//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TwoAddress instruction pass which is used // by most register allocators. Two-Address instructions are rewritten // from: // // A = B op C // // to: // // A = B // A op= C // // Note that if a register allocator chooses to use this pass, that it // has to be capable of handling the non-SSA nature of these rewritten // virtual registers. // // It is also worth noting that the duplicate operand of the two // address instruction is removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "twoaddrinstr" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); STATISTIC(NumReMats, "Number of instructions re-materialized"); STATISTIC(NumDeletes, "Number of dead instructions deleted"); namespace { class VISIBILITY_HIDDEN TwoAddressInstructionPass : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; LiveVariables *LV; // DistanceMap - Keep track the distance of a MI from the start of the // current basic block. DenseMap DistanceMap; // SrcRegMap - A map from virtual registers to physical registers which // are likely targets to be coalesced to due to copies from physical // registers to virtual registers. e.g. v1024 = move r0. DenseMap SrcRegMap; // DstRegMap - A map from virtual registers to physical registers which // are likely targets to be coalesced to due to copies to physical // registers from virtual registers. e.g. r1 = move v1024. DenseMap DstRegMap; bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, unsigned Reg, MachineBasicBlock::iterator OldPos); bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, MachineInstr *MI, MachineInstr *DefMI, MachineBasicBlock *MBB, unsigned Loc); bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist, unsigned &LastDef); bool isProfitableToCommute(unsigned regB, unsigned regC, MachineInstr *MI, MachineBasicBlock *MBB, unsigned Dist); bool CommuteInstruction(MachineBasicBlock::iterator &mi, MachineFunction::iterator &mbbi, unsigned RegB, unsigned RegC, unsigned Dist); bool isProfitableToConv3Addr(unsigned RegA); bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, MachineFunction::iterator &mbbi, unsigned RegB, unsigned Dist); void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSet &Processed); public: static char ID; // Pass identification, replacement for typeid TwoAddressInstructionPass() : MachineFunctionPass(&ID) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreservedID(MachineLoopInfoID); AU.addPreservedID(MachineDominatorsID); if (StrongPHIElim) AU.addPreservedID(StrongPHIEliminationID); else AU.addPreservedID(PHIEliminationID); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - Pass entry point. bool runOnMachineFunction(MachineFunction&); }; } char TwoAddressInstructionPass::ID = 0; static RegisterPass X("twoaddressinstruction", "Two-Address instruction pass"); const PassInfo *const llvm::TwoAddressInstructionPassID = &X; /// Sink3AddrInstruction - A two-address instruction has been converted to a /// three-address instruction to avoid clobbering a register. Try to sink it /// past the instruction that would kill the above mentioned register to reduce /// register pressure. bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, unsigned SavedReg, MachineBasicBlock::iterator OldPos) { // Check if it's safe to move this instruction. bool SeenStore = true; // Be conservative. if (!MI->isSafeToMove(TII, SeenStore)) return false; unsigned DefReg = 0; SmallSet UseRegs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (MO.isUse() && MOReg != SavedReg) UseRegs.insert(MO.getReg()); if (!MO.isDef()) continue; if (MO.isImplicit()) // Don't try to move it if it implicitly defines a register. return false; if (DefReg) // For now, don't move any instructions that define multiple registers. return false; DefReg = MO.getReg(); } // Find the instruction that kills SavedReg. MachineInstr *KillMI = NULL; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg), UE = MRI->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); if (!UseMO.isKill()) continue; KillMI = UseMO.getParent(); break; } if (!KillMI || KillMI->getParent() != MBB || KillMI == MI) return false; // If any of the definitions are used by another instruction between the // position and the kill use, then it's not safe to sink it. // // FIXME: This can be sped up if there is an easy way to query whether an // instruction is before or after another instruction. Then we can use // MachineRegisterInfo def / use instead. MachineOperand *KillMO = NULL; MachineBasicBlock::iterator KillPos = KillMI; ++KillPos; unsigned NumVisited = 0; for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) { MachineInstr *OtherMI = I; if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. return false; ++NumVisited; for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = OtherMI->getOperand(i); if (!MO.isReg()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (DefReg == MOReg) return false; if (MO.isKill()) { if (OtherMI == KillMI && MOReg == SavedReg) // Save the operand that kills the register. We want to unset the kill // marker if we can sink MI past it. KillMO = &MO; else if (UseRegs.count(MOReg)) // One of the uses is killed before the destination. return false; } } } // Update kill and LV information. KillMO->setIsKill(false); KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); KillMO->setIsKill(true); if (LV) LV->replaceKillInstruction(SavedReg, KillMI, MI); // Move instruction to its destination. MBB->remove(MI); MBB->insert(KillPos, MI); ++Num3AddrSunk; return true; } /// isTwoAddrUse - Return true if the specified MI is using the specified /// register as a two-address operand. static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) { const TargetInstrDesc &TID = UseMI->getDesc(); for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { MachineOperand &MO = UseMI->getOperand(i); if (MO.isReg() && MO.getReg() == Reg && (MO.isDef() || UseMI->isRegTiedToDefOperand(i))) // Earlier use is a two-address one. return true; } return false; } /// isProfitableToReMat - Return true if the heuristics determines it is likely /// to be profitable to re-materialize the definition of Reg rather than copy /// the register. bool TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, MachineInstr *MI, MachineInstr *DefMI, MachineBasicBlock *MBB, unsigned Loc) { bool OtherUse = false; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), UE = MRI->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = UseMO.getParent(); MachineBasicBlock *UseMBB = UseMI->getParent(); if (UseMBB == MBB) { DenseMap::iterator DI = DistanceMap.find(UseMI); if (DI != DistanceMap.end() && DI->second == Loc) continue; // Current use. OtherUse = true; // There is at least one other use in the MBB that will clobber the // register. if (isTwoAddrUse(UseMI, Reg)) return true; } } // If other uses in MBB are not two-address uses, then don't remat. if (OtherUse) return false; // No other uses in the same block, remat if it's defined in the same // block so it does not unnecessarily extend the live range. return MBB == DefMI->getParent(); } /// NoUseAfterLastDef - Return true if there are no intervening uses between the /// last instruction in the MBB that defines the specified register and the /// two-address instruction which is being processed. It also returns the last /// def location by reference bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist, unsigned &LastDef) { LastDef = 0; unsigned LastUse = Dist; for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), E = MRI->reg_end(); I != E; ++I) { MachineOperand &MO = I.getOperand(); MachineInstr *MI = MO.getParent(); if (MI->getParent() != MBB) continue; DenseMap::iterator DI = DistanceMap.find(MI); if (DI == DistanceMap.end()) continue; if (MO.isUse() && DI->second < LastUse) LastUse = DI->second; if (MO.isDef() && DI->second > LastDef) LastDef = DI->second; } return !(LastUse > LastDef && LastUse < Dist); } /// isCopyToReg - Return true if the specified MI is a copy instruction or /// a extract_subreg instruction. It also returns the source and destination /// registers and whether they are physical registers by reference. static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, unsigned &SrcReg, unsigned &DstReg, bool &IsSrcPhys, bool &IsDstPhys) { SrcReg = 0; DstReg = 0; unsigned SrcSubIdx, DstSubIdx; if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) { if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) { DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(1).getReg(); } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) { DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(2).getReg(); } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) { DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(2).getReg(); } } if (DstReg) { IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); return true; } return false; } /// isKilled - Test if the given register value, which is used by the given /// instruction, is killed by the given instruction. This looks through /// coalescable copies to see if the original value is potentially not killed. /// /// For example, in this code: /// /// %reg1034 = copy %reg1024 /// %reg1035 = copy %reg1025 /// %reg1036 = add %reg1034, %reg1035 /// /// %reg1034 is not considered to be killed, since it is copied from a /// register which is not killed. Treating it as not killed lets the /// normal heuristics commute the (two-address) add, which lets /// coalescing eliminate the extra copy. /// static bool isKilled(MachineInstr &MI, unsigned Reg, const MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { MachineInstr *DefMI = &MI; for (;;) { if (!DefMI->killsRegister(Reg)) return false; if (TargetRegisterInfo::isPhysicalRegister(Reg)) return true; MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); // If there are multiple defs, we can't do a simple analysis, so just // go with what the kill flag says. if (next(Begin) != MRI->def_end()) return true; DefMI = &*Begin; bool IsSrcPhys, IsDstPhys; unsigned SrcReg, DstReg; // If the def is something other than a copy, then it isn't going to // be coalesced, so follow the kill flag. if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) return true; Reg = SrcReg; } } /// isTwoAddrUse - Return true if the specified MI uses the specified register /// as a two-address use. If so, return the destination register by reference. static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { const TargetInstrDesc &TID = MI.getDesc(); unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM) ? MI.getNumOperands() : TID.getNumOperands(); for (unsigned i = 0; i != NumOps; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) continue; unsigned ti; if (MI.isRegTiedToDefOperand(i, &ti)) { DstReg = MI.getOperand(ti).getReg(); return true; } } return false; } /// findOnlyInterestingUse - Given a register, if has a single in-basic block /// use, return the use instruction if it's a copy or a two-address use. static MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, MachineRegisterInfo *MRI, const TargetInstrInfo *TII, bool &isCopy, unsigned &DstReg, bool &IsDstPhys) { MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg); if (UI == MRI->use_end()) return 0; MachineInstr &UseMI = *UI; if (++UI != MRI->use_end()) // More than one use. return 0; if (UseMI.getParent() != MBB) return 0; unsigned SrcReg; bool IsSrcPhys; if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) return &UseMI; IsDstPhys = false; if (isTwoAddrUse(UseMI, Reg, DstReg)) return &UseMI; return 0; } /// getMappedReg - Return the physical register the specified virtual register /// might be mapped to. static unsigned getMappedReg(unsigned Reg, DenseMap &RegMap) { while (TargetRegisterInfo::isVirtualRegister(Reg)) { DenseMap::iterator SI = RegMap.find(Reg); if (SI == RegMap.end()) return 0; Reg = SI->second; } if (TargetRegisterInfo::isPhysicalRegister(Reg)) return Reg; return 0; } /// regsAreCompatible - Return true if the two registers are equal or aliased. /// static bool regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { if (RegA == RegB) return true; if (!RegA || !RegB) return false; return TRI->regsOverlap(RegA, RegB); } /// isProfitableToReMat - Return true if it's potentially profitable to commute /// the two-address instruction that's being processed. bool TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC, MachineInstr *MI, MachineBasicBlock *MBB, unsigned Dist) { // Determine if it's profitable to commute this two address instruction. In // general, we want no uses between this instruction and the definition of // the two-address register. // e.g. // %reg1028 = EXTRACT_SUBREG %reg1027, 1 // %reg1029 = MOV8rr %reg1028 // %reg1029 = SHR8ri %reg1029, 7, %EFLAGS // insert => %reg1030 = MOV8rr %reg1028 // %reg1030 = ADD8rr %reg1028, %reg1029, %EFLAGS // In this case, it might not be possible to coalesce the second MOV8rr // instruction if the first one is coalesced. So it would be profitable to // commute it: // %reg1028 = EXTRACT_SUBREG %reg1027, 1 // %reg1029 = MOV8rr %reg1028 // %reg1029 = SHR8ri %reg1029, 7, %EFLAGS // insert => %reg1030 = MOV8rr %reg1029 // %reg1030 = ADD8rr %reg1029, %reg1028, %EFLAGS if (!MI->killsRegister(regC)) return false; // Ok, we have something like: // %reg1030 = ADD8rr %reg1028, %reg1029, %EFLAGS // let's see if it's worth commuting it. // Look for situations like this: // %reg1024 = MOV r1 // %reg1025 = MOV r0 // %reg1026 = ADD %reg1024, %reg1025 // r0 = MOV %reg1026 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. unsigned FromRegB = getMappedReg(regB, SrcRegMap); unsigned FromRegC = getMappedReg(regC, SrcRegMap); unsigned ToRegB = getMappedReg(regB, DstRegMap); unsigned ToRegC = getMappedReg(regC, DstRegMap); if (!regsAreCompatible(FromRegB, ToRegB, TRI) && (regsAreCompatible(FromRegB, ToRegC, TRI) || regsAreCompatible(FromRegC, ToRegB, TRI))) return true; // If there is a use of regC between its last def (could be livein) and this // instruction, then bail. unsigned LastDefC = 0; if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC)) return false; // If there is a use of regB between its last def (could be livein) and this // instruction, then go ahead and make this transformation. unsigned LastDefB = 0; if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB)) return true; // Since there are no intervening uses for both registers, then commute // if the def of regC is closer. Its live interval is shorter. return LastDefB && LastDefC && LastDefC > LastDefB; } /// CommuteInstruction - Commute a two-address instruction and update the basic /// block, distance map, and live variables if needed. Return true if it is /// successful. bool TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi, MachineFunction::iterator &mbbi, unsigned RegB, unsigned RegC, unsigned Dist) { MachineInstr *MI = mi; DOUT << "2addr: COMMUTING : " << *MI; MachineInstr *NewMI = TII->commuteInstruction(MI); if (NewMI == 0) { DOUT << "2addr: COMMUTING FAILED!\n"; return false; } DOUT << "2addr: COMMUTED TO: " << *NewMI; // If the instruction changed to commute it, update livevar. if (NewMI != MI) { if (LV) // Update live variables LV->replaceKillInstruction(RegC, MI, NewMI); mbbi->insert(mi, NewMI); // Insert the new inst mbbi->erase(mi); // Nuke the old inst. mi = NewMI; DistanceMap.insert(std::make_pair(NewMI, Dist)); } // Update source register map. unsigned FromRegC = getMappedReg(RegC, SrcRegMap); if (FromRegC) { unsigned RegA = MI->getOperand(0).getReg(); SrcRegMap[RegA] = FromRegC; } return true; } /// isProfitableToConv3Addr - Return true if it is profitable to convert the /// given 2-address instruction to a 3-address one. bool TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) { // Look for situations like this: // %reg1024 = MOV r1 // %reg1025 = MOV r0 // %reg1026 = ADD %reg1024, %reg1025 // r2 = MOV %reg1026 // Turn ADD into a 3-address instruction to avoid a copy. unsigned FromRegA = getMappedReg(RegA, SrcRegMap); unsigned ToRegA = getMappedReg(RegA, DstRegMap); return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI)); } /// ConvertInstTo3Addr - Convert the specified two-address instruction into a /// three address one. Return true if this transformation was successful. bool TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, MachineFunction::iterator &mbbi, unsigned RegB, unsigned Dist) { MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV); if (NewMI) { DOUT << "2addr: CONVERTING 2-ADDR: " << *mi; DOUT << "2addr: TO 3-ADDR: " << *NewMI; bool Sunk = false; if (NewMI->findRegisterUseOperand(RegB, false, TRI)) // FIXME: Temporary workaround. If the new instruction doesn't // uses RegB, convertToThreeAddress must have created more // then one instruction. Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi); mbbi->erase(mi); // Nuke the old inst. if (!Sunk) { DistanceMap.insert(std::make_pair(NewMI, Dist)); mi = NewMI; nmi = next(mi); } return true; } return false; } /// ProcessCopy - If the specified instruction is not yet processed, process it /// if it's a copy. For a copy instruction, we find the physical registers the /// source and destination registers might be mapped to. These are kept in /// point-to maps used to determine future optimizations. e.g. /// v1024 = mov r0 /// v1025 = mov r1 /// v1026 = add v1024, v1025 /// r1 = mov r1026 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is /// potentially joined with r1 on the output side. It's worthwhile to commute /// 'add' to eliminate a copy. void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSet &Processed) { if (Processed.count(MI)) return; bool IsSrcPhys, IsDstPhys; unsigned SrcReg, DstReg; if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) return; if (IsDstPhys && !IsSrcPhys) DstRegMap.insert(std::make_pair(SrcReg, DstReg)); else if (!IsDstPhys && IsSrcPhys) { bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; if (!isNew) assert(SrcRegMap[DstReg] == SrcReg && "Can't map to two src physical registers!"); SmallVector VirtRegPairs; bool isCopy = false; unsigned NewReg = 0; while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII, isCopy, NewReg, IsDstPhys)) { if (isCopy) { if (Processed.insert(UseMI)) break; } DenseMap::iterator DI = DistanceMap.find(UseMI); if (DI != DistanceMap.end()) // Earlier in the same MBB.Reached via a back edge. break; if (IsDstPhys) { VirtRegPairs.push_back(NewReg); break; } bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second; if (!isNew) assert(SrcRegMap[NewReg] == DstReg && "Can't map to two src physical registers!"); VirtRegPairs.push_back(NewReg); DstReg = NewReg; } if (!VirtRegPairs.empty()) { unsigned ToReg = VirtRegPairs.back(); VirtRegPairs.pop_back(); while (!VirtRegPairs.empty()) { unsigned FromReg = VirtRegPairs.back(); VirtRegPairs.pop_back(); bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; if (!isNew) assert(DstRegMap[FromReg] == ToReg && "Can't map to two dst physical registers!"); ToReg = FromReg; } } } Processed.insert(MI); } /// isSafeToDelete - If the specified instruction does not produce any side /// effects and all of its defs are dead, then it's safe to delete. static bool isSafeToDelete(MachineInstr *MI, const TargetInstrInfo *TII) { const TargetInstrDesc &TID = MI->getDesc(); if (TID.mayStore() || TID.isCall()) return false; if (TID.isTerminator() || TID.hasUnmodeledSideEffects()) return false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; if (!MO.isDead()) return false; } return true; } /// runOnMachineFunction - Reduce two-address instructions to two operands. /// bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { DOUT << "Machine Function\n"; const TargetMachine &TM = MF.getTarget(); MRI = &MF.getRegInfo(); TII = TM.getInstrInfo(); TRI = TM.getRegisterInfo(); LV = getAnalysisIfAvailable(); bool MadeChange = false; DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n"; DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; // ReMatRegs - Keep track of the registers whose def's are remat'ed. BitVector ReMatRegs; ReMatRegs.resize(MRI->getLastVirtReg()+1); SmallPtrSet Processed; for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); mbbi != mbbe; ++mbbi) { unsigned Dist = 0; DistanceMap.clear(); SrcRegMap.clear(); DstRegMap.clear(); Processed.clear(); for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); mi != me; ) { MachineBasicBlock::iterator nmi = next(mi); const TargetInstrDesc &TID = mi->getDesc(); bool FirstTied = true; DistanceMap.insert(std::make_pair(mi, ++Dist)); ProcessCopy(&*mi, &*mbbi, Processed); unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM) ? mi->getNumOperands() : TID.getNumOperands(); for (unsigned si = 0; si < NumOps; ++si) { unsigned ti = 0; if (!mi->isRegTiedToDefOperand(si, &ti)) continue; if (FirstTied) { ++NumTwoAddressInstrs; DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM)); } FirstTied = false; assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() && mi->getOperand(si).isUse() && "two address instruction invalid"); // If the two operands are the same we just remove the use // and mark the def as def&use, otherwise we have to insert a copy. if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) { // Rewrite: // a = b op c // to: // a = b // a = a op c unsigned regA = mi->getOperand(ti).getReg(); unsigned regB = mi->getOperand(si).getReg(); assert(TargetRegisterInfo::isVirtualRegister(regB) && "cannot update physical register live information"); #ifndef NDEBUG // First, verify that we don't have a use of a in the instruction (a = // b + a for example) because our transformation will not work. This // should never occur because we are in SSA form. for (unsigned i = 0; i != mi->getNumOperands(); ++i) assert(i == ti || !mi->getOperand(i).isReg() || mi->getOperand(i).getReg() != regA); #endif // If this instruction is not the killing user of B, see if we can // rearrange the code to make it so. Making it the killing user will // allow us to coalesce A and B together, eliminating the copy we are // about to insert. if (!isKilled(*mi, regB, MRI, TII)) { // If regA is dead and the instruction can be deleted, just delete // it so it doesn't clobber regB. if (mi->getOperand(ti).isDead() && isSafeToDelete(mi, TII)) { mbbi->erase(mi); // Nuke the old inst. mi = nmi; ++NumDeletes; break; // Done with this instruction. } // If this instruction is commutative, check to see if C dies. If // so, swap the B and C operands. This makes the live ranges of A // and C joinable. // FIXME: This code also works for A := B op C instructions. if (TID.isCommutable() && mi->getNumOperands() >= 3) { assert(mi->getOperand(3-si).isReg() && "Not a proper commutative instruction!"); unsigned regC = mi->getOperand(3-si).getReg(); if (isKilled(*mi, regC, MRI, TII)) { if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) { ++NumCommuted; regB = regC; goto InstructionRearranged; } } } // If this instruction is potentially convertible to a true // three-address instruction, if (TID.isConvertibleTo3Addr()) { // FIXME: This assumes there are no more operands which are tied // to another register. #ifndef NDEBUG for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i) assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1); #endif if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) { ++NumConvertedTo3Addr; break; // Done with this instruction. } } } // If it's profitable to commute the instruction, do so. if (TID.isCommutable() && mi->getNumOperands() >= 3) { unsigned regC = mi->getOperand(3-si).getReg(); if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) { ++NumAggrCommuted; ++NumCommuted; regB = regC; goto InstructionRearranged; } } // If it's profitable to convert the 2-address instruction to a // 3-address one, do so. if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) { if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) { ++NumConvertedTo3Addr; break; // Done with this instruction. } } InstructionRearranged: const TargetRegisterClass* rc = MRI->getRegClass(regB); MachineInstr *DefMI = MRI->getVRegDef(regB); // If it's safe and profitable, remat the definition instead of // copying it. if (DefMI && DefMI->getDesc().isAsCheapAsAMove() && DefMI->isSafeToReMat(TII, regB) && isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){ DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n"); TII->reMaterialize(*mbbi, mi, regA, DefMI); ReMatRegs.set(regB); ++NumReMats; } else { bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc); assert(Emitted && "Unable to issue a copy instruction!\n"); } MachineBasicBlock::iterator prevMI = prior(mi); // Update DistanceMap. DistanceMap.insert(std::make_pair(prevMI, Dist)); DistanceMap[mi] = ++Dist; // Update live variables for regB. if (LV) { LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB); // regB is used in this BB. varInfoB.UsedBlocks[mbbi->getNumber()] = true; if (LV->removeVirtualRegisterKilled(regB, mi)) LV->addVirtualRegisterKilled(regB, prevMI); if (LV->removeVirtualRegisterDead(regB, mi)) LV->addVirtualRegisterDead(regB, prevMI); } DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM)); // Replace all occurences of regB with regA. for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { if (mi->getOperand(i).isReg() && mi->getOperand(i).getReg() == regB) mi->getOperand(i).setReg(regA); } } assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse()); mi->getOperand(ti).setReg(mi->getOperand(si).getReg()); MadeChange = true; DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM)); } mi = nmi; } } // Some remat'ed instructions are dead. int VReg = ReMatRegs.find_first(); while (VReg != -1) { if (MRI->use_empty(VReg)) { MachineInstr *DefMI = MRI->getVRegDef(VReg); DefMI->eraseFromParent(); } VReg = ReMatRegs.find_next(VReg); } return MadeChange; }