVI, Result, DL); LoadInst *LI = dyn_cast(V); if (LI) return computeFromLI(LI, Result, DL); BitCastInst *BCI = dyn_cast(V); if (BCI) return computeFromBCI(BCI, Result, DL); return false; } /// BitCastInst specialization to compute the vector information. /// /// \param BCI BitCastInst to operate on /// \param Result Result of the computation /// /// \returns false if no sensible information can be gathered. static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, const DataLayout &DL) { Instruction *Op = dyn_cast(BCI->getOperand(0)); if (!Op) return false; VectorType *VTy = dyn_cast(Op->getType()); if (!VTy) return false; // We can only cast from large to smaller vectors if (Result.VTy->getNumElements() % VTy->getNumElements()) return false; unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); if (NewSize * Factor != OldSize) return false; VectorInfo Old(VTy); if (!compute(Op, Old, DL)) return false; for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { for (unsigned j = 0; j < Factor; j++) { Result.EI[i + j] = ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, j == 0 ? Old.EI[i / Factor].LI : nullptr); } } Result.BB = Old.BB; Result.PV = Old.PV; Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); Result.Is.insert(Old.Is.begin(), Old.Is.end()); Result.Is.insert(BCI); Result.SVI = nullptr; return true; } /// ShuffleVectorInst specialization to compute vector information. /// /// \param SVI ShuffleVectorInst to operate on /// \param Result Result of the computation /// /// Compute the left and the right side vector information and merge them by /// applying the shuffle operation. This function also ensures that the left /// and right side have compatible loads. This means that all loads are with /// in the same basic block and are based on the same pointer. /// /// \returns false if no sensible information can be gathered. static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, const DataLayout &DL) { VectorType *ArgTy = dyn_cast(SVI->getOperand(0)->getType()); assert(ArgTy && "ShuffleVector Operand is not a VectorType"); // Compute the left hand vector information. VectorInfo LHS(ArgTy); if (!compute(SVI->getOperand(0), LHS, DL)) LHS.BB = nullptr; // Compute the right hand vector information. VectorInfo RHS(ArgTy); if (!compute(SVI->getOperand(1), RHS, DL)) RHS.BB = nullptr; // Neither operand produced sensible results? if (!LHS.BB && !RHS.BB) return false; // Only RHS produced sensible results? else if (!LHS.BB) { Result.BB = RHS.BB; Result.PV = RHS.PV; } // Only LHS produced sensible results? else if (!RHS.BB) { Result.BB = LHS.BB; Result.PV = LHS.PV; } // Both operands produced sensible results? else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { Result.BB = LHS.BB; Result.PV = LHS.PV; } // Both operands produced sensible results but they are incompatible. else { return false; } // Merge and apply the operation on the offset information. if (LHS.BB) { Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); } if (RHS.BB) { Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); } Result.Is.insert(SVI); Result.SVI = SVI; int j = 0; for (int i : SVI->getShuffleMask()) { assert((i < 2 * (signed)ArgTy->getNumElements()) && "Invalid ShuffleVectorInst (index out of bounds)"); if (i < 0) Result.EI[j] = ElementInfo(); else if (i < (signed)ArgTy->getNumElements()) { if (LHS.BB) Result.EI[j] = LHS.EI[i]; else Result.EI[j] = ElementInfo(); } else { if (RHS.BB) Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; else Result.EI[j] = ElementInfo(); } j++; } return true; } /// LoadInst specialization to compute vector information. /// /// This function also acts as abort condition to the recursion. /// /// \param LI LoadInst to operate on /// \param Result Result of the computation /// /// \returns false if no sensible information can be gathered. static bool computeFromLI(LoadInst *LI, VectorInfo &Result, const DataLayout &DL) { Value *BasePtr; Polynomial Offset; if (LI->isVolatile()) return false; if (LI->isAtomic()) return false; // Get the base polynomial computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); Result.BB = LI->getParent(); Result.PV = BasePtr; Result.LIs.insert(LI); Result.Is.insert(LI); for (unsigned i = 0; i < Result.getDimension(); i++) { Value *Idx[2] = { ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), }; int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2)); Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); } return true; } /// Recursively compute polynomial of a value. /// /// \param BO Input binary operation /// \param Result Result polynomial static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { Value *LHS = BO.getOperand(0); Value *RHS = BO.getOperand(1); // Find the RHS Constant if any ConstantInt *C = dyn_cast(RHS); if ((!C) && BO.isCommutative()) { C = dyn_cast(LHS); if (C) std::swap(LHS, RHS); } switch (BO.getOpcode()) { case Instruction::Add: if (!C) break; computePolynomial(*LHS, Result); Result.add(C->getValue()); return; case Instruction::LShr: if (!C) break; computePolynomial(*LHS, Result); Result.lshr(C->getValue()); return; default: break; } Result = Polynomial(&BO); } /// Recursively compute polynomial of a value /// /// \param V input value /// \param Result result polynomial static void computePolynomial(Value &V, Polynomial &Result) { if (isa(&V)) computePolynomialBinOp(*dyn_cast(&V), Result); else Result = Polynomial(&V); } /// Compute the Polynomial representation of a Pointer type. /// /// \param Ptr input pointer value /// \param Result result polynomial /// \param BasePtr pointer the polynomial is based on /// \param DL Datalayout of the target machine static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, Value *&BasePtr, const DataLayout &DL) { // Not a pointer type? Return an undefined polynomial PointerType *PtrTy = dyn_cast(Ptr.getType()); if (!PtrTy) { Result = Polynomial(); BasePtr = nullptr; } unsigned PointerBits = DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); /// Skip pointer casts. Return Zero polynomial otherwise if (isa(&Ptr)) { CastInst &CI = *cast(&Ptr); switch (CI.getOpcode()) { case Instruction::BitCast: computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); break; default: BasePtr = &Ptr; Polynomial(PointerBits, 0); break; } } /// Resolve GetElementPtrInst. else if (isa(&Ptr)) { GetElementPtrInst &GEP = *cast(&Ptr); APInt BaseOffset(PointerBits, 0); // Check if we can compute the Offset with accumulateConstantOffset if (GEP.accumulateConstantOffset(DL, BaseOffset)) { Result = Polynomial(BaseOffset); BasePtr = GEP.getPointerOperand(); return; } else { // Otherwise we allow that the last index operand of the GEP is // non-constant. unsigned idxOperand, e; SmallVector Indices; for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; idxOperand++) { ConstantInt *IDX = dyn_cast(GEP.getOperand(idxOperand)); if (!IDX) break; Indices.push_back(IDX); } // It must also be the last operand. if (idxOperand + 1 != e) { Result = Polynomial(); BasePtr = nullptr; return; } // Compute the polynomial of the index operand. computePolynomial(*GEP.getOperand(idxOperand), Result); // Compute base offset from zero based index, excluding the last // variable operand. BaseOffset = DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); // Apply the operations of GEP to the polynomial. unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); Result.sextOrTrunc(PointerBits); Result.mul(APInt(PointerBits, ResultSize)); Result.add(BaseOffset); BasePtr = GEP.getPointerOperand(); } } // All other instructions are handled by using the value as base pointer and // a zero polynomial. else { BasePtr = &Ptr; Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); } } #ifndef NDEBUG void print(raw_ostream &OS) const { if (PV) OS << *PV; else OS << "(none)"; OS << " + "; for (unsigned i = 0; i < getDimension(); i++) OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; OS << "]"; } #endif }; #ifndef NDEBUG static raw_ostream &operator<<(raw_ostream &OS, const VectorInfo &S) { S.print(OS); return OS; } #endif } // anonymous namespace bool InterleavedLoadCombineImpl::findPattern( std::list &Candidates, std::list &InterleavedLoad, unsigned Factor, const DataLayout &DL) { for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { unsigned i; // Try to find an interleaved load using the front of Worklist as first line unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); // List containing iterators pointing to the VectorInfos of the candidates std::vector::iterator> Res(Factor, Candidates.end()); for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { if (C->VTy != C0->VTy) continue; if (C->BB != C0->BB) continue; if (C->PV != C0->PV) continue; // Check the current value matches any of factor - 1 remaining lines for (i = 1; i < Factor; i++) { if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { Res[i] = C; } } for (i = 1; i < Factor; i++) { if (Res[i] == Candidates.end()) break; } if (i == Factor) { Res[0] = C0; break; } } if (Res[0] != Candidates.end()) { // Move the result into the output for (unsigned i = 0; i < Factor; i++) { InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); } return true; } } return false; } LoadInst * InterleavedLoadCombineImpl::findFirstLoad(const std::set &LIs) { assert(!LIs.empty() && "No load instructions given."); // All LIs are within the same BB. Select the first for a reference. BasicBlock *BB = (*LIs.begin())->getParent(); BasicBlock::iterator FLI = std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); assert(FLI != BB->end()); return cast(FLI); } bool InterleavedLoadCombineImpl::combine(std::list &InterleavedLoad, OptimizationRemarkEmitter &ORE) { LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); // The insertion point is the LoadInst which loads the first values. The // following tests are used to proof that the combined load can be inserted // just before InsertionPoint. LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; // Test if the offset is computed if (!InsertionPoint) return false; std::set LIs; std::set Is; std::set SVIs; unsigned InterleavedCost; unsigned InstructionCost = 0; // Get the interleave factor unsigned Factor = InterleavedLoad.size(); // Merge all input sets used in analysis for (auto &VI : InterleavedLoad) { // Generate a set of all load instructions to be combined LIs.insert(VI.LIs.begin(), VI.LIs.end()); // Generate a set of all instructions taking part in load // interleaved. This list excludes the instructions necessary for the // polynomial construction. Is.insert(VI.Is.begin(), VI.Is.end()); // Generate the set of the final ShuffleVectorInst. SVIs.insert(VI.SVI); } // There is nothing to combine. if (LIs.size() < 2) return false; // Test if all participating instruction will be dead after the // transformation. If intermediate results are used, no performance gain can // be expected. Also sum the cost of the Instructions beeing left dead. for (auto &I : Is) { // Compute the old cost InstructionCost += TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency); // The final SVIs are allowed not to be dead, all uses will be replaced if (SVIs.find(I) != SVIs.end()) continue; // If there are users outside the set to be eliminated, we abort the // transformation. No gain can be expected. for (const auto &U : I->users()) { if (Is.find(dyn_cast(U)) == Is.end()) return false; } } // We know that all LoadInst are within the same BB. This guarantees that // either everything or nothing is loaded. LoadInst *First = findFirstLoad(LIs); // To be safe that the loads can be combined, iterate over all loads and test // that the corresponding defining access dominates first LI. This guarantees // that there are no aliasing stores in between the loads. auto FMA = MSSA.getMemoryAccess(First); for (auto LI : LIs) { auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); if (!MSSA.dominates(MADef, FMA)) return false; } assert(!LIs.empty() && "There are no LoadInst to combine"); // It is necessary that insertion point dominates all final ShuffleVectorInst. for (auto &VI : InterleavedLoad) { if (!DT.dominates(InsertionPoint, VI.SVI)) return false; } // All checks are done. Add instructions detectable by InterleavedAccessPass // The old instruction will are left dead. IRBuilder<> Builder(InsertionPoint); Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); unsigned ElementsPerSVI = InterleavedLoad.front().SVI->getType()->getNumElements(); VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI); SmallVector Indices; for (unsigned i = 0; i < Factor; i++) Indices.push_back(i); InterleavedCost = TTI.getInterleavedMemoryOpCost( Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(), InsertionPoint->getPointerAddressSpace()); if (InterleavedCost >= InstructionCost) { return false; } // Create a pointer cast for the wide load. auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0), ILTy->getPointerTo(), "interleaved.wide.ptrcast"); // Create the wide load and update the MemorySSA. auto LI = Builder.CreateAlignedLoad(CI, InsertionPoint->getAlignment(), "interleaved.wide.load"); auto MSSAU = MemorySSAUpdater(&MSSA); MemoryUse *MSSALoad = cast(MSSAU.createMemoryAccessBefore( LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); MSSAU.insertUse(MSSALoad); // Create the final SVIs and replace all uses. int i = 0; for (auto &VI : InterleavedLoad) { SmallVector Mask; for (unsigned j = 0; j < ElementsPerSVI; j++) Mask.push_back(i + j * Factor); Builder.SetInsertPoint(VI.SVI); auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()), Mask, "interleaved.shuffle"); VI.SVI->replaceAllUsesWith(SVI); i++; } NumInterleavedLoadCombine++; ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) << "Load interleaved combined with factor " << ore::NV("Factor", Factor); }); return true; } bool InterleavedLoadCombineImpl::run() { OptimizationRemarkEmitter ORE(&F); bool changed = false; unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); auto &DL = F.getParent()->getDataLayout(); // Start with the highest factor to avoid combining and recombining. for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { std::list Candidates; for (BasicBlock &BB : F) { for (Instruction &I : BB) { if (auto SVI = dyn_cast(&I)) { Candidates.emplace_back(SVI->getType()); if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { Candidates.pop_back(); continue; } if (!Candidates.back().isInterleaved(Factor, DL)) { Candidates.pop_back(); } } } } std::list InterleavedLoad; while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { if (combine(InterleavedLoad, ORE)) { changed = true; } else { // Remove the first element of the Interleaved Load but put the others // back on the list and continue searching Candidates.splice(Candidates.begin(), InterleavedLoad, std::next(InterleavedLoad.begin()), InterleavedLoad.end()); } InterleavedLoad.clear(); } } return changed; } namespace { /// This pass combines interleaved loads into a pattern detectable by /// InterleavedAccessPass. struct InterleavedLoadCombine : public FunctionPass { static char ID; InterleavedLoadCombine() : FunctionPass(ID) { initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Interleaved Load Combine Pass"; } bool runOnFunction(Function &F) override { if (DisableInterleavedLoadCombine) return false; auto *TPC = getAnalysisIfAvailable(); if (!TPC) return false; LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); return InterleavedLoadCombineImpl( F, getAnalysis().getDomTree(), getAnalysis().getMSSA(), TPC->getTM()) .run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); FunctionPass::getAnalysisUsage(AU); } private: }; } // anonymous namespace char InterleavedLoadCombine::ID = 0; INITIALIZE_PASS_BEGIN( InterleavedLoadCombine, DEBUG_TYPE, "Combine interleaved loads into wide loads and shufflevector instructions", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END( InterleavedLoadCombine, DEBUG_TYPE, "Combine interleaved loads into wide loads and shufflevector instructions", false, false) FunctionPass * llvm::createInterleavedLoadCombinePass() { auto P = new InterleavedLoadCombine(); return P; }