//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This contains a MachineSchedStrategy implementation for maximizing wave /// occupancy on GCN hardware. //===----------------------------------------------------------------------===// #include "GCNSchedStrategy.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/Support/MathExtras.h" #define DEBUG_TYPE "misched" using namespace llvm; GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( const MachineSchedContext *C) : GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, const MachineFunction &MF) { const SISubtarget &ST = MF.getSubtarget(); const SIMachineFunctionInfo *MFI = MF.getInfo(); unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), ST.getOccupancyWithNumVGPRs(VGPRs)); return std::min(MinRegOccupancy, ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), *MF.getFunction())); } void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { GenericScheduler::initialize(DAG); const SIRegisterInfo *SRI = static_cast(TRI); MF = &DAG->MF; const SISubtarget &ST = MF->getSubtarget(); // FIXME: This is also necessary, because some passes that run after // scheduling and before regalloc increase register pressure. const int ErrorMargin = 3; SGPRExcessLimit = Context->RegClassInfo ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; VGPRExcessLimit = Context->RegClassInfo ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; if (TargetOccupancy) { SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); } else { SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, SRI->getSGPRPressureSet()); VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, SRI->getVGPRPressureSet()); } SGPRCriticalLimit -= ErrorMargin; VGPRCriticalLimit -= ErrorMargin; } void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, const RegPressureTracker &RPTracker, const SIRegisterInfo *SRI, unsigned SGPRPressure, unsigned VGPRPressure) { Cand.SU = SU; Cand.AtTop = AtTop; // getDownwardPressure() and getUpwardPressure() make temporary changes to // the the tracker, so we need to pass those function a non-const copy. RegPressureTracker &TempTracker = const_cast(RPTracker); std::vector Pressure; std::vector MaxPressure; if (AtTop) TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); else { // FIXME: I think for bottom up scheduling, the register pressure is cached // and can be retrieved by DAG->getPressureDif(SU). TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); } unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; // If two instructions increase the pressure of different register sets // by the same amount, the generic scheduler will prefer to schedule the // instruction that increases the set with the least amount of registers, // which in our case would be SGPRs. This is rarely what we want, so // when we report excess/critical register pressure, we do it either // only for VGPRs or only for SGPRs. // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. const unsigned MaxVGPRPressureInc = 16; bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; // FIXME: We have to enter REG-EXCESS before we reach the actual threshold // to increase the likelihood we don't go over the limits. We should improve // the analysis to look through dependencies to find the path with the least // register pressure. // We only need to update the RPDelata for instructions that increase // register pressure. Instructions that decrease or keep reg pressure // the same will be marked as RegExcess in tryCandidate() when they // are compared with instructions that increase the register pressure. if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); } if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); } // Register pressure is considered 'CRITICAL' if it is approaching a value // that would reduce the wave occupancy for the execution unit. When // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both // has the same cost, so we don't need to prefer one over the other. int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; if (SGPRDelta >= 0 || VGPRDelta >= 0) { if (SGPRDelta > VGPRDelta) { Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); } else { Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); } } } // This function is mostly cut and pasted from // GenericScheduler::pickNodeFromQueue() void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, const RegPressureTracker &RPTracker, SchedCandidate &Cand) { const SIRegisterInfo *SRI = static_cast(TRI); ArrayRef Pressure = RPTracker.getRegSetPressureAtPos(); unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; ReadyQueue &Q = Zone.Available; for (SUnit *SU : Q) { SchedCandidate TryCand(ZonePolicy); initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, SGPRPressure, VGPRPressure); // Pass SchedBoundary only when comparing nodes from the same boundary. SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); if (TryCand.Reason != NoCand) { // Initialize resource delta if needed in case future heuristics query it. if (TryCand.ResDelta == SchedResourceDelta()) TryCand.initResourceDelta(Zone.DAG, SchedModel); Cand.setBest(TryCand); } } } // This function is mostly cut and pasted from // GenericScheduler::pickNodeBidirectional() SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { // Schedule as far as possible in the direction of no choice. This is most // efficient, but also provides the best heuristics for CriticalPSets. if (SUnit *SU = Bot.pickOnlyChoice()) { IsTopNode = false; return SU; } if (SUnit *SU = Top.pickOnlyChoice()) { IsTopNode = true; return SU; } // Set the bottom-up policy based on the state of the current bottom zone and // the instructions outside the zone, including the top zone. CandPolicy BotPolicy; setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); // Set the top-down policy based on the state of the current top zone and // the instructions outside the zone, including the bottom zone. CandPolicy TopPolicy; setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); // See if BotCand is still valid (because we previously scheduled from Top). DEBUG(dbgs() << "Picking from Bot:\n"); if (!BotCand.isValid() || BotCand.SU->isScheduled || BotCand.Policy != BotPolicy) { BotCand.reset(CandPolicy()); pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find the first candidate"); } else { DEBUG(traceCandidate(BotCand)); } // Check if the top Q has a better candidate. DEBUG(dbgs() << "Picking from Top:\n"); if (!TopCand.isValid() || TopCand.SU->isScheduled || TopCand.Policy != TopPolicy) { TopCand.reset(CandPolicy()); pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find the first candidate"); } else { DEBUG(traceCandidate(TopCand)); } // Pick best from BotCand and TopCand. DEBUG( dbgs() << "Top Cand: "; traceCandidate(TopCand); dbgs() << "Bot Cand: "; traceCandidate(BotCand); ); SchedCandidate Cand; if (TopCand.Reason == BotCand.Reason) { Cand = BotCand; GenericSchedulerBase::CandReason TopReason = TopCand.Reason; TopCand.Reason = NoCand; GenericScheduler::tryCandidate(Cand, TopCand, nullptr); if (TopCand.Reason != NoCand) { Cand.setBest(TopCand); } else { TopCand.Reason = TopReason; } } else { if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { Cand = TopCand; } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { Cand = BotCand; } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { Cand = TopCand; } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { Cand = BotCand; } else { if (BotCand.Reason > TopCand.Reason) { Cand = TopCand; } else { Cand = BotCand; } } } DEBUG( dbgs() << "Picking: "; traceCandidate(Cand); ); IsTopNode = Cand.AtTop; return Cand.SU; } // This function is mostly cut and pasted from // GenericScheduler::pickNode() SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { if (DAG->top() == DAG->bottom()) { assert(Top.Available.empty() && Top.Pending.empty() && Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); return nullptr; } SUnit *SU; do { if (RegionPolicy.OnlyTopDown) { SU = Top.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; TopCand.reset(NoPolicy); pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find a candidate"); SU = TopCand.SU; } IsTopNode = true; } else if (RegionPolicy.OnlyBottomUp) { SU = Bot.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; BotCand.reset(NoPolicy); pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find a candidate"); SU = BotCand.SU; } IsTopNode = false; } else { SU = pickNodeBidirectional(IsTopNode); } } while (SU->isScheduled); if (SU->isTopReady()) Top.removeReady(SU); if (SU->isBottomReady()) Bot.removeReady(SU); DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); return SU; } GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, std::unique_ptr S) : ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget()), MFI(*MF.getInfo()), StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(), *MF.getFunction())), MinOccupancy(StartingOccupancy), Stage(0) { DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); } void GCNScheduleDAGMILive::schedule() { std::vector Unsched; Unsched.reserve(NumRegionInstrs); for (auto &I : *this) Unsched.push_back(&I); std::pair PressureBefore; if (LIS) { DEBUG(dbgs() << "Pressure before scheduling:\n"); discoverLiveIns(); PressureBefore = getRealRegPressure(); } ScheduleDAGMILive::schedule(); if (Stage == 0) Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); if (!LIS) return; // Check the results of scheduling. GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; DEBUG(dbgs() << "Pressure after scheduling:\n"); auto PressureAfter = getRealRegPressure(); LiveIns.clear(); if (PressureAfter.first <= S.SGPRCriticalLimit && PressureAfter.second <= S.VGPRCriticalLimit) { DEBUG(dbgs() << "Pressure in desired limits, done.\n"); return; } unsigned WavesAfter = getMaxWaves(PressureAfter.first, PressureAfter.second, MF); unsigned WavesBefore = getMaxWaves(PressureBefore.first, PressureBefore.second, MF); DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore << ", after " << WavesAfter << ".\n"); // We could not keep current target occupancy because of the just scheduled // region. Record new occupancy for next scheduling cycle. unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); if (NewOccupancy < MinOccupancy) { MinOccupancy = NewOccupancy; DEBUG(dbgs() << "Occupancy lowered for the function to " << MinOccupancy << ".\n"); } if (WavesAfter >= WavesBefore) return; DEBUG(dbgs() << "Attempting to revert scheduling.\n"); RegionEnd = RegionBegin; for (MachineInstr *MI : Unsched) { if (MI->getIterator() != RegionEnd) { BB->remove(MI); BB->insert(RegionEnd, MI); LIS->handleMove(*MI, true); } // Reset read-undef flags and update them later. for (auto &Op : MI->operands()) if (Op.isReg() && Op.isDef()) Op.setIsUndef(false); RegisterOperands RegOpers; RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); if (ShouldTrackLaneMasks) { // Adjust liveness and add missing dead+read-undef flags. SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); } else { // Adjust for missing dead-def flags. RegOpers.detectDeadDefs(*MI, *LIS); } RegionEnd = MI->getIterator(); ++RegionEnd; DEBUG(dbgs() << "Scheduling " << *MI); } RegionBegin = Unsched.front()->getIterator(); if (Stage == 0) Regions.back() = std::make_pair(RegionBegin, RegionEnd); placeDebugValues(); } static inline void setMask(const MachineRegisterInfo &MRI, const SIRegisterInfo *SRI, unsigned Reg, LaneBitmask &PrevMask, LaneBitmask NewMask, unsigned &SGPRs, unsigned &VGPRs) { int NewRegs = countPopulation(NewMask.getAsInteger()) - countPopulation(PrevMask.getAsInteger()); if (SRI->isSGPRReg(MRI, Reg)) SGPRs += NewRegs; if (SRI->isVGPR(MRI, Reg)) VGPRs += NewRegs; assert ((int)SGPRs >= 0 && (int)VGPRs >= 0); PrevMask = NewMask; } void GCNScheduleDAGMILive::discoverLiveIns() { unsigned SGPRs = 0; unsigned VGPRs = 0; const SIRegisterInfo *SRI = static_cast(TRI); SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex(); assert (SI.isValid()); DEBUG(dbgs() << "Region live-ins:"); for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { unsigned Reg = TargetRegisterInfo::index2VirtReg(I); if (MRI.reg_nodbg_empty(Reg)) continue; const LiveInterval &LI = LIS->getInterval(Reg); LaneBitmask LaneMask = LaneBitmask::getNone(); if (LI.hasSubRanges()) { for (const auto &S : LI.subranges()) if (S.liveAt(SI)) LaneMask |= S.LaneMask; } else if (LI.liveAt(SI)) { LaneMask = MRI.getMaxLaneMaskForVReg(Reg); } if (LaneMask.any()) { setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs); DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':' << PrintLaneMask(LiveIns[Reg])); } } LiveInPressure = std::make_pair(SGPRs, VGPRs); DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs << "\nVGPR = " << VGPRs << '\n'); } std::pair GCNScheduleDAGMILive::getRealRegPressure() const { unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs; SGPRs = MaxSGPRs = LiveInPressure.first; VGPRs = MaxVGPRs = LiveInPressure.second; const SIRegisterInfo *SRI = static_cast(TRI); DenseMap LiveRegs(LiveIns); for (const MachineInstr &MI : *this) { if (MI.isDebugValue()) continue; SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex(); assert (SI.isValid()); // Remove dead registers or mask bits. for (auto &It : LiveRegs) { if (It.second.none()) continue; const LiveInterval &LI = LIS->getInterval(It.first); if (LI.hasSubRanges()) { for (const auto &S : LI.subranges()) if (!S.liveAt(SI)) setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask, SGPRs, VGPRs); } else if (!LI.liveAt(SI)) { setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(), SGPRs, VGPRs); } } // Add new registers or mask bits. for (const auto &MO : MI.defs()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; unsigned SubRegIdx = MO.getSubReg(); LaneBitmask LaneMask = SubRegIdx != 0 ? TRI->getSubRegIndexLaneMask(SubRegIdx) : MRI.getMaxLaneMaskForVReg(Reg); LaneBitmask &LM = LiveRegs[Reg]; setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs); } MaxSGPRs = std::max(MaxSGPRs, SGPRs); MaxVGPRs = std::max(MaxVGPRs, VGPRs); } DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs << "\nVGPR = " << MaxVGPRs << '\n'); return std::make_pair(MaxSGPRs, MaxVGPRs); } void GCNScheduleDAGMILive::finalizeSchedule() { // Retry function scheduling if we found resulting occupancy and it is // lower than used for first pass scheduling. This will give more freedom // to schedule low register pressure blocks. // Code is partially copied from MachineSchedulerBase::scheduleRegions(). if (!LIS || StartingOccupancy <= MinOccupancy) return; DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy " << MinOccupancy << ".\n"); Stage++; GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; S.setTargetOccupancy(MinOccupancy); MachineBasicBlock *MBB = nullptr; for (auto Region : Regions) { RegionBegin = Region.first; RegionEnd = Region.second; if (RegionBegin->getParent() != MBB) { if (MBB) finishBlock(); MBB = RegionBegin->getParent(); startBlock(MBB); } unsigned NumRegionInstrs = std::distance(begin(), end()); enterRegion(MBB, begin(), end(), NumRegionInstrs); // Skip empty scheduling regions (0 or 1 schedulable instructions). if (begin() == end() || begin() == std::prev(end())) { exitRegion(); continue; } DEBUG(dbgs() << "********** MI Scheduling **********\n"); DEBUG(dbgs() << MF.getName() << ":BB#" << MBB->getNumber() << " " << MBB->getName() << "\n From: " << *begin() << " To: "; if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; else dbgs() << "End"; dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); schedule(); exitRegion(); } finishBlock(); LiveIns.shrink_and_clear(); }