//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "SystemZTargetMachine.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; extern "C" void LLVMInitializeSystemZTarget() { // Register the target. RegisterTargetMachine X(TheSystemZTarget); } SystemZTargetMachine::SystemZTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), Subtarget(TT, CPU, FS), // Make sure that global data has at least 16 bits of alignment by default, // so that we can refer to it using LARL. We don't have any special // requirements for stack variables though. DL("E-p:64:64:64-i1:8:16-i8:8:16-i64:64-f128:64-a:8:16-n32:64"), InstrInfo(*this), TLInfo(*this), TSInfo(*this), FrameLowering(*this, Subtarget) { initAsmInfo(); } namespace { /// SystemZ Code Generator Pass Configuration Options. class SystemZPassConfig : public TargetPassConfig { public: SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} SystemZTargetMachine &getSystemZTargetMachine() const { return getTM(); } virtual void addIRPasses() LLVM_OVERRIDE; virtual bool addInstSelector() LLVM_OVERRIDE; virtual bool addPreSched2() LLVM_OVERRIDE; virtual bool addPreEmitPass() LLVM_OVERRIDE; }; } // end anonymous namespace void SystemZPassConfig::addIRPasses() { TargetPassConfig::addIRPasses(); addPass(createPartiallyInlineLibCallsPass()); } bool SystemZPassConfig::addInstSelector() { addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel())); return false; } bool SystemZPassConfig::addPreSched2() { if (getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond()) addPass(&IfConverterID); return true; } bool SystemZPassConfig::addPreEmitPass() { // We eliminate comparisons here rather than earlier because some // transformations can change the set of available CC values and we // generally want those transformations to have priority. This is // especially true in the commonest case where the result of the comparison // is used by a single in-range branch instruction, since we will then // be able to fuse the compare and the branch instead. // // For example, two-address NILF can sometimes be converted into // three-address RISBLG. NILF produces a CC value that indicates whether // the low word is zero, but RISBLG does not modify CC at all. On the // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG. // The CC value produced by NILL isn't useful for our purposes, but the // value produced by RISBG can be used for any comparison with zero // (not just equality). So there are some transformations that lose // CC values (while still being worthwhile) and others that happen to make // the CC result more useful than it was originally. // // Another reason is that we only want to use BRANCH ON COUNT in cases // where we know that the count register is not going to be spilled. // // Doing it so late makes it more likely that a register will be reused // between the comparison and the branch, but it isn't clear whether // preventing that would be a win or not. if (getOptLevel() != CodeGenOpt::None) addPass(createSystemZElimComparePass(getSystemZTargetMachine())); if (getOptLevel() != CodeGenOpt::None) addPass(createSystemZShortenInstPass(getSystemZTargetMachine())); addPass(createSystemZLongBranchPass(getSystemZTargetMachine())); return true; } TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) { return new SystemZPassConfig(this, PM); }