//===-- X86InstrInfo.td - Main X86 Instruction Definition --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // X86 specific DAG Nodes. // def SDTIntShiftDOp: SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3>]>; def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisSameAs<1, 2>]>; def SDTX86Cmpsd : SDTypeProfile<1, 3, [SDTCisVT<0, f64>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>; def SDTX86Cmpss : SDTypeProfile<1, 3, [SDTCisVT<0, f32>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>; def SDTX86Cmov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>, SDTCisVT<4, i32>]>; // Unary and binary operator instructions that set EFLAGS as a side-effect. def SDTUnaryArithWithFlags : SDTypeProfile<2, 1, [SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTBinaryArithWithFlags : SDTypeProfile<2, 2, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>]>; // SDTBinaryArithWithFlagsInOut - RES1, EFLAGS = op LHS, RHS, EFLAGS def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>, SDTCisVT<4, i32>]>; // RES1, RES2, FLAGS = op LHS, RHS def SDT2ResultBinaryArithWithFlags : SDTypeProfile<3, 2, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTX86BrCond : SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86SetCC : SDTypeProfile<1, 2, [SDTCisVT<0, i8>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86SetCC_C : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86sahf : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i8>]>; def SDTX86rdrand : SDTypeProfile<2, 0, [SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>, SDTCisVT<2, i8>]>; def SDTX86caspair : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def SDTX86atomicBinary : SDTypeProfile<2, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisPtrTy<2>, SDTCisInt<3>,SDTCisInt<4>]>; def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i16>]>; def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>, SDTCisVT<1, iPTR>, SDTCisVT<2, iPTR>]>; def SDT_X86VAARG_64 : SDTypeProfile<1, -1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVT<3, i8>, SDTCisVT<4, i32>]>; def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>; def SDTX86Void : SDTypeProfile<0, 0, []>; def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TLSBASEADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86SEG_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>; def SDT_X86WIN_FTOL : SDTypeProfile<0, 1, [SDTCisFP<0>]>; def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>; def SDT_X86MEMBARRIER : SDTypeProfile<0, 0, []>; def X86MemBarrier : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIER, [SDNPHasChain,SDNPSideEffect]>; def X86MFence : SDNode<"X86ISD::MFENCE", SDT_X86MEMBARRIER, [SDNPHasChain]>; def X86SFence : SDNode<"X86ISD::SFENCE", SDT_X86MEMBARRIER, [SDNPHasChain]>; def X86LFence : SDNode<"X86ISD::LFENCE", SDT_X86MEMBARRIER, [SDNPHasChain]>; def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>; def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>; def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>; def X86shrd : SDNode<"X86ISD::SHRD", SDTIntShiftDOp>; def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>; def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>; def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>; def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond, [SDNPHasChain]>; def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>; def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>; def X86sahf : SDNode<"X86ISD::SAHF", SDTX86sahf>; def X86rdrand : SDNode<"X86ISD::RDRAND", SDTX86rdrand, [SDNPHasChain, SDNPSideEffect]>; def X86rdseed : SDNode<"X86ISD::RDSEED", SDTX86rdrand, [SDNPHasChain, SDNPSideEffect]>; def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86caspair, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86cas16 : SDNode<"X86ISD::LCMPXCHG16_DAG", SDTX86caspair, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomAdd64 : SDNode<"X86ISD::ATOMADD64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomSub64 : SDNode<"X86ISD::ATOMSUB64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomOr64 : SDNode<"X86ISD::ATOMOR64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomXor64 : SDNode<"X86ISD::ATOMXOR64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomAnd64 : SDNode<"X86ISD::ATOMAND64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomNand64 : SDNode<"X86ISD::ATOMNAND64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def X86vastart_save_xmm_regs : SDNode<"X86ISD::VASTART_SAVE_XMM_REGS", SDT_X86VASTART_SAVE_XMM_REGS, [SDNPHasChain, SDNPVariadic]>; def X86vaarg64 : SDNode<"X86ISD::VAARG_64", SDT_X86VAARG_64, [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>; def X86callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def X86callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86call : SDNode<"X86ISD::CALL", SDT_X86Call, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore]>; def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad]>; def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG", SDTX86Void, [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>; def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>; def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86tlsbaseaddr : SDNode<"X86ISD::TLSBASEADDR", SDT_X86TLSBASEADDR, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET, [SDNPHasChain]>; def X86eh_sjlj_setjmp : SDNode<"X86ISD::EH_SJLJ_SETJMP", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, [SDNPHasChain, SDNPSideEffect]>; def X86eh_sjlj_longjmp : SDNode<"X86ISD::EH_SJLJ_LONGJMP", SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPSideEffect]>; def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>; def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86umul_flag : SDNode<"X86ISD::UMUL", SDT2ResultBinaryArithWithFlags, [SDNPCommutative]>; def X86adc_flag : SDNode<"X86ISD::ADC", SDTBinaryArithWithFlagsInOut>; def X86sbb_flag : SDNode<"X86ISD::SBB", SDTBinaryArithWithFlagsInOut>; def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>; def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>; def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86blsi : SDNode<"X86ISD::BLSI", SDTIntUnaryOp>; def X86blsmsk : SDNode<"X86ISD::BLSMSK", SDTIntUnaryOp>; def X86blsr : SDNode<"X86ISD::BLSR", SDTIntUnaryOp>; def X86bzhi : SDNode<"X86ISD::BZHI", SDTIntShiftOp>; def X86bextr : SDNode<"X86ISD::BEXTR", SDTIntShiftOp>; def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>; def X86WinAlloca : SDNode<"X86ISD::WIN_ALLOCA", SDTX86Void, [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA, [SDNPHasChain]>; def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86WinFTOL : SDNode<"X86ISD::WIN_FTOL", SDT_X86WIN_FTOL, [SDNPHasChain, SDNPOutGlue]>; //===----------------------------------------------------------------------===// // X86 Operand Definitions. // // A version of ptr_rc which excludes SP, ESP, and RSP. This is used for // the index operand of an address, to conform to x86 encoding restrictions. def ptr_rc_nosp : PointerLikeRegClass<1>; // *mem - Operand definitions for the funky X86 addressing mode operands. // def X86MemAsmOperand : AsmOperandClass { let Name = "Mem"; } def X86Mem8AsmOperand : AsmOperandClass { let Name = "Mem8"; let RenderMethod = "addMemOperands"; } def X86Mem16AsmOperand : AsmOperandClass { let Name = "Mem16"; let RenderMethod = "addMemOperands"; } def X86Mem32AsmOperand : AsmOperandClass { let Name = "Mem32"; let RenderMethod = "addMemOperands"; } def X86Mem64AsmOperand : AsmOperandClass { let Name = "Mem64"; let RenderMethod = "addMemOperands"; } def X86Mem80AsmOperand : AsmOperandClass { let Name = "Mem80"; let RenderMethod = "addMemOperands"; } def X86Mem128AsmOperand : AsmOperandClass { let Name = "Mem128"; let RenderMethod = "addMemOperands"; } def X86Mem256AsmOperand : AsmOperandClass { let Name = "Mem256"; let RenderMethod = "addMemOperands"; } def X86Mem512AsmOperand : AsmOperandClass { let Name = "Mem512"; let RenderMethod = "addMemOperands"; } // Gather mem operands def X86MemVX32Operand : AsmOperandClass { let Name = "MemVX32"; let RenderMethod = "addMemOperands"; } def X86MemVY32Operand : AsmOperandClass { let Name = "MemVY32"; let RenderMethod = "addMemOperands"; } def X86MemVZ32Operand : AsmOperandClass { let Name = "MemVZ32"; let RenderMethod = "addMemOperands"; } def X86MemVX64Operand : AsmOperandClass { let Name = "MemVX64"; let RenderMethod = "addMemOperands"; } def X86MemVY64Operand : AsmOperandClass { let Name = "MemVY64"; let RenderMethod = "addMemOperands"; } def X86MemVZ64Operand : AsmOperandClass { let Name = "MemVZ64"; let RenderMethod = "addMemOperands"; } def X86AbsMemAsmOperand : AsmOperandClass { let Name = "AbsMem"; let SuperClasses = [X86MemAsmOperand]; } class X86MemOperand : Operand { let PrintMethod = printMethod; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } let OperandType = "OPERAND_MEMORY" in { def opaque32mem : X86MemOperand<"printopaquemem">; def opaque48mem : X86MemOperand<"printopaquemem">; def opaque80mem : X86MemOperand<"printopaquemem">; def opaque512mem : X86MemOperand<"printopaquemem">; def i8mem : X86MemOperand<"printi8mem"> { let ParserMatchClass = X86Mem8AsmOperand; } def i16mem : X86MemOperand<"printi16mem"> { let ParserMatchClass = X86Mem16AsmOperand; } def i32mem : X86MemOperand<"printi32mem"> { let ParserMatchClass = X86Mem32AsmOperand; } def i64mem : X86MemOperand<"printi64mem"> { let ParserMatchClass = X86Mem64AsmOperand; } def i128mem : X86MemOperand<"printi128mem"> { let ParserMatchClass = X86Mem128AsmOperand; } def i256mem : X86MemOperand<"printi256mem"> { let ParserMatchClass = X86Mem256AsmOperand; } def i512mem : X86MemOperand<"printi512mem"> { let ParserMatchClass = X86Mem512AsmOperand; } def f32mem : X86MemOperand<"printf32mem"> { let ParserMatchClass = X86Mem32AsmOperand; } def f64mem : X86MemOperand<"printf64mem"> { let ParserMatchClass = X86Mem64AsmOperand; } def f80mem : X86MemOperand<"printf80mem"> { let ParserMatchClass = X86Mem80AsmOperand; } def f128mem : X86MemOperand<"printf128mem"> { let ParserMatchClass = X86Mem128AsmOperand; } def f256mem : X86MemOperand<"printf256mem">{ let ParserMatchClass = X86Mem256AsmOperand; } def f512mem : X86MemOperand<"printf512mem">{ let ParserMatchClass = X86Mem512AsmOperand; } def v512mem : Operand { let PrintMethod = "printf512mem"; let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm); let ParserMatchClass = X86Mem512AsmOperand; } // Gather mem operands def vx32mem : X86MemOperand<"printi32mem">{ let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm); let ParserMatchClass = X86MemVX32Operand; } def vy32mem : X86MemOperand<"printi32mem">{ let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm); let ParserMatchClass = X86MemVY32Operand; } def vx64mem : X86MemOperand<"printi64mem">{ let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm); let ParserMatchClass = X86MemVX64Operand; } def vy64mem : X86MemOperand<"printi64mem">{ let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm); let ParserMatchClass = X86MemVY64Operand; } def vy64xmem : X86MemOperand<"printi64mem">{ let MIOperandInfo = (ops ptr_rc, i8imm, VR256X, i32imm, i8imm); let ParserMatchClass = X86MemVY64Operand; } def vz32mem : X86MemOperand<"printi32mem">{ let MIOperandInfo = (ops ptr_rc, i16imm, VR512, i32imm, i8imm); let ParserMatchClass = X86MemVZ32Operand; } def vz64mem : X86MemOperand<"printi64mem">{ let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm); let ParserMatchClass = X86MemVZ64Operand; } } // A version of i8mem for use on x86-64 that uses GR64_NOREX instead of // plain GR64, so that it doesn't potentially require a REX prefix. def i8mem_NOREX : Operand { let PrintMethod = "printi8mem"; let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm); let ParserMatchClass = X86Mem8AsmOperand; let OperandType = "OPERAND_MEMORY"; } // GPRs available for tailcall. // It represents GR32_TC, GR64_TC or GR64_TCW64. def ptr_rc_tailcall : PointerLikeRegClass<2>; // Special i32mem for addresses of load folding tail calls. These are not // allowed to use callee-saved registers since they must be scheduled // after callee-saved register are popped. def i32mem_TC : Operand { let PrintMethod = "printi32mem"; let MIOperandInfo = (ops ptr_rc_tailcall, i8imm, ptr_rc_tailcall, i32imm, i8imm); let ParserMatchClass = X86Mem32AsmOperand; let OperandType = "OPERAND_MEMORY"; } // Special i64mem for addresses of load folding tail calls. These are not // allowed to use callee-saved registers since they must be scheduled // after callee-saved register are popped. def i64mem_TC : Operand { let PrintMethod = "printi64mem"; let MIOperandInfo = (ops ptr_rc_tailcall, i8imm, ptr_rc_tailcall, i32imm, i8imm); let ParserMatchClass = X86Mem64AsmOperand; let OperandType = "OPERAND_MEMORY"; } let OperandType = "OPERAND_PCREL", ParserMatchClass = X86AbsMemAsmOperand, PrintMethod = "printPCRelImm" in { def i32imm_pcrel : Operand; def i16imm_pcrel : Operand; // Branch targets have OtherVT type and print as pc-relative values. def brtarget : Operand; def brtarget8 : Operand; } def X86MemOffs8AsmOperand : AsmOperandClass { let Name = "MemOffs8"; let RenderMethod = "addMemOffsOperands"; let SuperClasses = [X86Mem8AsmOperand]; } def X86MemOffs16AsmOperand : AsmOperandClass { let Name = "MemOffs16"; let RenderMethod = "addMemOffsOperands"; let SuperClasses = [X86Mem16AsmOperand]; } def X86MemOffs32AsmOperand : AsmOperandClass { let Name = "MemOffs32"; let RenderMethod = "addMemOffsOperands"; let SuperClasses = [X86Mem32AsmOperand]; } def X86MemOffs64AsmOperand : AsmOperandClass { let Name = "MemOffs64"; let RenderMethod = "addMemOffsOperands"; let SuperClasses = [X86Mem64AsmOperand]; } let OperandType = "OPERAND_MEMORY" in { def offset8 : Operand { let ParserMatchClass = X86MemOffs8AsmOperand; let PrintMethod = "printMemOffs8"; } def offset16 : Operand { let ParserMatchClass = X86MemOffs16AsmOperand; let PrintMethod = "printMemOffs16"; } def offset32 : Operand { let ParserMatchClass = X86MemOffs32AsmOperand; let PrintMethod = "printMemOffs32"; } def offset64 : Operand { let ParserMatchClass = X86MemOffs64AsmOperand; let PrintMethod = "printMemOffs64"; } } def SSECC : Operand { let PrintMethod = "printSSECC"; let OperandType = "OPERAND_IMMEDIATE"; } def AVXCC : Operand { let PrintMethod = "printAVXCC"; let OperandType = "OPERAND_IMMEDIATE"; } class ImmSExtAsmOperandClass : AsmOperandClass { let SuperClasses = [ImmAsmOperand]; let RenderMethod = "addImmOperands"; } class ImmZExtAsmOperandClass : AsmOperandClass { let SuperClasses = [ImmAsmOperand]; let RenderMethod = "addImmOperands"; } // Sign-extended immediate classes. We don't need to define the full lattice // here because there is no instruction with an ambiguity between ImmSExti64i32 // and ImmSExti32i8. // // The strange ranges come from the fact that the assembler always works with // 64-bit immediates, but for a 16-bit target value we want to accept both "-1" // (which will be a -1ULL), and "0xFF" (-1 in 16-bits). // [0, 0x7FFFFFFF] | // [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i32"; } // [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] | // [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti16i8"; let SuperClasses = [ImmSExti64i32AsmOperand]; } // [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] | // [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti32i8"; } // [0, 0x000000FF] def ImmZExtu32u8AsmOperand : ImmZExtAsmOperandClass { let Name = "ImmZExtu32u8"; } // [0, 0x0000007F] | // [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i8"; let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand, ImmSExti64i32AsmOperand]; } // A couple of more descriptive operand definitions. // 16-bits but only 8 bits are significant. def i16i8imm : Operand { let ParserMatchClass = ImmSExti16i8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 32-bits but only 8 bits are significant. def i32i8imm : Operand { let ParserMatchClass = ImmSExti32i8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 32-bits but only 8 bits are significant, and those 8 bits are unsigned. def u32u8imm : Operand { let ParserMatchClass = ImmZExtu32u8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 64-bits but only 32 bits are significant. def i64i32imm : Operand { let ParserMatchClass = ImmSExti64i32AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 64-bits but only 32 bits are significant, and those bits are treated as being // pc relative. def i64i32imm_pcrel : Operand { let PrintMethod = "printPCRelImm"; let ParserMatchClass = X86AbsMemAsmOperand; let OperandType = "OPERAND_PCREL"; } // 64-bits but only 8 bits are significant. def i64i8imm : Operand { let ParserMatchClass = ImmSExti64i8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } def lea64_32mem : Operand { let PrintMethod = "printi32mem"; let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } // Memory operands that use 64-bit pointers in both ILP32 and LP64. def lea64mem : Operand { let PrintMethod = "printi64mem"; let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } //===----------------------------------------------------------------------===// // X86 Complex Pattern Definitions. // // Define X86 specific addressing mode. def addr : ComplexPattern; def lea32addr : ComplexPattern; // In 64-bit mode 32-bit LEAs can use RIP-relative addressing. def lea64_32addr : ComplexPattern; def tls32addr : ComplexPattern; def tls32baseaddr : ComplexPattern; def lea64addr : ComplexPattern; def tls64addr : ComplexPattern; def tls64baseaddr : ComplexPattern; //===----------------------------------------------------------------------===// // X86 Instruction Predicate Definitions. def HasCMov : Predicate<"Subtarget->hasCMov()">; def NoCMov : Predicate<"!Subtarget->hasCMov()">; def HasMMX : Predicate<"Subtarget->hasMMX()">; def Has3DNow : Predicate<"Subtarget->has3DNow()">; def Has3DNowA : Predicate<"Subtarget->has3DNowA()">; def HasSSE1 : Predicate<"Subtarget->hasSSE1()">; def UseSSE1 : Predicate<"Subtarget->hasSSE1() && !Subtarget->hasAVX()">; def HasSSE2 : Predicate<"Subtarget->hasSSE2()">; def UseSSE2 : Predicate<"Subtarget->hasSSE2() && !Subtarget->hasAVX()">; def HasSSE3 : Predicate<"Subtarget->hasSSE3()">; def UseSSE3 : Predicate<"Subtarget->hasSSE3() && !Subtarget->hasAVX()">; def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">; def UseSSSE3 : Predicate<"Subtarget->hasSSSE3() && !Subtarget->hasAVX()">; def HasSSE41 : Predicate<"Subtarget->hasSSE41()">; def UseSSE41 : Predicate<"Subtarget->hasSSE41() && !Subtarget->hasAVX()">; def HasSSE42 : Predicate<"Subtarget->hasSSE42()">; def UseSSE42 : Predicate<"Subtarget->hasSSE42() && !Subtarget->hasAVX()">; def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">; def HasAVX : Predicate<"Subtarget->hasAVX()">; def HasAVX2 : Predicate<"Subtarget->hasAVX2()">; def HasAVX1Only : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX2()">; def HasAVX512 : Predicate<"Subtarget->hasAVX512()">; def UseAVX : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX512()">; def UseAVX2 : Predicate<"Subtarget->hasAVX2() && !Subtarget->hasAVX512()">; def NoAVX512 : Predicate<"!Subtarget->hasAVX512()">; def HasCDI : Predicate<"Subtarget->hasCDI()">; def HasPFI : Predicate<"Subtarget->hasPFI()">; def HasEMI : Predicate<"Subtarget->hasERI()">; def HasPOPCNT : Predicate<"Subtarget->hasPOPCNT()">; def HasAES : Predicate<"Subtarget->hasAES()">; def HasPCLMUL : Predicate<"Subtarget->hasPCLMUL()">; def HasFMA : Predicate<"Subtarget->hasFMA()">; def UseFMAOnAVX : Predicate<"Subtarget->hasFMA() && !Subtarget->hasAVX512()">; def HasFMA4 : Predicate<"Subtarget->hasFMA4()">; def HasXOP : Predicate<"Subtarget->hasXOP()">; def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">; def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">; def HasF16C : Predicate<"Subtarget->hasF16C()">; def HasFSGSBase : Predicate<"Subtarget->hasFSGSBase()">; def HasLZCNT : Predicate<"Subtarget->hasLZCNT()">; def HasBMI : Predicate<"Subtarget->hasBMI()">; def HasBMI2 : Predicate<"Subtarget->hasBMI2()">; def HasRTM : Predicate<"Subtarget->hasRTM()">; def HasHLE : Predicate<"Subtarget->hasHLE()">; def HasTSX : Predicate<"Subtarget->hasRTM() || Subtarget->hasHLE()">; def HasADX : Predicate<"Subtarget->hasADX()">; def HasSHA : Predicate<"Subtarget->hasSHA()">; def HasPRFCHW : Predicate<"Subtarget->hasPRFCHW()">; def HasRDSEED : Predicate<"Subtarget->hasRDSEED()">; def HasPrefetchW : Predicate<"Subtarget->has3DNow() || Subtarget->hasPRFCHW()">; def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">; def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">; def HasCmpxchg16b: Predicate<"Subtarget->hasCmpxchg16b()">; def In32BitMode : Predicate<"!Subtarget->is64Bit()">, AssemblerPredicate<"!Mode64Bit", "32-bit mode">; def In64BitMode : Predicate<"Subtarget->is64Bit()">, AssemblerPredicate<"Mode64Bit", "64-bit mode">; def IsWin64 : Predicate<"Subtarget->isTargetWin64()">; def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">; def NotNaCl : Predicate<"!Subtarget->isTargetNaCl()">; def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">; def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">; def FarData : Predicate<"TM.getCodeModel() != CodeModel::Small &&" "TM.getCodeModel() != CodeModel::Kernel">; def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||" "TM.getCodeModel() == CodeModel::Kernel">; def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">; def IsNotPIC : Predicate<"TM.getRelocationModel() != Reloc::PIC_">; def OptForSize : Predicate<"OptForSize">; def OptForSpeed : Predicate<"!OptForSize">; def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">; def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">; def FavorMemIndirectCall : Predicate<"!Subtarget->callRegIndirect()">; //===----------------------------------------------------------------------===// // X86 Instruction Format Definitions. // include "X86InstrFormats.td" //===----------------------------------------------------------------------===// // Pattern fragments. // // X86 specific condition code. These correspond to CondCode in // X86InstrInfo.h. They must be kept in synch. def X86_COND_A : PatLeaf<(i8 0)>; // alt. COND_NBE def X86_COND_AE : PatLeaf<(i8 1)>; // alt. COND_NC def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C def X86_COND_BE : PatLeaf<(i8 3)>; // alt. COND_NA def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z def X86_COND_G : PatLeaf<(i8 5)>; // alt. COND_NLE def X86_COND_GE : PatLeaf<(i8 6)>; // alt. COND_NL def X86_COND_L : PatLeaf<(i8 7)>; // alt. COND_NGE def X86_COND_LE : PatLeaf<(i8 8)>; // alt. COND_NG def X86_COND_NE : PatLeaf<(i8 9)>; // alt. COND_NZ def X86_COND_NO : PatLeaf<(i8 10)>; def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO def X86_COND_NS : PatLeaf<(i8 12)>; def X86_COND_O : PatLeaf<(i8 13)>; def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE def X86_COND_S : PatLeaf<(i8 15)>; let FastIselShouldIgnore = 1 in { // FastIsel should ignore all simm8 instrs. def i16immSExt8 : ImmLeaf; def i32immSExt8 : ImmLeaf; def i64immSExt8 : ImmLeaf; } def i64immSExt32 : ImmLeaf; // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit // unsigned field. def i64immZExt32 : ImmLeaf; def i64immZExt32SExt8 : ImmLeaf; // Helper fragments for loads. // It's always safe to treat a anyext i16 load as a i32 load if the i16 is // known to be 32-bit aligned or better. Ditto for i8 to i16. def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 2 && !LD->isVolatile(); return false; }]>; def loadi16_anyext : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)),[{ LoadSDNode *LD = cast(N); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 2 && !LD->isVolatile(); return false; }]>; def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 4 && !LD->isVolatile(); return false; }]>; def loadi8 : PatFrag<(ops node:$ptr), (i8 (load node:$ptr))>; def loadi64 : PatFrag<(ops node:$ptr), (i64 (load node:$ptr))>; def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>; def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>; def loadf80 : PatFrag<(ops node:$ptr), (f80 (load node:$ptr))>; def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>; def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>; def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>; def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>; def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>; def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>; def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>; def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>; def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>; def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>; def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>; def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>; def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>; def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>; def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>; def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>; def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>; def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>; def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>; def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>; def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>; def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>; def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>; def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>; def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>; def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>; // An 'and' node with a single use. def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'srl' node with a single use. def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'trunc' node with a single use. def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{ return N->hasOneUse(); }]>; //===----------------------------------------------------------------------===// // Instruction list. // // Nop let neverHasSideEffects = 1, SchedRW = [WriteZero] in { def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", [], IIC_NOP>; def NOOPW : I<0x1f, MRM0m, (outs), (ins i16mem:$zero), "nop{w}\t$zero", [], IIC_NOP>, TB, OpSize; def NOOPL : I<0x1f, MRM0m, (outs), (ins i32mem:$zero), "nop{l}\t$zero", [], IIC_NOP>, TB; } // Constructing a stack frame. def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl), "enter\t$len, $lvl", [], IIC_ENTER>, Sched<[WriteMicrocoded]>; let SchedRW = [WriteALU] in { let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in def LEAVE : I<0xC9, RawFrm, (outs), (ins), "leave", [], IIC_LEAVE>, Requires<[In32BitMode]>; let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in def LEAVE64 : I<0xC9, RawFrm, (outs), (ins), "leave", [], IIC_LEAVE>, Requires<[In64BitMode]>; } // SchedRW //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in { let mayLoad = 1, SchedRW = [WriteLoad] in { def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", [], IIC_POP_REG16>, OpSize; def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", [], IIC_POP_REG>; def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", [], IIC_POP_REG>, OpSize; def POP16rmm: I<0x8F, MRM0m, (outs), (ins i16mem:$dst), "pop{w}\t$dst", [], IIC_POP_MEM>, OpSize; def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", [], IIC_POP_REG>; def POP32rmm: I<0x8F, MRM0m, (outs), (ins i32mem:$dst), "pop{l}\t$dst", [], IIC_POP_MEM>; def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>, OpSize; def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>, Requires<[In32BitMode]>; } // mayLoad, SchedRW let mayStore = 1, SchedRW = [WriteStore] in { def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[], IIC_PUSH_REG>, OpSize; def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[], IIC_PUSH_REG>; def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[], IIC_PUSH_REG>, OpSize; def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src",[], IIC_PUSH_MEM>, OpSize; def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[], IIC_PUSH_REG>; def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src",[], IIC_PUSH_MEM>; def PUSHi8 : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm), "push{l}\t$imm", [], IIC_PUSH_IMM>; def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), "push{w}\t$imm", [], IIC_PUSH_IMM>, OpSize; def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm), "push{l}\t$imm", [], IIC_PUSH_IMM>; def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", [], IIC_PUSH_F>, OpSize; def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", [], IIC_PUSH_F>, Requires<[In32BitMode]>; } // mayStore, SchedRW } let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in { let mayLoad = 1, SchedRW = [WriteLoad] in { def POP64r : I<0x58, AddRegFrm, (outs GR64:$reg), (ins), "pop{q}\t$reg", [], IIC_POP_REG>; def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", [], IIC_POP_REG>; def POP64rmm: I<0x8F, MRM0m, (outs), (ins i64mem:$dst), "pop{q}\t$dst", [], IIC_POP_MEM>; } // mayLoad, SchedRW let mayStore = 1, SchedRW = [WriteStore] in { def PUSH64r : I<0x50, AddRegFrm, (outs), (ins GR64:$reg), "push{q}\t$reg", [], IIC_PUSH_REG>; def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", [], IIC_PUSH_REG>; def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", [], IIC_PUSH_MEM>; } // mayStore, SchedRW } let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1, SchedRW = [WriteStore] in { def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm), "push{q}\t$imm", [], IIC_PUSH_IMM>; def PUSH64i16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), "push{q}\t$imm", [], IIC_PUSH_IMM>; def PUSH64i32 : Ii32<0x68, RawFrm, (outs), (ins i64i32imm:$imm), "push{q}\t$imm", [], IIC_PUSH_IMM>; } let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, neverHasSideEffects=1 in def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", [], IIC_POP_FD>, Requires<[In64BitMode]>, Sched<[WriteLoad]>; let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", [], IIC_PUSH_F>, Requires<[In64BitMode]>, Sched<[WriteStore]>; let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP], mayLoad = 1, neverHasSideEffects = 1, SchedRW = [WriteLoad] in { def POPA32 : I<0x61, RawFrm, (outs), (ins), "popa{l}", [], IIC_POP_A>, Requires<[In32BitMode]>; } let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in { def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pusha{l}", [], IIC_PUSH_A>, Requires<[In32BitMode]>; } let Constraints = "$src = $dst", SchedRW = [WriteALU] in { // GR32 = bswap GR32 def BSWAP32r : I<0xC8, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "bswap{l}\t$dst", [(set GR32:$dst, (bswap GR32:$src))], IIC_BSWAP>, TB; def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src), "bswap{q}\t$dst", [(set GR64:$dst, (bswap GR64:$src))], IIC_BSWAP>, TB; } // Constraints = "$src = $dst", SchedRW // Bit scan instructions. let Defs = [EFLAGS] in { def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))], IIC_BIT_SCAN_REG>, TB, OpSize, Sched<[WriteShift]>; def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))], IIC_BIT_SCAN_MEM>, TB, OpSize, Sched<[WriteShiftLd]>; def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))], IIC_BIT_SCAN_REG>, TB, Sched<[WriteShift]>; def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))], IIC_BIT_SCAN_MEM>, TB, Sched<[WriteShiftLd]>; def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))], IIC_BIT_SCAN_REG>, TB, Sched<[WriteShift]>; def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))], IIC_BIT_SCAN_MEM>, TB, Sched<[WriteShiftLd]>; def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))], IIC_BIT_SCAN_REG>, TB, OpSize, Sched<[WriteShift]>; def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))], IIC_BIT_SCAN_MEM>, TB, OpSize, Sched<[WriteShiftLd]>; def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))], IIC_BIT_SCAN_REG>, TB, Sched<[WriteShift]>; def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))], IIC_BIT_SCAN_MEM>, TB, Sched<[WriteShiftLd]>; def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsr{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))], IIC_BIT_SCAN_REG>, TB, Sched<[WriteShift]>; def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsr{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))], IIC_BIT_SCAN_MEM>, TB, Sched<[WriteShiftLd]>; } // Defs = [EFLAGS] let SchedRW = [WriteMicrocoded] in { // These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in { def MOVSB : I<0xA4, RawFrm, (outs), (ins), "movsb", [], IIC_MOVS>; def MOVSW : I<0xA5, RawFrm, (outs), (ins), "movsw", [], IIC_MOVS>, OpSize; def MOVSD : I<0xA5, RawFrm, (outs), (ins), "movs{l|d}", [], IIC_MOVS>; def MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "movsq", [], IIC_MOVS>; } // These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in def STOSB : I<0xAA, RawFrm, (outs), (ins), "stosb", [], IIC_STOS>; let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in def STOSW : I<0xAB, RawFrm, (outs), (ins), "stosw", [], IIC_STOS>, OpSize; let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in def STOSD : I<0xAB, RawFrm, (outs), (ins), "stos{l|d}", [], IIC_STOS>; let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI,EFLAGS] in def STOSQ : RI<0xAB, RawFrm, (outs), (ins), "stosq", [], IIC_STOS>; def SCAS8 : I<0xAE, RawFrm, (outs), (ins), "scasb", [], IIC_SCAS>; def SCAS16 : I<0xAF, RawFrm, (outs), (ins), "scasw", [], IIC_SCAS>, OpSize; def SCAS32 : I<0xAF, RawFrm, (outs), (ins), "scas{l|d}", [], IIC_SCAS>; def SCAS64 : RI<0xAF, RawFrm, (outs), (ins), "scasq", [], IIC_SCAS>; def CMPS8 : I<0xA6, RawFrm, (outs), (ins), "cmpsb", [], IIC_CMPS>; def CMPS16 : I<0xA7, RawFrm, (outs), (ins), "cmpsw", [], IIC_CMPS>, OpSize; def CMPS32 : I<0xA7, RawFrm, (outs), (ins), "cmps{l|d}", [], IIC_CMPS>; def CMPS64 : RI<0xA7, RawFrm, (outs), (ins), "cmpsq", [], IIC_CMPS>; } // SchedRW //===----------------------------------------------------------------------===// // Move Instructions. // let SchedRW = [WriteMove] in { let neverHasSideEffects = 1 in { def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize; def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, imm:$src)], IIC_MOV>; def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, imm:$src)], IIC_MOV>, OpSize; def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, imm:$src)], IIC_MOV>; def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src), "movabs{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, imm:$src)], IIC_MOV>; def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, i64immSExt32:$src)], IIC_MOV>; } } // SchedRW let SchedRW = [WriteStore] in { def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store (i8 imm:$src), addr:$dst)], IIC_MOV_MEM>; def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store (i16 imm:$src), addr:$dst)], IIC_MOV_MEM>, OpSize; def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store (i32 imm:$src), addr:$dst)], IIC_MOV_MEM>; def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store i64immSExt32:$src, addr:$dst)], IIC_MOV_MEM>; } // SchedRW let hasSideEffects = 0 in { /// moffs8, moffs16 and moffs32 versions of moves. The immediate is a /// 32-bit offset from the PC. These are only valid in x86-32 mode. let SchedRW = [WriteALU] in { let mayLoad = 1 in { def MOV8o8a : Ii32 <0xA0, RawFrm, (outs), (ins offset8:$src), "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>, Requires<[In32BitMode]>; def MOV16o16a : Ii32 <0xA1, RawFrm, (outs), (ins offset16:$src), "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>, OpSize, Requires<[In32BitMode]>; def MOV32o32a : Ii32 <0xA1, RawFrm, (outs), (ins offset32:$src), "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>, Requires<[In32BitMode]>; } let mayStore = 1 in { def MOV8ao8 : Ii32 <0xA2, RawFrm, (outs offset8:$dst), (ins), "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>, Requires<[In32BitMode]>; def MOV16ao16 : Ii32 <0xA3, RawFrm, (outs offset16:$dst), (ins), "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>, OpSize, Requires<[In32BitMode]>; def MOV32ao32 : Ii32 <0xA3, RawFrm, (outs offset32:$dst), (ins), "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>, Requires<[In32BitMode]>; } } // These forms all have full 64-bit absolute addresses in their instructions // and use the movabs mnemonic to indicate this specific form. let mayLoad = 1 in { def MOV64o8a : RIi64_NOREX<0xA0, RawFrm, (outs), (ins offset8:$src), "movabs{b}\t{$src, %al|al, $src}", []>, Requires<[In64BitMode]>; def MOV64o16a : RIi64_NOREX<0xA1, RawFrm, (outs), (ins offset16:$src), "movabs{w}\t{$src, %ax|ax, $src}", []>, OpSize, Requires<[In64BitMode]>; def MOV64o32a : RIi64_NOREX<0xA1, RawFrm, (outs), (ins offset32:$src), "movabs{l}\t{$src, %eax|eax, $src}", []>, Requires<[In64BitMode]>; def MOV64o64a : RIi64<0xA1, RawFrm, (outs), (ins offset64:$src), "movabs{q}\t{$src, %rax|rax, $src}", []>, Requires<[In64BitMode]>; } let mayStore = 1 in { def MOV64ao8 : RIi64_NOREX<0xA2, RawFrm, (outs offset8:$dst), (ins), "movabs{b}\t{%al, $dst|$dst, al}", []>, Requires<[In64BitMode]>; def MOV64ao16 : RIi64_NOREX<0xA3, RawFrm, (outs offset16:$dst), (ins), "movabs{w}\t{%ax, $dst|$dst, ax}", []>, OpSize, Requires<[In64BitMode]>; def MOV64ao32 : RIi64_NOREX<0xA3, RawFrm, (outs offset32:$dst), (ins), "movabs{l}\t{%eax, $dst|$dst, eax}", []>, Requires<[In64BitMode]>; def MOV64ao64 : RIi64<0xA3, RawFrm, (outs offset64:$dst), (ins), "movabs{q}\t{%rax, $dst|$dst, rax}", []>, Requires<[In64BitMode]>; } } // hasSideEffects = 0 let isCodeGenOnly = 1, hasSideEffects = 0, SchedRW = [WriteMove] in { def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src), "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize; def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; } let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in { def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, (loadi8 addr:$src))], IIC_MOV_MEM>; def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (loadi16 addr:$src))], IIC_MOV_MEM>, OpSize; def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (loadi32 addr:$src))], IIC_MOV_MEM>; def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (load addr:$src))], IIC_MOV_MEM>; } let SchedRW = [WriteStore] in { def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store GR8:$src, addr:$dst)], IIC_MOV_MEM>; def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store GR16:$src, addr:$dst)], IIC_MOV_MEM>, OpSize; def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store GR32:$src, addr:$dst)], IIC_MOV_MEM>; def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store GR64:$src, addr:$dst)], IIC_MOV_MEM>; } // SchedRW // Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so // that they can be used for copying and storing h registers, which can't be // encoded when a REX prefix is present. let isCodeGenOnly = 1 in { let neverHasSideEffects = 1 in def MOV8rr_NOREX : I<0x88, MRMDestReg, (outs GR8_NOREX:$dst), (ins GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], IIC_MOV>, Sched<[WriteMove]>; let mayStore = 1, neverHasSideEffects = 1 in def MOV8mr_NOREX : I<0x88, MRMDestMem, (outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], IIC_MOV_MEM>, Sched<[WriteStore]>; let mayLoad = 1, neverHasSideEffects = 1, canFoldAsLoad = 1, isReMaterializable = 1 in def MOV8rm_NOREX : I<0x8A, MRMSrcMem, (outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], IIC_MOV_MEM>, Sched<[WriteLoad]>; } // Condition code ops, incl. set if equal/not equal/... let SchedRW = [WriteALU] in { let Defs = [EFLAGS], Uses = [AH] in def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", [(set EFLAGS, (X86sahf AH))], IIC_AHF>; let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", [], IIC_AHF>; // AH = flags } // SchedRW //===----------------------------------------------------------------------===// // Bit tests instructions: BT, BTS, BTR, BTC. let Defs = [EFLAGS] in { let SchedRW = [WriteALU] in { def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))], IIC_BT_RR>, OpSize, TB; def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))], IIC_BT_RR>, TB; def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))], IIC_BT_RR>, TB; } // SchedRW // Unlike with the register+register form, the memory+register form of the // bt instruction does not ignore the high bits of the index. From ISel's // perspective, this is pretty bizarre. Make these instructions disassembly // only for now. let mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteALULd] in { def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi16 addr:$src1), GR16:$src2), // (implicit EFLAGS)] [], IIC_BT_MR >, OpSize, TB, Requires<[FastBTMem]>; def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi32 addr:$src1), GR32:$src2), // (implicit EFLAGS)] [], IIC_BT_MR >, TB, Requires<[FastBTMem]>; def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi64 addr:$src1), GR64:$src2), // (implicit EFLAGS)] [], IIC_BT_MR >, TB; } let SchedRW = [WriteALU] in { def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, i16immSExt8:$src2))], IIC_BT_RI>, OpSize, TB; def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32i8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR32:$src1, i32immSExt8:$src2))], IIC_BT_RI>, TB; def BT64ri8 : RIi8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR64:$src1, i64immSExt8:$src2))], IIC_BT_RI>, TB; } // SchedRW // Note that these instructions don't need FastBTMem because that // only applies when the other operand is in a register. When it's // an immediate, bt is still fast. let SchedRW = [WriteALU] in { def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi16 addr:$src1), i16immSExt8:$src2)) ], IIC_BT_MI>, OpSize, TB; def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi32 addr:$src1), i32immSExt8:$src2)) ], IIC_BT_MI>, TB; def BT64mi8 : RIi8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi64 addr:$src1), i64immSExt8:$src2))], IIC_BT_MI>, TB; } // SchedRW let hasSideEffects = 0 in { let SchedRW = [WriteALU] in { def BTC16rr : I<0xBB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, OpSize, TB; def BTC32rr : I<0xBB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; def BTC64rr : RI<0xBB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, OpSize, TB; def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; } let SchedRW = [WriteALU] in { def BTC16ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, OpSize, TB; def BTC32ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; def BTC64ri8 : RIi8<0xBA, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, OpSize, TB; def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; } let SchedRW = [WriteALU] in { def BTR16rr : I<0xB3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, OpSize, TB; def BTR32rr : I<0xB3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; def BTR64rr : RI<0xB3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, OpSize, TB; def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; } let SchedRW = [WriteALU] in { def BTR16ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR16:$src1, i16i8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, OpSize, TB; def BTR32ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR32:$src1, i32i8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; def BTR64ri8 : RIi8<0xBA, MRM6r, (outs), (ins GR64:$src1, i64i8imm:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, OpSize, TB; def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; } let SchedRW = [WriteALU] in { def BTS16rr : I<0xAB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, OpSize, TB; def BTS32rr : I<0xAB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; def BTS64rr : RI<0xAB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, OpSize, TB; def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; } let SchedRW = [WriteALU] in { def BTS16ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR16:$src1, i16i8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, OpSize, TB; def BTS32ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR32:$src1, i32i8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; def BTS64ri8 : RIi8<0xBA, MRM5r, (outs), (ins GR64:$src1, i64i8imm:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, OpSize, TB; def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; } } // hasSideEffects = 0 } // Defs = [EFLAGS] //===----------------------------------------------------------------------===// // Atomic support // // Atomic swap. These are just normal xchg instructions. But since a memory // operand is referenced, the atomicity is ensured. multiclass ATOMIC_SWAP opc8, bits<8> opc, string mnemonic, string frag, InstrItinClass itin> { let Constraints = "$val = $dst", SchedRW = [WriteALULd, WriteRMW] in { def NAME#8rm : I(frag # "_8") addr:$ptr, GR8:$val))], itin>; def NAME#16rm : I(frag # "_16") addr:$ptr, GR16:$val))], itin>, OpSize; def NAME#32rm : I(frag # "_32") addr:$ptr, GR32:$val))], itin>; def NAME#64rm : RI(frag # "_64") addr:$ptr, GR64:$val))], itin>; } } defm XCHG : ATOMIC_SWAP<0x86, 0x87, "xchg", "atomic_swap", IIC_XCHG_MEM>; // Swap between registers. let SchedRW = [WriteALU] in { let Constraints = "$val = $dst" in { def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst), (ins GR8:$val, GR8:$src), "xchg{b}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>; def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst), (ins GR16:$val, GR16:$src), "xchg{w}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>, OpSize; def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst), (ins GR32:$val, GR32:$src), "xchg{l}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>; def XCHG64rr : RI<0x87, MRMSrcReg, (outs GR64:$dst), (ins GR64:$val,GR64:$src), "xchg{q}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>; } // Swap between EAX and other registers. def XCHG16ar : I<0x90, AddRegFrm, (outs), (ins GR16:$src), "xchg{w}\t{$src, %ax|ax, $src}", [], IIC_XCHG_REG>, OpSize; def XCHG32ar : I<0x90, AddRegFrm, (outs), (ins GR32:$src), "xchg{l}\t{$src, %eax|eax, $src}", [], IIC_XCHG_REG>, Requires<[In32BitMode]>; // Uses GR32_NOAX in 64-bit mode to prevent encoding using the 0x90 NOP encoding. // xchg %eax, %eax needs to clear upper 32-bits of RAX so is not a NOP. def XCHG32ar64 : I<0x90, AddRegFrm, (outs), (ins GR32_NOAX:$src), "xchg{l}\t{$src, %eax|eax, $src}", [], IIC_XCHG_REG>, Requires<[In64BitMode]>; def XCHG64ar : RI<0x90, AddRegFrm, (outs), (ins GR64:$src), "xchg{q}\t{$src, %rax|rax, $src}", [], IIC_XCHG_REG>; } // SchedRW let SchedRW = [WriteALU] in { def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src), "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB; def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "xadd{w}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB, OpSize; def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "xadd{l}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB; def XADD64rr : RI<0xC1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "xadd{q}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def XADD8rm : I<0xC0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB; def XADD16rm : I<0xC1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "xadd{w}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB, OpSize; def XADD32rm : I<0xC1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "xadd{l}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB; def XADD64rm : RI<0xC1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "xadd{q}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB; } let SchedRW = [WriteALU] in { def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_REG8>, TB; def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "cmpxchg{w}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_REG>, TB, OpSize; def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "cmpxchg{l}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_REG>, TB; def CMPXCHG64rr : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "cmpxchg{q}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_REG>, TB; } // SchedRW let SchedRW = [WriteALULd, WriteRMW] in { let mayLoad = 1, mayStore = 1 in { def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_MEM8>, TB; def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "cmpxchg{w}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_MEM>, TB, OpSize; def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "cmpxchg{l}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_MEM>, TB; def CMPXCHG64rm : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "cmpxchg{q}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_MEM>, TB; } let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst), "cmpxchg8b\t$dst", [], IIC_CMPXCHG_8B>, TB; let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst), "cmpxchg16b\t$dst", [], IIC_CMPXCHG_16B>, TB, Requires<[HasCmpxchg16b]>; } // SchedRW // Lock instruction prefix def LOCK_PREFIX : I<0xF0, RawFrm, (outs), (ins), "lock", []>; // Rex64 instruction prefix def REX64_PREFIX : I<0x48, RawFrm, (outs), (ins), "rex64", []>; // Data16 instruction prefix def DATA16_PREFIX : I<0x66, RawFrm, (outs), (ins), "data16", []>; // Repeat string operation instruction prefixes // These uses the DF flag in the EFLAGS register to inc or dec ECX let Defs = [ECX], Uses = [ECX,EFLAGS] in { // Repeat (used with INS, OUTS, MOVS, LODS and STOS) def REP_PREFIX : I<0xF3, RawFrm, (outs), (ins), "rep", []>; // Repeat while not equal (used with CMPS and SCAS) def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>; } // String manipulation instructions let SchedRW = [WriteMicrocoded] in { def LODSB : I<0xAC, RawFrm, (outs), (ins), "lodsb", [], IIC_LODS>; def LODSW : I<0xAD, RawFrm, (outs), (ins), "lodsw", [], IIC_LODS>, OpSize; def LODSD : I<0xAD, RawFrm, (outs), (ins), "lods{l|d}", [], IIC_LODS>; def LODSQ : RI<0xAD, RawFrm, (outs), (ins), "lodsq", [], IIC_LODS>; } let SchedRW = [WriteSystem] in { def OUTSB : I<0x6E, RawFrm, (outs), (ins), "outsb", [], IIC_OUTS>; def OUTSW : I<0x6F, RawFrm, (outs), (ins), "outsw", [], IIC_OUTS>, OpSize; def OUTSD : I<0x6F, RawFrm, (outs), (ins), "outs{l|d}", [], IIC_OUTS>; } // Flag instructions let SchedRW = [WriteALU] in { def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC>; def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_STC>; def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>; def STI : I<0xFB, RawFrm, (outs), (ins), "sti", [], IIC_STI>; def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", [], IIC_CLD>; def STD : I<0xFD, RawFrm, (outs), (ins), "std", [], IIC_STD>; def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CMC>; def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB; } // Table lookup instructions def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", [], IIC_XLAT>, Sched<[WriteLoad]>; let SchedRW = [WriteMicrocoded] in { // ASCII Adjust After Addition // sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS def AAA : I<0x37, RawFrm, (outs), (ins), "aaa", [], IIC_AAA>, Requires<[In32BitMode]>; // ASCII Adjust AX Before Division // sets AL, AH and EFLAGS and uses AL and AH def AAD8i8 : Ii8<0xD5, RawFrm, (outs), (ins i8imm:$src), "aad\t$src", [], IIC_AAD>, Requires<[In32BitMode]>; // ASCII Adjust AX After Multiply // sets AL, AH and EFLAGS and uses AL def AAM8i8 : Ii8<0xD4, RawFrm, (outs), (ins i8imm:$src), "aam\t$src", [], IIC_AAM>, Requires<[In32BitMode]>; // ASCII Adjust AL After Subtraction - sets // sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS def AAS : I<0x3F, RawFrm, (outs), (ins), "aas", [], IIC_AAS>, Requires<[In32BitMode]>; // Decimal Adjust AL after Addition // sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS def DAA : I<0x27, RawFrm, (outs), (ins), "daa", [], IIC_DAA>, Requires<[In32BitMode]>; // Decimal Adjust AL after Subtraction // sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS def DAS : I<0x2F, RawFrm, (outs), (ins), "das", [], IIC_DAS>, Requires<[In32BitMode]>; } // SchedRW let SchedRW = [WriteSystem] in { // Check Array Index Against Bounds def BOUNDS16rm : I<0x62, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bound\t{$src, $dst|$dst, $src}", [], IIC_BOUND>, OpSize, Requires<[In32BitMode]>; def BOUNDS32rm : I<0x62, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bound\t{$src, $dst|$dst, $src}", [], IIC_BOUND>, Requires<[In32BitMode]>; // Adjust RPL Field of Segment Selector def ARPL16rr : I<0x63, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_REG>, Requires<[In32BitMode]>; def ARPL16mr : I<0x63, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_MEM>, Requires<[In32BitMode]>; } // SchedRW //===----------------------------------------------------------------------===// // MOVBE Instructions // let Predicates = [HasMOVBE] in { let SchedRW = [WriteALULd] in { def MOVBE16rm : I<0xF0, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "movbe{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (bswap (loadi16 addr:$src)))], IIC_MOVBE>, OpSize, T8; def MOVBE32rm : I<0xF0, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movbe{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bswap (loadi32 addr:$src)))], IIC_MOVBE>, T8; def MOVBE64rm : RI<0xF0, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "movbe{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bswap (loadi64 addr:$src)))], IIC_MOVBE>, T8; } let SchedRW = [WriteStore] in { def MOVBE16mr : I<0xF1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "movbe{w}\t{$src, $dst|$dst, $src}", [(store (bswap GR16:$src), addr:$dst)], IIC_MOVBE>, OpSize, T8; def MOVBE32mr : I<0xF1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movbe{l}\t{$src, $dst|$dst, $src}", [(store (bswap GR32:$src), addr:$dst)], IIC_MOVBE>, T8; def MOVBE64mr : RI<0xF1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "movbe{q}\t{$src, $dst|$dst, $src}", [(store (bswap GR64:$src), addr:$dst)], IIC_MOVBE>, T8; } } //===----------------------------------------------------------------------===// // RDRAND Instruction // let Predicates = [HasRDRAND], Defs = [EFLAGS] in { def RDRAND16r : I<0xC7, MRM6r, (outs GR16:$dst), (ins), "rdrand{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86rdrand))]>, OpSize, TB; def RDRAND32r : I<0xC7, MRM6r, (outs GR32:$dst), (ins), "rdrand{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86rdrand))]>, TB; def RDRAND64r : RI<0xC7, MRM6r, (outs GR64:$dst), (ins), "rdrand{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86rdrand))]>, TB; } //===----------------------------------------------------------------------===// // RDSEED Instruction // let Predicates = [HasRDSEED], Defs = [EFLAGS] in { def RDSEED16r : I<0xC7, MRM7r, (outs GR16:$dst), (ins), "rdseed{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86rdseed))]>, OpSize, TB; def RDSEED32r : I<0xC7, MRM7r, (outs GR32:$dst), (ins), "rdseed{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86rdseed))]>, TB; def RDSEED64r : RI<0xC7, MRM7r, (outs GR64:$dst), (ins), "rdseed{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86rdseed))]>, TB; } //===----------------------------------------------------------------------===// // LZCNT Instruction // let Predicates = [HasLZCNT], Defs = [EFLAGS] in { def LZCNT16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "lzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctlz GR16:$src)), (implicit EFLAGS)]>, XS, OpSize; def LZCNT16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "lzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctlz (loadi16 addr:$src))), (implicit EFLAGS)]>, XS, OpSize; def LZCNT32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "lzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctlz GR32:$src)), (implicit EFLAGS)]>, XS; def LZCNT32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "lzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctlz (loadi32 addr:$src))), (implicit EFLAGS)]>, XS; def LZCNT64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "lzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctlz GR64:$src)), (implicit EFLAGS)]>, XS; def LZCNT64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "lzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctlz (loadi64 addr:$src))), (implicit EFLAGS)]>, XS; } //===----------------------------------------------------------------------===// // BMI Instructions // let Predicates = [HasBMI], Defs = [EFLAGS] in { def TZCNT16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "tzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (cttz GR16:$src)), (implicit EFLAGS)]>, XS, OpSize; def TZCNT16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "tzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (cttz (loadi16 addr:$src))), (implicit EFLAGS)]>, XS, OpSize; def TZCNT32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "tzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (cttz GR32:$src)), (implicit EFLAGS)]>, XS; def TZCNT32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "tzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (cttz (loadi32 addr:$src))), (implicit EFLAGS)]>, XS; def TZCNT64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "tzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (cttz GR64:$src)), (implicit EFLAGS)]>, XS; def TZCNT64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "tzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (cttz (loadi64 addr:$src))), (implicit EFLAGS)]>, XS; } multiclass bmi_bls { def rr : I<0xF3, RegMRM, (outs RC:$dst), (ins RC:$src), !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (OpNode RC:$src)), (implicit EFLAGS)]>, T8, VEX_4V; def rm : I<0xF3, MemMRM, (outs RC:$dst), (ins x86memop:$src), !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (OpNode (ld_frag addr:$src))), (implicit EFLAGS)]>, T8, VEX_4V; } let Predicates = [HasBMI], Defs = [EFLAGS] in { defm BLSR32 : bmi_bls<"blsr{l}", MRM1r, MRM1m, GR32, i32mem, X86blsr, loadi32>; defm BLSR64 : bmi_bls<"blsr{q}", MRM1r, MRM1m, GR64, i64mem, X86blsr, loadi64>, VEX_W; defm BLSMSK32 : bmi_bls<"blsmsk{l}", MRM2r, MRM2m, GR32, i32mem, X86blsmsk, loadi32>; defm BLSMSK64 : bmi_bls<"blsmsk{q}", MRM2r, MRM2m, GR64, i64mem, X86blsmsk, loadi64>, VEX_W; defm BLSI32 : bmi_bls<"blsi{l}", MRM3r, MRM3m, GR32, i32mem, X86blsi, loadi32>; defm BLSI64 : bmi_bls<"blsi{q}", MRM3r, MRM3m, GR64, i64mem, X86blsi, loadi64>, VEX_W; } multiclass bmi_bextr_bzhi opc, string mnemonic, RegisterClass RC, X86MemOperand x86memop, Intrinsic Int, PatFrag ld_frag> { def rr : I, T8, VEX_4VOp3; def rm : I, T8, VEX_4VOp3; } let Predicates = [HasBMI], Defs = [EFLAGS] in { defm BEXTR32 : bmi_bextr_bzhi<0xF7, "bextr{l}", GR32, i32mem, int_x86_bmi_bextr_32, loadi32>; defm BEXTR64 : bmi_bextr_bzhi<0xF7, "bextr{q}", GR64, i64mem, int_x86_bmi_bextr_64, loadi64>, VEX_W; } let Predicates = [HasBMI2], Defs = [EFLAGS] in { defm BZHI32 : bmi_bextr_bzhi<0xF5, "bzhi{l}", GR32, i32mem, int_x86_bmi_bzhi_32, loadi32>; defm BZHI64 : bmi_bextr_bzhi<0xF5, "bzhi{q}", GR64, i64mem, int_x86_bmi_bzhi_64, loadi64>, VEX_W; } def : Pat<(X86bzhi GR32:$src1, GR8:$src2), (BZHI32rr GR32:$src1, (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; def : Pat<(X86bzhi (loadi32 addr:$src1), GR8:$src2), (BZHI32rm addr:$src1, (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; def : Pat<(X86bzhi GR64:$src1, GR8:$src2), (BZHI64rr GR64:$src1, (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; def : Pat<(X86bzhi (loadi64 addr:$src1), GR8:$src2), (BZHI64rm addr:$src1, (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; def : Pat<(X86bextr GR32:$src1, GR32:$src2), (BEXTR32rr GR32:$src1, GR32:$src2)>; def : Pat<(X86bextr (loadi32 addr:$src1), GR32:$src2), (BEXTR32rm addr:$src1, GR32:$src2)>; def : Pat<(X86bextr GR64:$src1, GR64:$src2), (BEXTR64rr GR64:$src1, GR64:$src2)>; def : Pat<(X86bextr (loadi64 addr:$src1), GR64:$src2), (BEXTR64rm addr:$src1, GR64:$src2)>; multiclass bmi_pdep_pext { def rr : I<0xF5, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set RC:$dst, (Int RC:$src1, RC:$src2))]>, VEX_4V; def rm : I<0xF5, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set RC:$dst, (Int RC:$src1, (ld_frag addr:$src2)))]>, VEX_4V; } let Predicates = [HasBMI2] in { defm PDEP32 : bmi_pdep_pext<"pdep{l}", GR32, i32mem, int_x86_bmi_pdep_32, loadi32>, T8XD; defm PDEP64 : bmi_pdep_pext<"pdep{q}", GR64, i64mem, int_x86_bmi_pdep_64, loadi64>, T8XD, VEX_W; defm PEXT32 : bmi_pdep_pext<"pext{l}", GR32, i32mem, int_x86_bmi_pext_32, loadi32>, T8XS; defm PEXT64 : bmi_pdep_pext<"pext{q}", GR64, i64mem, int_x86_bmi_pext_64, loadi64>, T8XS, VEX_W; } //===----------------------------------------------------------------------===// // Subsystems. //===----------------------------------------------------------------------===// include "X86InstrArithmetic.td" include "X86InstrCMovSetCC.td" include "X86InstrExtension.td" include "X86InstrControl.td" include "X86InstrShiftRotate.td" // X87 Floating Point Stack. include "X86InstrFPStack.td" // SIMD support (SSE, MMX and AVX) include "X86InstrFragmentsSIMD.td" // FMA - Fused Multiply-Add support (requires FMA) include "X86InstrFMA.td" // XOP include "X86InstrXOP.td" // SSE, MMX and 3DNow! vector support. include "X86InstrSSE.td" include "X86InstrAVX512.td" include "X86InstrMMX.td" include "X86Instr3DNow.td" include "X86InstrVMX.td" include "X86InstrSVM.td" include "X86InstrTSX.td" // System instructions. include "X86InstrSystem.td" // Compiler Pseudo Instructions and Pat Patterns include "X86InstrCompiler.td" //===----------------------------------------------------------------------===// // Assembler Mnemonic Aliases //===----------------------------------------------------------------------===// def : MnemonicAlias<"call", "calll", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"call", "callq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"cbw", "cbtw", "att">; def : MnemonicAlias<"cwde", "cwtl", "att">; def : MnemonicAlias<"cwd", "cwtd", "att">; def : MnemonicAlias<"cdq", "cltd", "att">; def : MnemonicAlias<"cdqe", "cltq", "att">; def : MnemonicAlias<"cqo", "cqto", "att">; // lret maps to lretl, it is not ambiguous with lretq. def : MnemonicAlias<"lret", "lretl", "att">; def : MnemonicAlias<"leavel", "leave", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"leaveq", "leave", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"loopz", "loope", "att">; def : MnemonicAlias<"loopnz", "loopne", "att">; def : MnemonicAlias<"pop", "popl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"pop", "popq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"popf", "popfl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"popf", "popfq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"popfd", "popfl", "att">; // FIXME: This is wrong for "push reg". "push %bx" should turn into pushw in // all modes. However: "push (addr)" and "push $42" should default to // pushl/pushq depending on the current mode. Similar for "pop %bx" def : MnemonicAlias<"push", "pushl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"push", "pushq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"pushf", "pushfl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"pushfd", "pushfl", "att">; def : MnemonicAlias<"popad", "popa", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"pushad", "pusha", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"repe", "rep", "att">; def : MnemonicAlias<"repz", "rep", "att">; def : MnemonicAlias<"repnz", "repne", "att">; def : MnemonicAlias<"retl", "ret", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"retq", "ret", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"salb", "shlb", "att">; def : MnemonicAlias<"salw", "shlw", "att">; def : MnemonicAlias<"sall", "shll", "att">; def : MnemonicAlias<"salq", "shlq", "att">; def : MnemonicAlias<"smovb", "movsb", "att">; def : MnemonicAlias<"smovw", "movsw", "att">; def : MnemonicAlias<"smovl", "movsl", "att">; def : MnemonicAlias<"smovq", "movsq", "att">; def : MnemonicAlias<"ud2a", "ud2", "att">; def : MnemonicAlias<"verrw", "verr", "att">; // System instruction aliases. def : MnemonicAlias<"iret", "iretl", "att">; def : MnemonicAlias<"sysret", "sysretl", "att">; def : MnemonicAlias<"sysexit", "sysexitl", "att">; def : MnemonicAlias<"lgdtl", "lgdt", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"lgdtq", "lgdt", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"lidtl", "lidt", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"lidtq", "lidt", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"sgdtl", "sgdt", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"sgdtq", "sgdt", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"sidtl", "sidt", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"sidtq", "sidt", "att">, Requires<[In64BitMode]>; // Floating point stack aliases. def : MnemonicAlias<"fcmovz", "fcmove", "att">; def : MnemonicAlias<"fcmova", "fcmovnbe", "att">; def : MnemonicAlias<"fcmovnae", "fcmovb", "att">; def : MnemonicAlias<"fcmovna", "fcmovbe", "att">; def : MnemonicAlias<"fcmovae", "fcmovnb", "att">; def : MnemonicAlias<"fcomip", "fcompi", "att">; def : MnemonicAlias<"fildq", "fildll", "att">; def : MnemonicAlias<"fistpq", "fistpll", "att">; def : MnemonicAlias<"fisttpq", "fisttpll", "att">; def : MnemonicAlias<"fldcww", "fldcw", "att">; def : MnemonicAlias<"fnstcww", "fnstcw", "att">; def : MnemonicAlias<"fnstsww", "fnstsw", "att">; def : MnemonicAlias<"fucomip", "fucompi", "att">; def : MnemonicAlias<"fwait", "wait", "att">; class CondCodeAlias : MnemonicAlias; /// IntegerCondCodeMnemonicAlias - This multiclass defines a bunch of /// MnemonicAlias's that canonicalize the condition code in a mnemonic, for /// example "setz" -> "sete". multiclass IntegerCondCodeMnemonicAlias { def C : CondCodeAlias; // setc -> setb def Z : CondCodeAlias; // setz -> sete def NA : CondCodeAlias; // setna -> setbe def NB : CondCodeAlias; // setnb -> setae def NC : CondCodeAlias; // setnc -> setae def NG : CondCodeAlias; // setng -> setle def NL : CondCodeAlias; // setnl -> setge def NZ : CondCodeAlias; // setnz -> setne def PE : CondCodeAlias; // setpe -> setp def PO : CondCodeAlias; // setpo -> setnp def NAE : CondCodeAlias; // setnae -> setb def NBE : CondCodeAlias; // setnbe -> seta def NGE : CondCodeAlias; // setnge -> setl def NLE : CondCodeAlias; // setnle -> setg } // Aliases for set defm : IntegerCondCodeMnemonicAlias<"set", "">; // Aliases for j defm : IntegerCondCodeMnemonicAlias<"j", "">; // Aliases for cmov{w,l,q} defm : IntegerCondCodeMnemonicAlias<"cmov", "w", "att">; defm : IntegerCondCodeMnemonicAlias<"cmov", "l", "att">; defm : IntegerCondCodeMnemonicAlias<"cmov", "q", "att">; // No size suffix for intel-style asm. defm : IntegerCondCodeMnemonicAlias<"cmov", "", "intel">; //===----------------------------------------------------------------------===// // Assembler Instruction Aliases //===----------------------------------------------------------------------===// // aad/aam default to base 10 if no operand is specified. def : InstAlias<"aad", (AAD8i8 10)>; def : InstAlias<"aam", (AAM8i8 10)>; // Disambiguate the mem/imm form of bt-without-a-suffix as btl. // Likewise for btc/btr/bts. def : InstAlias<"bt {$imm, $mem|$mem, $imm}", (BT32mi8 i32mem:$mem, i32i8imm:$imm), 0>; def : InstAlias<"btc {$imm, $mem|$mem, $imm}", (BTC32mi8 i32mem:$mem, i32i8imm:$imm), 0>; def : InstAlias<"btr {$imm, $mem|$mem, $imm}", (BTR32mi8 i32mem:$mem, i32i8imm:$imm), 0>; def : InstAlias<"bts {$imm, $mem|$mem, $imm}", (BTS32mi8 i32mem:$mem, i32i8imm:$imm), 0>; // clr aliases. def : InstAlias<"clrb $reg", (XOR8rr GR8 :$reg, GR8 :$reg), 0>; def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg), 0>; def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg), 0>; def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg), 0>; // div and idiv aliases for explicit A register. def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8r GR8 :$src)>; def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16r GR16:$src)>; def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32r GR32:$src)>; def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64r GR64:$src)>; def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8m i8mem :$src)>; def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16m i16mem:$src)>; def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32m i32mem:$src)>; def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64m i64mem:$src)>; def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8r GR8 :$src)>; def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16r GR16:$src)>; def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32r GR32:$src)>; def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64r GR64:$src)>; def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8m i8mem :$src)>; def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16m i16mem:$src)>; def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32m i32mem:$src)>; def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64m i64mem:$src)>; // Various unary fpstack operations default to operating on on ST1. // For example, "fxch" -> "fxch %st(1)" def : InstAlias<"faddp", (ADD_FPrST0 ST1), 0>; def : InstAlias<"fsub{|r}p", (SUBR_FPrST0 ST1), 0>; def : InstAlias<"fsub{r|}p", (SUB_FPrST0 ST1), 0>; def : InstAlias<"fmulp", (MUL_FPrST0 ST1), 0>; def : InstAlias<"fdiv{|r}p", (DIVR_FPrST0 ST1), 0>; def : InstAlias<"fdiv{r|}p", (DIV_FPrST0 ST1), 0>; def : InstAlias<"fxch", (XCH_F ST1), 0>; def : InstAlias<"fcom", (COM_FST0r ST1), 0>; def : InstAlias<"fcomp", (COMP_FST0r ST1), 0>; def : InstAlias<"fcomi", (COM_FIr ST1), 0>; def : InstAlias<"fcompi", (COM_FIPr ST1), 0>; def : InstAlias<"fucom", (UCOM_Fr ST1), 0>; def : InstAlias<"fucomp", (UCOM_FPr ST1), 0>; def : InstAlias<"fucomi", (UCOM_FIr ST1), 0>; def : InstAlias<"fucompi", (UCOM_FIPr ST1), 0>; // Handle fmul/fadd/fsub/fdiv instructions with explicitly written st(0) op. // For example, "fadd %st(4), %st(0)" -> "fadd %st(4)". We also disambiguate // instructions like "fadd %st(0), %st(0)" as "fadd %st(0)" for consistency with // gas. multiclass FpUnaryAlias { def : InstAlias; def : InstAlias; } defm : FpUnaryAlias<"fadd", ADD_FST0r>; defm : FpUnaryAlias<"faddp", ADD_FPrST0, 0>; defm : FpUnaryAlias<"fsub", SUB_FST0r>; defm : FpUnaryAlias<"fsub{|r}p", SUBR_FPrST0>; defm : FpUnaryAlias<"fsubr", SUBR_FST0r>; defm : FpUnaryAlias<"fsub{r|}p", SUB_FPrST0>; defm : FpUnaryAlias<"fmul", MUL_FST0r>; defm : FpUnaryAlias<"fmulp", MUL_FPrST0>; defm : FpUnaryAlias<"fdiv", DIV_FST0r>; defm : FpUnaryAlias<"fdiv{|r}p", DIVR_FPrST0>; defm : FpUnaryAlias<"fdivr", DIVR_FST0r>; defm : FpUnaryAlias<"fdiv{r|}p", DIV_FPrST0>; defm : FpUnaryAlias<"fcomi", COM_FIr, 0>; defm : FpUnaryAlias<"fucomi", UCOM_FIr, 0>; defm : FpUnaryAlias<"fcompi", COM_FIPr>; defm : FpUnaryAlias<"fucompi", UCOM_FIPr>; // Handle "f{mulp,addp} st(0), $op" the same as "f{mulp,addp} $op", since they // commute. We also allow fdiv[r]p/fsubrp even though they don't commute, // solely because gas supports it. def : InstAlias<"faddp\t{%st(0), $op|$op, st(0)}", (ADD_FPrST0 RST:$op), 0>; def : InstAlias<"fmulp\t{%st(0), $op|$op, st(0)}", (MUL_FPrST0 RST:$op)>; def : InstAlias<"fsub{|r}p\t{%st(0), $op|$op, st(0)}", (SUBR_FPrST0 RST:$op)>; def : InstAlias<"fsub{r|}p\t{%st(0), $op|$op, st(0)}", (SUB_FPrST0 RST:$op)>; def : InstAlias<"fdiv{|r}p\t{%st(0), $op|$op, st(0)}", (DIVR_FPrST0 RST:$op)>; def : InstAlias<"fdiv{r|}p\t{%st(0), $op|$op, st(0)}", (DIV_FPrST0 RST:$op)>; // We accept "fnstsw %eax" even though it only writes %ax. def : InstAlias<"fnstsw\t{%eax|eax}", (FNSTSW16r)>; def : InstAlias<"fnstsw\t{%al|al}" , (FNSTSW16r)>; def : InstAlias<"fnstsw" , (FNSTSW16r)>; // lcall and ljmp aliases. This seems to be an odd mapping in 64-bit mode, but // this is compatible with what GAS does. def : InstAlias<"lcall $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>; def : InstAlias<"ljmp $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>; def : InstAlias<"lcall *$dst", (FARCALL32m opaque48mem:$dst)>; def : InstAlias<"ljmp *$dst", (FARJMP32m opaque48mem:$dst)>; // "imul , B" is an alias for "imul , B, B". def : InstAlias<"imulw $imm, $r", (IMUL16rri GR16:$r, GR16:$r, i16imm:$imm)>; def : InstAlias<"imulw $imm, $r", (IMUL16rri8 GR16:$r, GR16:$r, i16i8imm:$imm)>; def : InstAlias<"imull $imm, $r", (IMUL32rri GR32:$r, GR32:$r, i32imm:$imm)>; def : InstAlias<"imull $imm, $r", (IMUL32rri8 GR32:$r, GR32:$r, i32i8imm:$imm)>; def : InstAlias<"imulq $imm, $r",(IMUL64rri32 GR64:$r, GR64:$r,i64i32imm:$imm)>; def : InstAlias<"imulq $imm, $r", (IMUL64rri8 GR64:$r, GR64:$r, i64i8imm:$imm)>; // inb %dx -> inb %al, %dx def : InstAlias<"inb\t{%dx|dx}", (IN8rr), 0>; def : InstAlias<"inw\t{%dx|dx}", (IN16rr), 0>; def : InstAlias<"inl\t{%dx|dx}", (IN32rr), 0>; def : InstAlias<"inb\t$port", (IN8ri i8imm:$port), 0>; def : InstAlias<"inw\t$port", (IN16ri i8imm:$port), 0>; def : InstAlias<"inl\t$port", (IN32ri i8imm:$port), 0>; // jmp and call aliases for lcall and ljmp. jmp $42,$5 -> ljmp def : InstAlias<"call $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>; def : InstAlias<"jmp $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>; def : InstAlias<"callw $seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg)>; def : InstAlias<"jmpw $seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg)>; def : InstAlias<"calll $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>; def : InstAlias<"jmpl $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>; // Force mov without a suffix with a segment and mem to prefer the 'l' form of // the move. All segment/mem forms are equivalent, this has the shortest // encoding. def : InstAlias<"mov $mem, $seg", (MOV32sm SEGMENT_REG:$seg, i32mem:$mem)>; def : InstAlias<"mov $seg, $mem", (MOV32ms i32mem:$mem, SEGMENT_REG:$seg)>; // Match 'movq , ' as an alias for movabsq. def : InstAlias<"movq $imm, $reg", (MOV64ri GR64:$reg, i64imm:$imm)>; // Match 'movq GR64, MMX' as an alias for movd. def : InstAlias<"movq $src, $dst", (MMX_MOVD64to64rr VR64:$dst, GR64:$src), 0>; def : InstAlias<"movq $src, $dst", (MMX_MOVD64from64rr GR64:$dst, VR64:$src), 0>; // movsd with no operands (as opposed to the SSE scalar move of a double) is an // alias for movsl. (as in rep; movsd) def : InstAlias<"movsd", (MOVSD), 0>; // movsx aliases def : InstAlias<"movsx $src, $dst", (MOVSX16rr8 GR16:$dst, GR8:$src), 0>; def : InstAlias<"movsx $src, $dst", (MOVSX16rm8 GR16:$dst, i8mem:$src), 0>; def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8:$src), 0>; def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16:$src), 0>; def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8:$src), 0>; def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16:$src), 0>; def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32:$src), 0>; // movzx aliases def : InstAlias<"movzx $src, $dst", (MOVZX16rr8 GR16:$dst, GR8:$src), 0>; def : InstAlias<"movzx $src, $dst", (MOVZX16rm8 GR16:$dst, i8mem:$src), 0>; def : InstAlias<"movzx $src, $dst", (MOVZX32rr8 GR32:$dst, GR8:$src), 0>; def : InstAlias<"movzx $src, $dst", (MOVZX32rr16 GR32:$dst, GR16:$src), 0>; def : InstAlias<"movzx $src, $dst", (MOVZX64rr8_Q GR64:$dst, GR8:$src), 0>; def : InstAlias<"movzx $src, $dst", (MOVZX64rr16_Q GR64:$dst, GR16:$src), 0>; // Note: No GR32->GR64 movzx form. // outb %dx -> outb %al, %dx def : InstAlias<"outb\t{%dx|dx}", (OUT8rr), 0>; def : InstAlias<"outw\t{%dx|dx}", (OUT16rr), 0>; def : InstAlias<"outl\t{%dx|dx}", (OUT32rr), 0>; def : InstAlias<"outb\t$port", (OUT8ir i8imm:$port), 0>; def : InstAlias<"outw\t$port", (OUT16ir i8imm:$port), 0>; def : InstAlias<"outl\t$port", (OUT32ir i8imm:$port), 0>; // 'sldt ' can be encoded with either sldtw or sldtq with the same // effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity // errors, since its encoding is the most compact. def : InstAlias<"sldt $mem", (SLDT16m i16mem:$mem)>; // shld/shrd op,op -> shld op, op, CL def : InstAlias<"shld{w}\t{$r2, $r1|$r1, $r2}", (SHLD16rrCL GR16:$r1, GR16:$r2), 0>; def : InstAlias<"shld{l}\t{$r2, $r1|$r1, $r2}", (SHLD32rrCL GR32:$r1, GR32:$r2), 0>; def : InstAlias<"shld{q}\t{$r2, $r1|$r1, $r2}", (SHLD64rrCL GR64:$r1, GR64:$r2), 0>; def : InstAlias<"shrd{w}\t{$r2, $r1|$r1, $r2}", (SHRD16rrCL GR16:$r1, GR16:$r2), 0>; def : InstAlias<"shrd{l}\t{$r2, $r1|$r1, $r2}", (SHRD32rrCL GR32:$r1, GR32:$r2), 0>; def : InstAlias<"shrd{q}\t{$r2, $r1|$r1, $r2}", (SHRD64rrCL GR64:$r1, GR64:$r2), 0>; def : InstAlias<"shld{w}\t{$reg, $mem|$mem, $reg}", (SHLD16mrCL i16mem:$mem, GR16:$reg), 0>; def : InstAlias<"shld{l}\t{$reg, $mem|$mem, $reg}", (SHLD32mrCL i32mem:$mem, GR32:$reg), 0>; def : InstAlias<"shld{q}\t{$reg, $mem|$mem, $reg}", (SHLD64mrCL i64mem:$mem, GR64:$reg), 0>; def : InstAlias<"shrd{w}\t{$reg, $mem|$mem, $reg}", (SHRD16mrCL i16mem:$mem, GR16:$reg), 0>; def : InstAlias<"shrd{l}\t{$reg, $mem|$mem, $reg}", (SHRD32mrCL i32mem:$mem, GR32:$reg), 0>; def : InstAlias<"shrd{q}\t{$reg, $mem|$mem, $reg}", (SHRD64mrCL i64mem:$mem, GR64:$reg), 0>; /* FIXME: This is disabled because the asm matcher is currently incapable of * matching a fixed immediate like $1. // "shl X, $1" is an alias for "shl X". multiclass ShiftRotateByOneAlias { def : InstAlias(!strconcat(Opc, "8r1")) GR8:$op)>; def : InstAlias(!strconcat(Opc, "16r1")) GR16:$op)>; def : InstAlias(!strconcat(Opc, "32r1")) GR32:$op)>; def : InstAlias(!strconcat(Opc, "64r1")) GR64:$op)>; def : InstAlias(!strconcat(Opc, "8m1")) i8mem:$op)>; def : InstAlias(!strconcat(Opc, "16m1")) i16mem:$op)>; def : InstAlias(!strconcat(Opc, "32m1")) i32mem:$op)>; def : InstAlias(!strconcat(Opc, "64m1")) i64mem:$op)>; } defm : ShiftRotateByOneAlias<"rcl", "RCL">; defm : ShiftRotateByOneAlias<"rcr", "RCR">; defm : ShiftRotateByOneAlias<"rol", "ROL">; defm : ShiftRotateByOneAlias<"ror", "ROR">; FIXME */ // test: We accept "testX , " and "testX , " as synonyms. def : InstAlias<"test{b}\t{$val, $mem|$mem, $val}", (TEST8rm GR8 :$val, i8mem :$mem)>; def : InstAlias<"test{w}\t{$val, $mem|$mem, $val}", (TEST16rm GR16:$val, i16mem:$mem)>; def : InstAlias<"test{l}\t{$val, $mem|$mem, $val}", (TEST32rm GR32:$val, i32mem:$mem)>; def : InstAlias<"test{q}\t{$val, $mem|$mem, $val}", (TEST64rm GR64:$val, i64mem:$mem)>; // xchg: We accept "xchgX , " and "xchgX , " as synonyms. def : InstAlias<"xchg{b}\t{$mem, $val|$val, $mem}", (XCHG8rm GR8 :$val, i8mem :$mem)>; def : InstAlias<"xchg{w}\t{$mem, $val|$val, $mem}", (XCHG16rm GR16:$val, i16mem:$mem)>; def : InstAlias<"xchg{l}\t{$mem, $val|$val, $mem}", (XCHG32rm GR32:$val, i32mem:$mem)>; def : InstAlias<"xchg{q}\t{$mem, $val|$val, $mem}", (XCHG64rm GR64:$val, i64mem:$mem)>; // xchg: We accept "xchgX , %eax" and "xchgX %eax, " as synonyms. def : InstAlias<"xchg{w}\t{%ax, $src|$src, ax}", (XCHG16ar GR16:$src)>; def : InstAlias<"xchg{l}\t{%eax, $src|$src, eax}", (XCHG32ar GR32:$src)>, Requires<[In32BitMode]>; def : InstAlias<"xchg{l}\t{%eax, $src|$src, eax}", (XCHG32ar64 GR32_NOAX:$src)>, Requires<[In64BitMode]>; def : InstAlias<"xchg{q}\t{%rax, $src|$src, rax}", (XCHG64ar GR64:$src)>;