//===-- RegAllocBase.h - basic regalloc interface and driver --*- C++ -*---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RegAllocBase class, which is the skeleton of a basic // register allocation algorithm and interface for extending it. It provides the // building blocks on which to construct other experimental allocators and test // the validity of two principles: // // - If virtual and physical register liveness is modeled using intervals, then // on-the-fly interference checking is cheap. Furthermore, interferences can be // lazily cached and reused. // // - Register allocation complexity, and generated code performance is // determined by the effectiveness of live range splitting rather than optimal // coloring. // // Following the first principle, interfering checking revolves around the // LiveIntervalUnion data structure. // // To fulfill the second principle, the basic allocator provides a driver for // incremental splitting. It essentially punts on the problem of register // coloring, instead driving the assignment of virtual to physical registers by // the cost of splitting. The basic allocator allows for heuristic reassignment // of registers, if a more sophisticated allocator chooses to do that. // // This framework provides a way to engineer the compile time vs. code // quality trade-off without relying a particular theoretical solver. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_REGALLOCBASE #define LLVM_CODEGEN_REGALLOCBASE #include "llvm/ADT/OwningPtr.h" namespace llvm { template class SmallVectorImpl; class TargetRegisterInfo; class VirtRegMap; class LiveIntervals; class Spiller; // Heuristic that determines the priority of assigning virtual to physical // registers. The main impact of the heuristic is expected to be compile time. // The default is to simply compare spill weights. struct LessSpillWeightPriority : public std::binary_function { bool operator()(const LiveInterval *Left, const LiveInterval *Right) const { return Left->weight < Right->weight; } }; // Forward declare a priority queue of live virtual registers. If an // implementation needs to prioritize by anything other than spill weight, then // this will become an abstract base class with virtual calls to push/get. class LiveVirtRegQueue; /// RegAllocBase provides the register allocation driver and interface that can /// be extended to add interesting heuristics. /// /// Register allocators must override the selectOrSplit() method to implement /// live range splitting. LessSpillWeightPriority is provided as a standard /// comparator, but we may add an interface to override it if necessary. class RegAllocBase { protected: // Array of LiveIntervalUnions indexed by physical register. class LiveUnionArray { unsigned NumRegs; OwningArrayPtr Array; public: LiveUnionArray(): NumRegs(0) {} unsigned numRegs() const { return NumRegs; } void init(unsigned NRegs); void clear(); LiveIntervalUnion& operator[](unsigned PhysReg) { assert(PhysReg < NumRegs && "physReg out of bounds"); return Array[PhysReg]; } }; const TargetRegisterInfo *TRI; VirtRegMap *VRM; LiveIntervals *LIS; LiveUnionArray PhysReg2LiveUnion; // Current queries, one per physreg. They must be reinitialized each time we // query on a new live virtual register. OwningArrayPtr Queries; RegAllocBase(): TRI(0), VRM(0), LIS(0) {} virtual ~RegAllocBase() {} // A RegAlloc pass should call this before allocatePhysRegs. void init(const TargetRegisterInfo &tri, VirtRegMap &vrm, LiveIntervals &lis); // Get an initialized query to check interferences between lvr and preg. Note // that Query::init must be called at least once for each physical register // before querying a new live virtual register. This ties Queries and // PhysReg2LiveUnion together. LiveIntervalUnion::Query &query(LiveInterval &VirtReg, unsigned PhysReg) { Queries[PhysReg].init(&VirtReg, &PhysReg2LiveUnion[PhysReg]); return Queries[PhysReg]; } // The top-level driver. The output is a VirtRegMap that us updated with // physical register assignments. // // If an implementation wants to override the LiveInterval comparator, we // should modify this interface to allow passing in an instance derived from // LiveVirtRegQueue. void allocatePhysRegs(); // Get a temporary reference to a Spiller instance. virtual Spiller &spiller() = 0; // A RegAlloc pass should override this to provide the allocation heuristics. // Each call must guarantee forward progess by returning an available PhysReg // or new set of split live virtual registers. It is up to the splitter to // converge quickly toward fully spilled live ranges. virtual unsigned selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &splitLVRs) = 0; // A RegAlloc pass should call this when PassManager releases its memory. virtual void releaseMemory(); // Helper for checking interference between a live virtual register and a // physical register, including all its register aliases. If an interference // exists, return the interfering register, which may be preg or an alias. unsigned checkPhysRegInterference(LiveInterval& VirtReg, unsigned PhysReg); // Helper for spilling all live virtual registers currently unified under preg // that interfere with the most recently queried lvr. Return true if spilling // was successful, and append any new spilled/split intervals to splitLVRs. bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl &SplitVRegs); #ifndef NDEBUG // Verify each LiveIntervalUnion. void verify(); #endif private: void seedLiveVirtRegs(LiveVirtRegQueue &VirtRegQ); void spillReg(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl &SplitVRegs); }; } // end namespace llvm #endif // !defined(LLVM_CODEGEN_REGALLOCBASE)