//====- X86InstrSSE.td - Describe the X86 Instruction Set --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 SSE instruction set, defining the instructions, // and properties of the instructions which are needed for code generation, // machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SSE specific DAG Nodes. //===----------------------------------------------------------------------===// def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2> ]>; def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisFP<1>, SDTCisVT<3, i8>]>; def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>; def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>; def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>; def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>; def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>; def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>; def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>; def X86pshufb : SDNode<"X86ISD::PSHUFB", SDTypeProfile<1, 2, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86pextrb : SDNode<"X86ISD::PEXTRB", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pextrw : SDNode<"X86ISD::PEXTRW", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pinsrb : SDNode<"X86ISD::PINSRB", SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86pinsrw : SDNode<"X86ISD::PINSRW", SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86insrtps : SDNode<"X86ISD::INSERTPS", SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>, SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>; def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL", SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>; def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad, [SDNPHasChain, SDNPMayLoad]>; def X86vshl : SDNode<"X86ISD::VSHL", SDTIntShiftOp>; def X86vshr : SDNode<"X86ISD::VSRL", SDTIntShiftOp>; def X86cmpps : SDNode<"X86ISD::CMPPS", SDTX86VFCMP>; def X86cmppd : SDNode<"X86ISD::CMPPD", SDTX86VFCMP>; def X86pcmpeqb : SDNode<"X86ISD::PCMPEQB", SDTIntBinOp, [SDNPCommutative]>; def X86pcmpeqw : SDNode<"X86ISD::PCMPEQW", SDTIntBinOp, [SDNPCommutative]>; def X86pcmpeqd : SDNode<"X86ISD::PCMPEQD", SDTIntBinOp, [SDNPCommutative]>; def X86pcmpeqq : SDNode<"X86ISD::PCMPEQQ", SDTIntBinOp, [SDNPCommutative]>; def X86pcmpgtb : SDNode<"X86ISD::PCMPGTB", SDTIntBinOp>; def X86pcmpgtw : SDNode<"X86ISD::PCMPGTW", SDTIntBinOp>; def X86pcmpgtd : SDNode<"X86ISD::PCMPGTD", SDTIntBinOp>; def X86pcmpgtq : SDNode<"X86ISD::PCMPGTQ", SDTIntBinOp>; def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, v4f32>, SDTCisVT<2, v4f32>]>; def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>; //===----------------------------------------------------------------------===// // SSE Complex Patterns //===----------------------------------------------------------------------===// // These are 'extloads' from a scalar to the low element of a vector, zeroing // the top elements. These are used for the SSE 'ss' and 'sd' instruction // forms. def sse_load_f32 : ComplexPattern; def sse_load_f64 : ComplexPattern; def ssmem : Operand { let PrintMethod = "printf32mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } def sdmem : Operand { let PrintMethod = "printf64mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } //===----------------------------------------------------------------------===// // SSE pattern fragments //===----------------------------------------------------------------------===// def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>; def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>; def loadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (load node:$ptr))>; def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>; // Like 'store', but always requires vector alignment. def alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; // Like 'load', but always requires vector alignment. def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; def alignedloadfsf32 : PatFrag<(ops node:$ptr), (f32 (alignedload node:$ptr))>; def alignedloadfsf64 : PatFrag<(ops node:$ptr), (f64 (alignedload node:$ptr))>; def alignedloadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (alignedload node:$ptr))>; def alignedloadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (alignedload node:$ptr))>; def alignedloadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (alignedload node:$ptr))>; def alignedloadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (alignedload node:$ptr))>; // Like 'load', but uses special alignment checks suitable for use in // memory operands in most SSE instructions, which are required to // be naturally aligned on some targets but not on others. If the subtarget // allows unaligned accesses, match any load, though this may require // setting a feature bit in the processor (on startup, for example). // Opteron 10h and later implement such a feature. def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return Subtarget->hasVectorUAMem() || cast(N)->getAlignment() >= 16; }]>; def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>; def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>; def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>; def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>; def memopv4i32 : PatFrag<(ops node:$ptr), (v4i32 (memop node:$ptr))>; def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>; def memopv16i8 : PatFrag<(ops node:$ptr), (v16i8 (memop node:$ptr))>; // SSSE3 uses MMX registers for some instructions. They aren't aligned on a // 16-byte boundary. // FIXME: 8 byte alignment for mmx reads is not required def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 8; }]>; def memopv8i8 : PatFrag<(ops node:$ptr), (v8i8 (memop64 node:$ptr))>; def memopv4i16 : PatFrag<(ops node:$ptr), (v4i16 (memop64 node:$ptr))>; def memopv8i16 : PatFrag<(ops node:$ptr), (v8i16 (memop64 node:$ptr))>; def memopv2i32 : PatFrag<(ops node:$ptr), (v2i32 (memop64 node:$ptr))>; // MOVNT Support // Like 'store', but requires the non-temporal bit to be set def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isNonTemporal(); return false; }]>; def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isNonTemporal() && !ST->isTruncatingStore() && ST->getAddressingMode() == ISD::UNINDEXED && ST->getAlignment() >= 16; return false; }]>; def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isNonTemporal() && ST->getAlignment() < 16; return false; }]>; def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>; def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>; def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>; def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>; def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>; def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>; def vzmovl_v2i64 : PatFrag<(ops node:$src), (bitconvert (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 node:$src))))))>; def vzmovl_v4i32 : PatFrag<(ops node:$src), (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 node:$src))))))>; def vzload_v2i64 : PatFrag<(ops node:$src), (bitconvert (v2i64 (X86vzload node:$src)))>; def fp32imm0 : PatLeaf<(f32 fpimm), [{ return N->isExactlyValue(+0.0); }]>; // BYTE_imm - Transform bit immediates into byte immediates. def BYTE_imm : SDNodeXForm> 3 return getI32Imm(N->getZExtValue() >> 3); }]>; // SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*, // SHUFP* etc. imm. def SHUFFLE_get_shuf_imm : SDNodeXForm; // SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to // PSHUFHW imm. def SHUFFLE_get_pshufhw_imm : SDNodeXForm; // SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to // PSHUFLW imm. def SHUFFLE_get_pshuflw_imm : SDNodeXForm; // SHUFFLE_get_palign_imm xform function: convert vector_shuffle mask to // a PALIGNR imm. def SHUFFLE_get_palign_imm : SDNodeXForm; def splat_lo : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ ShuffleVectorSDNode *SVOp = cast(N); return SVOp->isSplat() && SVOp->getSplatIndex() == 0; }]>; def movddup : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVDDUPMask(cast(N)); }]>; def movhlps : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVHLPSMask(cast(N)); }]>; def movhlps_undef : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVHLPS_v_undef_Mask(cast(N)); }]>; def movlhps : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVLHPSMask(cast(N)); }]>; def movlp : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVLPMask(cast(N)); }]>; def movl : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVLMask(cast(N)); }]>; def movshdup : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVSHDUPMask(cast(N)); }]>; def movsldup : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isMOVSLDUPMask(cast(N)); }]>; def unpckl : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isUNPCKLMask(cast(N)); }]>; def unpckh : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isUNPCKHMask(cast(N)); }]>; def unpckl_undef : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isUNPCKL_v_undef_Mask(cast(N)); }]>; def unpckh_undef : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isUNPCKH_v_undef_Mask(cast(N)); }]>; def pshufd : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isPSHUFDMask(cast(N)); }], SHUFFLE_get_shuf_imm>; def shufp : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isSHUFPMask(cast(N)); }], SHUFFLE_get_shuf_imm>; def pshufhw : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isPSHUFHWMask(cast(N)); }], SHUFFLE_get_pshufhw_imm>; def pshuflw : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isPSHUFLWMask(cast(N)); }], SHUFFLE_get_pshuflw_imm>; def palign : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isPALIGNRMask(cast(N)); }], SHUFFLE_get_palign_imm>; //===----------------------------------------------------------------------===// // SSE scalar FP Instructions //===----------------------------------------------------------------------===// // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after // instruction selection into a branch sequence. let Uses = [EFLAGS], usesCustomInserter = 1 in { def CMOV_FR32 : I<0, Pseudo, (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), "#CMOV_FR32 PSEUDO!", [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, EFLAGS))]>; def CMOV_FR64 : I<0, Pseudo, (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), "#CMOV_FR64 PSEUDO!", [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, EFLAGS))]>; def CMOV_V4F32 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V4F32 PSEUDO!", [(set VR128:$dst, (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2F64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2F64 PSEUDO!", [(set VR128:$dst, (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2I64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2I64 PSEUDO!", [(set VR128:$dst, (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 Instructions Classes //===----------------------------------------------------------------------===// /// sse12_fp_scalar - SSE 1 & 2 scalar instructions class multiclass sse12_fp_scalar opc, string OpcodeStr, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop> { let isCommutable = 1 in { def rr : SI; } def rm : SI; } /// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class multiclass sse12_fp_scalar_int opc, string OpcodeStr, RegisterClass RC, string asm, string SSEVer, string FPSizeStr, Operand memopr, ComplexPattern mem_cpat> { def rr_Int : SI("int_x86_sse", !strconcat(SSEVer, !strconcat("_", !strconcat(OpcodeStr, FPSizeStr)))) RC:$src1, RC:$src2))]>; def rm_Int : SI("int_x86_sse", !strconcat(SSEVer, !strconcat("_", !strconcat(OpcodeStr, FPSizeStr)))) RC:$src1, mem_cpat:$src2))]>; } /// sse12_fp_packed - SSE 1 & 2 packed instructions class multiclass sse12_fp_packed opc, string OpcodeStr, SDNode OpNode, RegisterClass RC, ValueType vt, X86MemOperand x86memop, PatFrag mem_frag, Domain d, bit MayLoad = 0> { let isCommutable = 1 in def rr : PI; let mayLoad = MayLoad in def rm : PI; } /// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class multiclass sse12_fp_packed_logical_rm opc, RegisterClass RC, Domain d, string OpcodeStr, X86MemOperand x86memop, list pat_rr, list pat_rm> { let isCommutable = 1 in def rr : PI; def rm : PI; } /// sse12_fp_packed_int - SSE 1 & 2 packed instructions intrinsics class multiclass sse12_fp_packed_int opc, string OpcodeStr, RegisterClass RC, string asm, string SSEVer, string FPSizeStr, X86MemOperand x86memop, PatFrag mem_frag, Domain d> { def rr_Int : PI("int_x86_sse", !strconcat(SSEVer, !strconcat("_", !strconcat(OpcodeStr, FPSizeStr)))) RC:$src1, RC:$src2))], d>; def rm_Int : PI("int_x86_sse", !strconcat(SSEVer, !strconcat("_", !strconcat(OpcodeStr, FPSizeStr)))) RC:$src1, (mem_frag addr:$src2)))], d>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Move Instructions //===----------------------------------------------------------------------===// class sse12_move_rr : SI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, RC:$src2), asm, [(set (vt VR128:$dst), (movl VR128:$src1, (scalar_to_vector RC:$src2)))]>; // Loading from memory automatically zeroing upper bits. class sse12_move_rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (mem_pat addr:$src))]>; // Move Instructions. Register-to-register movss/movsd is not used for FR32/64 // register copies because it's a partial register update; FsMOVAPSrr/FsMOVAPDrr // is used instead. Register-to-register movss/movsd is not modeled as an // INSERT_SUBREG because INSERT_SUBREG requires that the insert be implementable // in terms of a copy, and just mentioned, we don't use movss/movsd for copies. let isAsmParserOnly = 1 in { def VMOVSSrr : sse12_move_rr, XS, VEX_4V; def VMOVSDrr : sse12_move_rr, XD, VEX_4V; let canFoldAsLoad = 1, isReMaterializable = 1 in { def VMOVSSrm : sse12_move_rm, XS, VEX; let AddedComplexity = 20 in def VMOVSDrm : sse12_move_rm, XD, VEX; } } let Constraints = "$src1 = $dst" in { def MOVSSrr : sse12_move_rr, XS; def MOVSDrr : sse12_move_rr, XD; } let canFoldAsLoad = 1, isReMaterializable = 1 in { def MOVSSrm : sse12_move_rm, XS; let AddedComplexity = 20 in def MOVSDrm : sse12_move_rm, XD; } let AddedComplexity = 15 in { // Extract the low 32-bit value from one vector and insert it into another. def : Pat<(v4f32 (movl VR128:$src1, VR128:$src2)), (MOVSSrr (v4f32 VR128:$src1), (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_ss))>; // Extract the low 64-bit value from one vector and insert it into another. def : Pat<(v2f64 (movl VR128:$src1, VR128:$src2)), (MOVSDrr (v2f64 VR128:$src1), (EXTRACT_SUBREG (v2f64 VR128:$src2), sub_sd))>; } // Implicitly promote a 32-bit scalar to a vector. def : Pat<(v4f32 (scalar_to_vector FR32:$src)), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FR32:$src, sub_ss)>; // Implicitly promote a 64-bit scalar to a vector. def : Pat<(v2f64 (scalar_to_vector FR64:$src)), (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FR64:$src, sub_sd)>; let AddedComplexity = 20 in { // MOVSSrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; // MOVSDrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (X86vzload addr:$src)), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; } // Store scalar value to memory. def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>; def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>; let isAsmParserOnly = 1 in { def VMOVSSmr : SI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>, XS, VEX_4V; def VMOVSDmr : SI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>, XD, VEX_4V; } // Extract and store. def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), addr:$dst), (MOVSSmr addr:$dst, (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>; def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst), (MOVSDmr addr:$dst, (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; // Move Aligned/Unaligned floating point values multiclass sse12_mov_packed opc, RegisterClass RC, X86MemOperand x86memop, PatFrag ld_frag, string asm, Domain d, bit IsReMaterializable = 1> { let neverHasSideEffects = 1 in def rr : PI; let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in def rm : PI; } let isAsmParserOnly = 1 in { defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle>, VEX; defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", SSEPackedDouble>, OpSize, VEX; defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", SSEPackedSingle>, VEX; defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, 0>, OpSize, VEX; } defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle>, TB; defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", SSEPackedDouble>, TB, OpSize; defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", SSEPackedSingle>, TB; defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, 0>, TB, OpSize; let isAsmParserOnly = 1 in { def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>, VEX; def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v2f64 VR128:$src), addr:$dst)]>, VEX; def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>, VEX; def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)]>, VEX; } def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>; def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v2f64 VR128:$src), addr:$dst)]>; def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>; def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)]>; // Intrinsic forms of MOVUPS/D load and store let isAsmParserOnly = 1 in { let canFoldAsLoad = 1, isReMaterializable = 1 in def VMOVUPSrm_Int : VPSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movups\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>, VEX; def VMOVUPDrm_Int : VPDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movupd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>, VEX; def VMOVUPSmr_Int : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>, VEX; def VMOVUPDmr_Int : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>, VEX; } let canFoldAsLoad = 1, isReMaterializable = 1 in def MOVUPSrm_Int : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movups\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>; def MOVUPDrm_Int : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movupd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>; def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>; def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>; // Move Low/High packed floating point values multiclass sse12_mov_hilo_packedopc, RegisterClass RC, PatFrag mov_frag, string base_opc, string asm_opr> { def PSrm : PI, TB; def PDrm : PI, TB, OpSize; } let isAsmParserOnly = 1, AddedComplexity = 20 in { defm VMOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp", "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V; defm VMOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp", "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V; } let Constraints = "$src1 = $dst", AddedComplexity = 20 in { defm MOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp", "\t{$src2, $dst|$dst, $src2}">; defm MOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp", "\t{$src2, $dst|$dst, $src2}">; } let isAsmParserOnly = 1 in { def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), (iPTR 0))), addr:$dst)]>, VEX; def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX; } def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), (iPTR 0))), addr:$dst)]>; def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>; // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. let isAsmParserOnly = 1 in { def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (unpckh (bc_v2f64 (v4f32 VR128:$src)), (undef)), (iPTR 0))), addr:$dst)]>, VEX; def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 (unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst)]>, VEX; } def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (unpckh (bc_v2f64 (v4f32 VR128:$src)), (undef)), (iPTR 0))), addr:$dst)]>; def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 (unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst)]>; let isAsmParserOnly = 1, AddedComplexity = 20 in { def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (movlhps VR128:$src1, VR128:$src2)))]>, VEX_4V; def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (movhlps VR128:$src1, VR128:$src2)))]>, VEX_4V; } let Constraints = "$src1 = $dst", AddedComplexity = 20 in { def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (movlhps VR128:$src1, VR128:$src2)))]>; def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (movhlps VR128:$src1, VR128:$src2)))]>; } def : Pat<(movlhps VR128:$src1, (bc_v4i32 (v2i64 (X86vzload addr:$src2)))), (MOVHPSrm (v4i32 VR128:$src1), addr:$src2)>; let AddedComplexity = 20 in { def : Pat<(v4f32 (movddup VR128:$src, (undef))), (MOVLHPSrr (v4f32 VR128:$src), (v4f32 VR128:$src))>; def : Pat<(v2i64 (movddup VR128:$src, (undef))), (MOVLHPSrr (v2i64 VR128:$src), (v2i64 VR128:$src))>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Conversion Instructions //===----------------------------------------------------------------------===// multiclass sse12_cvt_s opc, RegisterClass SrcRC, RegisterClass DstRC, SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, string asm> { def rr : SI; def rm : SI; } multiclass sse12_cvt_p opc, RegisterClass SrcRC, RegisterClass DstRC, SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, string asm, Domain d> { def rr : PI; def rm : PI; } multiclass sse12_vcvt_avx opc, RegisterClass SrcRC, RegisterClass DstRC, SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, string asm> { def rr : SI; def rm : SI; } let isAsmParserOnly = 1 in { defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}">, XS, VEX; defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, "cvttsd2si\t{$src, $dst|$dst, $src}">, XD, VEX; defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32, "cvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}">, XS, VEX_4V; defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32, "cvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}">, XD, VEX_4V; } defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}">, XS; defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, "cvttsd2si\t{$src, $dst|$dst, $src}">, XD; defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32, "cvtsi2ss\t{$src, $dst|$dst, $src}">, XS; defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32, "cvtsi2sd\t{$src, $dst|$dst, $src}">, XD; // Conversion Instructions Intrinsics - Match intrinsics which expect MM // and/or XMM operand(s). multiclass sse12_cvt_pint opc, RegisterClass SrcRC, RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, string asm, Domain d> { def rr : PI; def rm : PI; } multiclass sse12_cvt_sint opc, RegisterClass SrcRC, RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, string asm> { def rr : SI; def rm : SI; } multiclass sse12_cvt_pint_3addr opc, RegisterClass SrcRC, RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, string asm, Domain d> { def rr : PI; def rm : PI; } multiclass sse12_cvt_sint_3addr opc, RegisterClass SrcRC, RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, string asm> { def rr : SI; def rm : SI; } let isAsmParserOnly = 1 in { defm Int_VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, f32mem, load, "cvtss2si\t{$src, $dst|$dst, $src}">, XS, VEX; defm Int_VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, f128mem, load, "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX; } defm Int_CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, f32mem, load, "cvtss2si\t{$src, $dst|$dst, $src}">, XS; defm Int_CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, f128mem, load, "cvtsd2si\t{$src, $dst|$dst, $src}">, XD; let Constraints = "$src1 = $dst" in { defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss\t{$src2, $dst|$dst, $src2}">, XS; defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2ss\t{$src2, $dst|$dst, $src2}">, XD; } // Instructions below don't have an AVX form. defm Int_CVTPS2PI : sse12_cvt_pint<0x2D, VR128, VR64, int_x86_sse_cvtps2pi, f64mem, load, "cvtps2pi\t{$src, $dst|$dst, $src}", SSEPackedSingle>, TB; defm Int_CVTPD2PI : sse12_cvt_pint<0x2D, VR128, VR64, int_x86_sse_cvtpd2pi, f128mem, memop, "cvtpd2pi\t{$src, $dst|$dst, $src}", SSEPackedDouble>, TB, OpSize; defm Int_CVTTPS2PI : sse12_cvt_pint<0x2C, VR128, VR64, int_x86_sse_cvttps2pi, f64mem, load, "cvttps2pi\t{$src, $dst|$dst, $src}", SSEPackedSingle>, TB; defm Int_CVTTPD2PI : sse12_cvt_pint<0x2C, VR128, VR64, int_x86_sse_cvttpd2pi, f128mem, memop, "cvttpd2pi\t{$src, $dst|$dst, $src}", SSEPackedDouble>, TB, OpSize; defm Int_CVTPI2PD : sse12_cvt_pint<0x2A, VR64, VR128, int_x86_sse_cvtpi2pd, i64mem, load, "cvtpi2pd\t{$src, $dst|$dst, $src}", SSEPackedDouble>, TB, OpSize; let Constraints = "$src1 = $dst" in { defm Int_CVTPI2PS : sse12_cvt_pint_3addr<0x2A, VR64, VR128, int_x86_sse_cvtpi2ps, i64mem, load, "cvtpi2ps\t{$src2, $dst|$dst, $src2}", SSEPackedSingle>, TB; } /// SSE 1 Only // Aliases for intrinsics let isAsmParserOnly = 1, Pattern = [] in { defm Int_VCVTTSS2SI : sse12_cvt_sint_3addr<0x2C, VR128, GR32, int_x86_sse_cvttss2si, f32mem, load, "cvttss2si\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XS; defm Int_VCVTTSD2SI : sse12_cvt_sint_3addr<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, f128mem, load, "cvttss2si\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XD; } defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, f32mem, load, "cvttss2si\t{$src, $dst|$dst, $src}">, XS; defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, f128mem, load, "cvttss2si\t{$src, $dst|$dst, $src}">, XD; let isAsmParserOnly = 1, Pattern = [] in { defm VCVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load, "cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS, VEX; defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, f128mem, load, "cvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle>, TB, VEX; } let Pattern = [] in { defm CVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load /*dummy*/, "cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS; defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, f128mem, load /*dummy*/, "cvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle>, TB; /* PD SSE3 form is avaiable */ } /// SSE 2 Only def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround FR64:$src))]>; def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround (loadf64 addr:$src)))]>, XD, Requires<[HasSSE2, OptForSize]>; def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>; def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>; // SSE2 instructions with XS prefix def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (fextend FR32:$src))]>, XS, Requires<[HasSSE2]>; def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (extloadf32 addr:$src))]>, XS, Requires<[HasSSE2, OptForSize]>; def : Pat<(extloadf32 addr:$src), (CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[HasSSE2, OptForSpeed]>; // SSE2 instructions without OpSize prefix def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, TB, Requires<[HasSSE2]>; def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps (bitconvert (memopv2i64 addr:$src))))]>, TB, Requires<[HasSSE2]>; // SSE2 instructions with XS prefix def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, XS, Requires<[HasSSE2]>; def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd (bitconvert (memopv2i64 addr:$src))))]>, XS, Requires<[HasSSE2]>; def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>; def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memop addr:$src)))]>; // SSE2 packed instructions with XS prefix def CVTTPS2DQrr : SSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>; def CVTTPS2DQrm : SSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>; def Int_CVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))]>, XS, Requires<[HasSSE2]>; def Int_CVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq (memop addr:$src)))]>, XS, Requires<[HasSSE2]>; // SSE2 packed instructions with XD prefix def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, XD, Requires<[HasSSE2]>; def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq (memop addr:$src)))]>, XD, Requires<[HasSSE2]>; def Int_CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>; def Int_CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memop addr:$src)))]>; // SSE2 instructions without OpSize prefix def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB; def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB; def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, TB, Requires<[HasSSE2]>; def Int_CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd (load addr:$src)))]>, TB, Requires<[HasSSE2]>; def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (memop addr:$src)))]>; // Match intrinsics which expect XMM operand(s). // Aliases for intrinsics let Constraints = "$src1 = $dst" in { def Int_CVTSD2SSrr: SDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtsd2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>; def Int_CVTSD2SSrm: SDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), "cvtsd2ss\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, (load addr:$src2)))]>; def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))]>, XS, Requires<[HasSSE2]>; def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, (load addr:$src2)))]>, XS, Requires<[HasSSE2]>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Compare Instructions //===----------------------------------------------------------------------===// // sse12_cmp_scalar - sse 1 & 2 compare scalar instructions multiclass sse12_cmp_scalar { def rr : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm, []>; let mayLoad = 1 in def rm : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src, SSECC:$cc), asm, []>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1 in { def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), asm_alt, []>; let mayLoad = 1 in def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src, i8imm:$src2), asm_alt, []>; } } let neverHasSideEffects = 1, isAsmParserOnly = 1 in { defm VCMPSS : sse12_cmp_scalar, XS, VEX_4V; defm VCMPSD : sse12_cmp_scalar, XD, VEX_4V; } let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in { defm CMPSS : sse12_cmp_scalar, XS; defm CMPSD : sse12_cmp_scalar, XD; } multiclass sse12_cmp_scalar_int { def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, VR128:$src, imm:$cc))]>; def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f32mem:$src, SSECC:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, (load addr:$src), imm:$cc))]>; } // Aliases to match intrinsics which expect XMM operand(s). let isAsmParserOnly = 1 in { defm Int_VCMPSS : sse12_cmp_scalar_int, XS, VEX_4V; defm Int_VCMPSD : sse12_cmp_scalar_int, XD, VEX_4V; } let Constraints = "$src1 = $dst" in { defm Int_CMPSS : sse12_cmp_scalar_int, XS; defm Int_CMPSD : sse12_cmp_scalar_int, XD; } // sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS multiclass sse12_ord_cmp opc, RegisterClass RC, SDNode OpNode, ValueType vt, X86MemOperand x86memop, PatFrag ld_frag, string OpcodeStr, Domain d> { def rr: PI; def rm: PI; } let Defs = [EFLAGS] in { let isAsmParserOnly = 1 in { defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, "ucomiss", SSEPackedSingle>, VEX; defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, "ucomisd", SSEPackedDouble>, OpSize, VEX; let Pattern = [] in { defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, "comiss", SSEPackedSingle>, VEX; defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, "comisd", SSEPackedDouble>, OpSize, VEX; } defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, load, "ucomiss", SSEPackedSingle>, VEX; defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, load, "ucomisd", SSEPackedDouble>, OpSize, VEX; defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load, "comiss", SSEPackedSingle>, VEX; defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load, "comisd", SSEPackedDouble>, OpSize, VEX; } defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, "ucomiss", SSEPackedSingle>, TB; defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, "ucomisd", SSEPackedDouble>, TB, OpSize; let Pattern = [] in { defm COMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, "comiss", SSEPackedSingle>, TB; defm COMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, "comisd", SSEPackedDouble>, TB, OpSize; } defm Int_UCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, load, "ucomiss", SSEPackedSingle>, TB; defm Int_UCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, load, "ucomisd", SSEPackedDouble>, TB, OpSize; defm Int_COMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load, "comiss", SSEPackedSingle>, TB; defm Int_COMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load, "comisd", SSEPackedDouble>, TB, OpSize; } // Defs = [EFLAGS] // sse12_cmp_packed - sse 1 & 2 compared packed instructions multiclass sse12_cmp_packed { def rri : PIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm, [(set RC:$dst, (Int RC:$src1, RC:$src, imm:$cc))], d>; def rmi : PIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, f128mem:$src, SSECC:$cc), asm, [(set RC:$dst, (Int RC:$src1, (memop addr:$src), imm:$cc))], d>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1 in { def rri_alt : PIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), asm_alt, [], d>; def rmi_alt : PIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, f128mem:$src, i8imm:$src2), asm_alt, [], d>; } } let isAsmParserOnly = 1 in { defm VCMPPS : sse12_cmp_packed, VEX_4V; defm VCMPPD : sse12_cmp_packed, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in { defm CMPPS : sse12_cmp_packed, TB; defm CMPPD : sse12_cmp_packed, TB, OpSize; } def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), VR128:$src2, imm:$cc)), (CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>; def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)), (CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>; def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), VR128:$src2, imm:$cc)), (CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>; def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)), (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Shuffle Instructions //===----------------------------------------------------------------------===// /// sse12_shuffle - sse 1 & 2 shuffle instructions multiclass sse12_shuffle { def rmi : PIi8<0xC6, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2, i8imm:$src3), asm, [(set VR128:$dst, (vt (shufp:$src3 VR128:$src1, (mem_frag addr:$src2))))], d>; let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in def rri : PIi8<0xC6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), asm, [(set VR128:$dst, (vt (shufp:$src3 VR128:$src1, VR128:$src2)))], d>; } let isAsmParserOnly = 1 in { defm VSHUFPS : sse12_shuffle, VEX_4V; defm VSHUFPD : sse12_shuffle, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in { defm SHUFPS : sse12_shuffle, TB; defm SHUFPD : sse12_shuffle, TB, OpSize; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Unpack Instructions //===----------------------------------------------------------------------===// /// sse12_unpack_interleave - sse 1 & 2 unpack and interleave multiclass sse12_unpack_interleave opc, PatFrag OpNode, ValueType vt, PatFrag mem_frag, RegisterClass RC, X86MemOperand x86memop, string asm, Domain d> { def rr : PI; def rm : PI; } let AddedComplexity = 10 in { let isAsmParserOnly = 1 in { defm VUNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedSingle>, VEX_4V; defm VUNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedDouble>, OpSize, VEX_4V; defm VUNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedSingle>, VEX_4V; defm VUNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedDouble>, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in { defm UNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}", SSEPackedSingle>, TB; defm UNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}", SSEPackedDouble>, TB, OpSize; defm UNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}", SSEPackedSingle>, TB; defm UNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}", SSEPackedDouble>, TB, OpSize; } // Constraints = "$src1 = $dst" } // AddedComplexity //===----------------------------------------------------------------------===// // SSE 1 & 2 - Extract Floating-Point Sign mask //===----------------------------------------------------------------------===// /// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave multiclass sse12_extr_sign_mask { def rr : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins RC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [(set GR32:$dst, (Int RC:$src))], d>; } // Mask creation defm MOVMSKPS : sse12_extr_sign_mask, TB; defm MOVMSKPD : sse12_extr_sign_mask, TB, OpSize; let isAsmParserOnly = 1 in { defm VMOVMSKPS : sse12_extr_sign_mask, VEX; defm VMOVMSKPD : sse12_extr_sign_mask, OpSize, VEX; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Misc aliasing of packed SSE 1 & 2 instructions //===----------------------------------------------------------------------===// // Aliases of packed SSE1 & SSE2 instructions for scalar use. These all have // names that start with 'Fs'. // Alias instructions that map fld0 to pxor for sse. let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1, canFoldAsLoad = 1 in { // FIXME: Set encoding to pseudo! def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "", [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>, TB, OpSize; def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "", [(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2]>, TB, OpSize; } // Alias instruction to do FR32 or FR64 reg-to-reg copy using movaps. Upper // bits are disregarded. let neverHasSideEffects = 1 in { def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), "movaps\t{$src, $dst|$dst, $src}", []>; def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), "movapd\t{$src, $dst|$dst, $src}", []>; } // Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper // bits are disregarded. let canFoldAsLoad = 1, isReMaterializable = 1 in { def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src), "movaps\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (alignedloadfsf32 addr:$src))]>; def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src), "movapd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (alignedloadfsf64 addr:$src))]>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Logical Instructions //===----------------------------------------------------------------------===// /// sse12_fp_alias_pack_logical - SSE 1 & 2 aliased packed FP logical ops /// multiclass sse12_fp_alias_pack_logical opc, string OpcodeStr, SDNode OpNode, bit MayLoad = 0> { let isAsmParserOnly = 1 in { defm V#NAME#PS : sse12_fp_packed, VEX_4V; defm V#NAME#PD : sse12_fp_packed, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed, TB; defm PD : sse12_fp_packed, TB, OpSize; } } // Alias bitwise logical operations using SSE logical ops on packed FP values. defm FsAND : sse12_fp_alias_pack_logical<0x54, "and", X86fand>; defm FsOR : sse12_fp_alias_pack_logical<0x56, "or", X86for>; defm FsXOR : sse12_fp_alias_pack_logical<0x57, "xor", X86fxor>; let neverHasSideEffects = 1, Pattern = [], isCommutable = 0 in defm FsANDN : sse12_fp_alias_pack_logical<0x55, "andn", undef, 1>; /// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops /// multiclass sse12_fp_packed_logical opc, string OpcodeStr, SDNode OpNode, int HasPat = 0, list> Pattern = []> { let isAsmParserOnly = 1 in { defm V#NAME#PS : sse12_fp_packed_logical_rm, VEX_4V; defm V#NAME#PD : sse12_fp_packed_logical_rm, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed_logical_rm, TB; defm PD : sse12_fp_packed_logical_rm, TB, OpSize; } } defm AND : sse12_fp_packed_logical<0x54, "and", and>; defm OR : sse12_fp_packed_logical<0x56, "or", or>; defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>; let isCommutable = 0 in defm ANDN : sse12_fp_packed_logical<0x55, "andn", undef /* dummy */, 1, [ // single r+r [(set VR128:$dst, (v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))), VR128:$src2)))], // double r+r [(set VR128:$dst, (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), (bc_v2i64 (v2f64 VR128:$src2))))], // single r+m [(set VR128:$dst, (v2i64 (and (xor (bc_v2i64 (v4f32 VR128:$src1)), (bc_v2i64 (v4i32 immAllOnesV))), (memopv2i64 addr:$src2))))], // double r+m [(set VR128:$dst, (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), (memopv2i64 addr:$src2)))]]>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Arithmetic Instructions //===----------------------------------------------------------------------===// /// basic_sse12_fp_binop_rm - SSE 1 & 2 binops come in both scalar and /// vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a scalar) /// and leaves the top elements unmodified (therefore these cannot be commuted). /// /// These three forms can each be reg+reg or reg+mem. /// multiclass basic_sse12_fp_binop_rm opc, string OpcodeStr, SDNode OpNode> { let isAsmParserOnly = 1 in { defm V#NAME#SS : sse12_fp_scalar, XS, VEX_4V; defm V#NAME#SD : sse12_fp_scalar, XD, VEX_4V; defm V#NAME#PS : sse12_fp_packed, VEX_4V; defm V#NAME#PD : sse12_fp_packed, OpSize, VEX_4V; defm V#NAME#SS : sse12_fp_scalar_int, XS, VEX_4V; defm V#NAME#SD : sse12_fp_scalar_int, XD, VEX_4V; } let Constraints = "$src1 = $dst" in { defm SS : sse12_fp_scalar, XS; defm SD : sse12_fp_scalar, XD; defm PS : sse12_fp_packed, TB; defm PD : sse12_fp_packed, TB, OpSize; defm SS : sse12_fp_scalar_int, XS; defm SD : sse12_fp_scalar_int, XD; } } // Arithmetic instructions defm ADD : basic_sse12_fp_binop_rm<0x58, "add", fadd>; defm MUL : basic_sse12_fp_binop_rm<0x59, "mul", fmul>; let isCommutable = 0 in { defm SUB : basic_sse12_fp_binop_rm<0x5C, "sub", fsub>; defm DIV : basic_sse12_fp_binop_rm<0x5E, "div", fdiv>; } /// sse12_fp_binop_rm - Other SSE 1 & 2 binops /// /// This multiclass is like basic_sse12_fp_binop_rm, with the addition of /// instructions for a full-vector intrinsic form. Operations that map /// onto C operators don't use this form since they just use the plain /// vector form instead of having a separate vector intrinsic form. /// multiclass sse12_fp_binop_rm opc, string OpcodeStr, SDNode OpNode> { let isAsmParserOnly = 1 in { // Scalar operation, reg+reg. defm V#NAME#SS : sse12_fp_scalar, XS, VEX_4V; defm V#NAME#SD : sse12_fp_scalar, XD, VEX_4V; defm V#NAME#PS : sse12_fp_packed, VEX_4V; defm V#NAME#PD : sse12_fp_packed, OpSize, VEX_4V; defm V#NAME#SS : sse12_fp_scalar_int, XS, VEX_4V; defm V#NAME#SD : sse12_fp_scalar_int, XD, VEX_4V; defm V#NAME#PS : sse12_fp_packed_int, VEX_4V; defm V#NAME#PD : sse12_fp_packed_int, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in { // Scalar operation, reg+reg. defm SS : sse12_fp_scalar, XS; defm SD : sse12_fp_scalar, XD; defm PS : sse12_fp_packed, TB; defm PD : sse12_fp_packed, TB, OpSize; defm SS : sse12_fp_scalar_int, XS; defm SD : sse12_fp_scalar_int, XD; defm PS : sse12_fp_packed_int, TB; defm PD : sse12_fp_packed_int, TB, OpSize; } } let isCommutable = 0 in { defm MAX : sse12_fp_binop_rm<0x5F, "max", X86fmax>; defm MIN : sse12_fp_binop_rm<0x5D, "min", X86fmin>; } // Arithmetic /// sse1_fp_unop_rm - SSE1 unops come in both scalar and vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a /// scalar) and leaves the top elements undefined. /// /// And, we have a special variant form for a full-vector intrinsic form. /// /// These four forms can each have a reg or a mem operand, so there are a /// total of eight "instructions". /// multiclass sse1_fp_unop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F32Int, Intrinsic V4F32Int, bit Commutable = 0> { // Scalar operation, reg. def SSr : SSI { let isCommutable = Commutable; } // Scalar operation, mem. def SSm : I, XS, Requires<[HasSSE1, OptForSize]>; // Vector operation, reg. def PSr : PSI { let isCommutable = Commutable; } // Vector operation, mem. def PSm : PSI; // Intrinsic operation, reg. def SSr_Int : SSI { let isCommutable = Commutable; } // Intrinsic operation, mem. def SSm_Int : SSI; // Vector intrinsic operation, reg def PSr_Int : PSI { let isCommutable = Commutable; } // Vector intrinsic operation, mem def PSm_Int : PSI; } // Square root. defm SQRT : sse1_fp_unop_rm<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss, int_x86_sse_sqrt_ps>; // Reciprocal approximations. Note that these typically require refinement // in order to obtain suitable precision. defm RSQRT : sse1_fp_unop_rm<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss, int_x86_sse_rsqrt_ps>; defm RCP : sse1_fp_unop_rm<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss, int_x86_sse_rcp_ps>; // Prefetch intrinsic. def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src), "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3))]>; def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src), "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2))]>; def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src), "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1))]>; def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src), "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0))]>; // Non-temporal stores def MOVNTPSmr_Int : PSI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>; let AddedComplexity = 400 in { // Prefer non-temporal versions def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; def MOVNTDQ_64mr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>; def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movnti\t{$src, $dst|$dst, $src}", [(nontemporalstore (i32 GR32:$src), addr:$dst)]>, TB, Requires<[HasSSE2]>; def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "movnti\t{$src, $dst|$dst, $src}", [(nontemporalstore (i64 GR64:$src), addr:$dst)]>, TB, Requires<[HasSSE2]>; } // Load, store, and memory fence def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>, TB, Requires<[HasSSE1]>; // MXCSR register def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>; def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>; // Alias instructions that map zero vector to pxor / xorp* for sse. // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-zeros value if folding it would be beneficial. // FIXME: Change encoding to pseudo! let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isCodeGenOnly = 1 in { def V_SET0PS : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4f32 immAllZerosV))]>; def V_SET0PD : PDI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v2f64 immAllZerosV))]>; let ExeDomain = SSEPackedInt in def V_SET0PI : PDI<0xEF, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4i32 immAllZerosV))]>; } def : Pat<(v2i64 immAllZerosV), (V_SET0PI)>; def : Pat<(v8i16 immAllZerosV), (V_SET0PI)>; def : Pat<(v16i8 immAllZerosV), (V_SET0PI)>; def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), (f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>; //===---------------------------------------------------------------------===// // SSE2 Instructions //===---------------------------------------------------------------------===// // Arithmetic /// sse2_fp_unop_rm - SSE2 unops come in both scalar and vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a /// scalar) and leaves the top elements undefined. /// /// And, we have a special variant form for a full-vector intrinsic form. /// /// These four forms can each have a reg or a mem operand, so there are a /// total of eight "instructions". /// multiclass sse2_fp_unop_rm opc, string OpcodeStr, SDNode OpNode, Intrinsic F64Int, Intrinsic V2F64Int, bit Commutable = 0> { // Scalar operation, reg. def SDr : SDI { let isCommutable = Commutable; } // Scalar operation, mem. def SDm : SDI; // Vector operation, reg. def PDr : PDI { let isCommutable = Commutable; } // Vector operation, mem. def PDm : PDI; // Intrinsic operation, reg. def SDr_Int : SDI { let isCommutable = Commutable; } // Intrinsic operation, mem. def SDm_Int : SDI; // Vector intrinsic operation, reg def PDr_Int : PDI { let isCommutable = Commutable; } // Vector intrinsic operation, mem def PDm_Int : PDI; } // Square root. defm SQRT : sse2_fp_unop_rm<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd, int_x86_sse2_sqrt_pd>; // There is no f64 version of the reciprocal approximation instructions. //===---------------------------------------------------------------------===// // SSE integer instructions let ExeDomain = SSEPackedInt in { // Move Instructions let neverHasSideEffects = 1 in def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>; let canFoldAsLoad = 1, mayLoad = 1 in def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>; let mayStore = 1 in def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>; let canFoldAsLoad = 1, mayLoad = 1 in def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>, XS, Requires<[HasSSE2]>; let mayStore = 1 in def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(store (v2i64 VR128:$src), addr:$dst)*/]>, XS, Requires<[HasSSE2]>; // Intrinsic forms of MOVDQU load and store let canFoldAsLoad = 1 in def MOVDQUrm_Int : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>, XS, Requires<[HasSSE2]>; def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, XS, Requires<[HasSSE2]>; let Constraints = "$src1 = $dst" in { multiclass PDI_binop_rm_int opc, string OpcodeStr, Intrinsic IntId, bit Commutable = 0> { def rr : PDI { let isCommutable = Commutable; } def rm : PDI; } multiclass PDI_binop_rmi_int opc, bits<8> opc2, Format ImmForm, string OpcodeStr, Intrinsic IntId, Intrinsic IntId2> { def rr : PDI; def rm : PDI; def ri : PDIi8; } /// PDI_binop_rm - Simple SSE2 binary operator. multiclass PDI_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, bit Commutable = 0> { def rr : PDI { let isCommutable = Commutable; } def rm : PDI; } /// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64. /// /// FIXME: we could eliminate this and use PDI_binop_rm instead if tblgen knew /// to collapse (bitconvert VT to VT) into its operand. /// multiclass PDI_binop_rm_v2i64 opc, string OpcodeStr, SDNode OpNode, bit Commutable = 0> { def rr : PDI { let isCommutable = Commutable; } def rm : PDI; } } // Constraints = "$src1 = $dst" } // ExeDomain = SSEPackedInt // 128-bit Integer Arithmetic defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>; defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>; defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>; defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>; defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>; defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>; defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>; defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>; defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>; defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>; defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>; defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>; defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>; defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>; defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>; defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>; defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>; defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>; defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w , 1>; defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>; defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>; defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>; defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>; defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>; defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>; defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>; defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>; defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, 1>; defm PSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw", int_x86_sse2_psll_w, int_x86_sse2_pslli_w>; defm PSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld", int_x86_sse2_psll_d, int_x86_sse2_pslli_d>; defm PSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq", int_x86_sse2_psll_q, int_x86_sse2_pslli_q>; defm PSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw", int_x86_sse2_psrl_w, int_x86_sse2_psrli_w>; defm PSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld", int_x86_sse2_psrl_d, int_x86_sse2_psrli_d>; defm PSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq", int_x86_sse2_psrl_q, int_x86_sse2_psrli_q>; defm PSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw", int_x86_sse2_psra_w, int_x86_sse2_psrai_w>; defm PSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad", int_x86_sse2_psra_d, int_x86_sse2_psrai_d>; // 128-bit logical shifts. let Constraints = "$src1 = $dst", neverHasSideEffects = 1, ExeDomain = SSEPackedInt in { def PSLLDQri : PDIi8<0x73, MRM7r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "pslldq\t{$src2, $dst|$dst, $src2}", []>; def PSRLDQri : PDIi8<0x73, MRM3r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psrldq\t{$src2, $dst|$dst, $src2}", []>; // PSRADQri doesn't exist in SSE[1-3]. } let Predicates = [HasSSE2] in { def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2), (v2i64 (PSLLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2), (v2i64 (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; def : Pat<(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2), (v2i64 (PSLLDQri VR128:$src1, imm:$src2))>; def : Pat<(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2), (v2i64 (PSRLDQri VR128:$src1, imm:$src2))>; def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)), (v2f64 (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; // Shift up / down and insert zero's. def : Pat<(v2i64 (X86vshl VR128:$src, (i8 imm:$amt))), (v2i64 (PSLLDQri VR128:$src, (BYTE_imm imm:$amt)))>; def : Pat<(v2i64 (X86vshr VR128:$src, (i8 imm:$amt))), (v2i64 (PSRLDQri VR128:$src, (BYTE_imm imm:$amt)))>; } // Logical defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>; defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or , 1>; defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>; let Constraints = "$src1 = $dst", ExeDomain = SSEPackedInt in { def PANDNrr : PDI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "pandn\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), VR128:$src2)))]>; def PANDNrm : PDI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "pandn\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), (memopv2i64 addr:$src2))))]>; } // SSE2 Integer comparison defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b, 1>; defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w, 1>; defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d, 1>; defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>; defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>; defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>; def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, VR128:$src2)), (PCMPEQBrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, (memop addr:$src2))), (PCMPEQBrm VR128:$src1, addr:$src2)>; def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, VR128:$src2)), (PCMPEQWrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, (memop addr:$src2))), (PCMPEQWrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, VR128:$src2)), (PCMPEQDrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, (memop addr:$src2))), (PCMPEQDrm VR128:$src1, addr:$src2)>; def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, VR128:$src2)), (PCMPGTBrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, (memop addr:$src2))), (PCMPGTBrm VR128:$src1, addr:$src2)>; def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, VR128:$src2)), (PCMPGTWrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, (memop addr:$src2))), (PCMPGTWrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, VR128:$src2)), (PCMPGTDrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, (memop addr:$src2))), (PCMPGTDrm VR128:$src1, addr:$src2)>; // Pack instructions defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>; defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>; defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>; let ExeDomain = SSEPackedInt in { // Shuffle and unpack instructions let AddedComplexity = 5 in { def PSHUFDri : PDIi8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4i32 (pshufd:$src2 VR128:$src1, (undef))))]>; def PSHUFDmi : PDIi8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4i32 (pshufd:$src2 (bc_v4i32 (memopv2i64 addr:$src1)), (undef))))]>; } // SSE2 with ImmT == Imm8 and XS prefix. def PSHUFHWri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (pshufhw:$src2 VR128:$src1, (undef))))]>, XS, Requires<[HasSSE2]>; def PSHUFHWmi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (pshufhw:$src2 (bc_v8i16 (memopv2i64 addr:$src1)), (undef))))]>, XS, Requires<[HasSSE2]>; // SSE2 with ImmT == Imm8 and XD prefix. def PSHUFLWri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (pshuflw:$src2 VR128:$src1, (undef))))]>, XD, Requires<[HasSSE2]>; def PSHUFLWmi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v8i16 (pshuflw:$src2 (bc_v8i16 (memopv2i64 addr:$src1)), (undef))))]>, XD, Requires<[HasSSE2]>; // Unpack instructions multiclass sse2_unpack opc, string OpcodeStr, ValueType vt, PatFrag unp_frag, PatFrag bc_frag> { def rr : PDI; def rm : PDI; } let Constraints = "$src1 = $dst" in { defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, unpckl, bc_v16i8>; defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, unpckl, bc_v8i16>; defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, unpckl, bc_v4i32>; /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen /// knew to collapse (bitconvert VT to VT) into its operand. def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpcklqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckl VR128:$src1, VR128:$src2)))]>; def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpcklqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckl VR128:$src1, (memopv2i64 addr:$src2))))]>; defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, unpckh, bc_v16i8>; defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, unpckh, bc_v8i16>; defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, unpckh, bc_v4i32>; /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen /// knew to collapse (bitconvert VT to VT) into its operand. def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckhqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckh VR128:$src1, VR128:$src2)))]>; def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpckhqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckh VR128:$src1, (memopv2i64 addr:$src2))))]>; } // Extract / Insert def PEXTRWri : PDIi8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), imm:$src2))]>; let Constraints = "$src1 = $dst" in { def PINSRWrri : PDIi8<0xC4, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR32:$src2, i32i8imm:$src3), "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))]>; def PINSRWrmi : PDIi8<0xC4, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i16mem:$src2, i32i8imm:$src3), "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR128:$dst, (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), imm:$src3))]>; } // Mask creation def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>; // Conditional store let Uses = [EDI] in def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>; let Uses = [RDI] in def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>; } // ExeDomain = SSEPackedInt // Non-temporal stores def MOVNTPDmr_Int : PDI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movntpd\t{$src, $dst|$dst, $src}", [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>; let ExeDomain = SSEPackedInt in def MOVNTDQmr_Int : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>; def MOVNTImr_Int : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movnti\t{$src, $dst|$dst, $src}", [(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>, TB, Requires<[HasSSE2]>; let AddedComplexity = 400 in { // Prefer non-temporal versions def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntpd\t{$src, $dst|$dst, $src}", [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>; let ExeDomain = SSEPackedInt in def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; } // Flush cache def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>, TB, Requires<[HasSSE2]>; // Load, store, and memory fence def LFENCE : I<0xAE, MRM_E8, (outs), (ins), "lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>; def MFENCE : I<0xAE, MRM_F0, (outs), (ins), "mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>; // Pause. This "instruction" is encoded as "rep; nop", so even though it // was introduced with SSE2, it's backward compatible. def PAUSE : I<0x90, RawFrm, (outs), (ins), "pause", []>, REP; //TODO: custom lower this so as to never even generate the noop def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 0)), (NOOP)>; def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)), (MFENCE)>; // Alias instructions that map zero vector to pxor / xorp* for sse. // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-ones value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isCodeGenOnly = 1, ExeDomain = SSEPackedInt in // FIXME: Change encoding to pseudo. def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4i32 immAllOnesV))]>; def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector GR32:$src)))]>; def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>; def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>; def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>; // SSE2 instructions with XS prefix def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, Requires<[HasSSE2]>; def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (vector_extract (v2i64 VR128:$src), (iPTR 0))), addr:$dst)]>; def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), (f64 (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), (iPTR 0)))]>; def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>; def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>; def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>; // Store / copy lower 64-bits of a XMM register. def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>; // movd / movq to XMM register zero-extends let AddedComplexity = 15 in { def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))))]>; // This is X86-64 only. def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))))]>; } let AddedComplexity = 20 in { def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>; def : Pat<(v4i32 (X86vzmovl (loadv4i32 addr:$src))), (MOVZDI2PDIrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))), (MOVZDI2PDIrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), (MOVZDI2PDIrm addr:$src)>; def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>, XS, Requires<[HasSSE2]>; def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), (MOVZQI2PQIrm addr:$src)>; def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))), (MOVZQI2PQIrm addr:$src)>; def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>; } // Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in // IA32 document. movq xmm1, xmm2 does clear the high bits. let AddedComplexity = 15 in def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, XS, Requires<[HasSSE2]>; let AddedComplexity = 20 in { def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (loadv2i64 addr:$src))))]>, XS, Requires<[HasSSE2]>; def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4i32 addr:$src)))), (MOVZPQILo2PQIrm addr:$src)>; } // Instructions for the disassembler // xr = XMM register // xm = mem64 def MOVQxrxr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>, XS; //===---------------------------------------------------------------------===// // SSE3 Instructions //===---------------------------------------------------------------------===// // Conversion Instructions def CVTPD2DQrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; def CVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; // Move Instructions def MOVSHDUPrr : S3SI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movshdup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (movshdup VR128:$src, (undef))))]>; def MOVSHDUPrm : S3SI<0x16, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movshdup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (movshdup (memopv4f32 addr:$src), (undef)))]>; def MOVSLDUPrr : S3SI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movsldup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4f32 (movsldup VR128:$src, (undef))))]>; def MOVSLDUPrm : S3SI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movsldup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (movsldup (memopv4f32 addr:$src), (undef)))]>; def MOVDDUPrr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movddup\t{$src, $dst|$dst, $src}", [(set VR128:$dst,(v2f64 (movddup VR128:$src, (undef))))]>; def MOVDDUPrm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "movddup\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (movddup (scalar_to_vector (loadf64 addr:$src)), (undef))))]>; def : Pat<(movddup (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src)))), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; let AddedComplexity = 5 in { def : Pat<(movddup (memopv2f64 addr:$src), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; def : Pat<(movddup (bc_v4f32 (memopv2f64 addr:$src)), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; def : Pat<(movddup (memopv2i64 addr:$src), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; def : Pat<(movddup (bc_v4i32 (memopv2i64 addr:$src)), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; } // Arithmetic let Constraints = "$src1 = $dst" in { def ADDSUBPSrr : S3DI<0xD0, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "addsubps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1, VR128:$src2))]>; def ADDSUBPSrm : S3DI<0xD0, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "addsubps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1, (memop addr:$src2)))]>; def ADDSUBPDrr : S3I<0xD0, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "addsubpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1, VR128:$src2))]>; def ADDSUBPDrm : S3I<0xD0, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), "addsubpd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1, (memop addr:$src2)))]>; } def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "lddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>; // Horizontal ops class S3D_Intrr o, string OpcodeStr, Intrinsic IntId> : S3DI; class S3D_Intrm o, string OpcodeStr, Intrinsic IntId> : S3DI; class S3_Intrr o, string OpcodeStr, Intrinsic IntId> : S3I; class S3_Intrm o, string OpcodeStr, Intrinsic IntId> : S3I; let Constraints = "$src1 = $dst" in { def HADDPSrr : S3D_Intrr<0x7C, "haddps", int_x86_sse3_hadd_ps>; def HADDPSrm : S3D_Intrm<0x7C, "haddps", int_x86_sse3_hadd_ps>; def HADDPDrr : S3_Intrr <0x7C, "haddpd", int_x86_sse3_hadd_pd>; def HADDPDrm : S3_Intrm <0x7C, "haddpd", int_x86_sse3_hadd_pd>; def HSUBPSrr : S3D_Intrr<0x7D, "hsubps", int_x86_sse3_hsub_ps>; def HSUBPSrm : S3D_Intrm<0x7D, "hsubps", int_x86_sse3_hsub_ps>; def HSUBPDrr : S3_Intrr <0x7D, "hsubpd", int_x86_sse3_hsub_pd>; def HSUBPDrm : S3_Intrm <0x7D, "hsubpd", int_x86_sse3_hsub_pd>; } // Thread synchronization def MONITOR : I<0x01, MRM_C8, (outs), (ins), "monitor", [(int_x86_sse3_monitor EAX, ECX, EDX)]>,TB, Requires<[HasSSE3]>; def MWAIT : I<0x01, MRM_C9, (outs), (ins), "mwait", [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>; // vector_shuffle v1, <1, 1, 3, 3> let AddedComplexity = 15 in def : Pat<(v4i32 (movshdup VR128:$src, (undef))), (MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>; let AddedComplexity = 20 in def : Pat<(v4i32 (movshdup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), (MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>; // vector_shuffle v1, <0, 0, 2, 2> let AddedComplexity = 15 in def : Pat<(v4i32 (movsldup VR128:$src, (undef))), (MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>; let AddedComplexity = 20 in def : Pat<(v4i32 (movsldup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), (MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>; //===---------------------------------------------------------------------===// // SSSE3 Instructions //===---------------------------------------------------------------------===// /// SS3I_unop_rm_int_8 - Simple SSSE3 unary operator whose type is v*i8. multiclass SS3I_unop_rm_int_8 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128> { def rr64 : SS38I; def rm64 : SS38I; def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } /// SS3I_unop_rm_int_16 - Simple SSSE3 unary operator whose type is v*i16. multiclass SS3I_unop_rm_int_16 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128> { def rr64 : SS38I; def rm64 : SS38I; def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } /// SS3I_unop_rm_int_32 - Simple SSSE3 unary operator whose type is v*i32. multiclass SS3I_unop_rm_int_32 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128> { def rr64 : SS38I; def rm64 : SS38I; def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } defm PABSB : SS3I_unop_rm_int_8 <0x1C, "pabsb", int_x86_ssse3_pabs_b, int_x86_ssse3_pabs_b_128>; defm PABSW : SS3I_unop_rm_int_16<0x1D, "pabsw", int_x86_ssse3_pabs_w, int_x86_ssse3_pabs_w_128>; defm PABSD : SS3I_unop_rm_int_32<0x1E, "pabsd", int_x86_ssse3_pabs_d, int_x86_ssse3_pabs_d_128>; /// SS3I_binop_rm_int_8 - Simple SSSE3 binary operator whose type is v*i8. let Constraints = "$src1 = $dst" in { multiclass SS3I_binop_rm_int_8 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128, bit Commutable = 0> { def rr64 : SS38I { let isCommutable = Commutable; } def rm64 : SS38I; def rr128 : SS38I, OpSize { let isCommutable = Commutable; } def rm128 : SS38I, OpSize; } } /// SS3I_binop_rm_int_16 - Simple SSSE3 binary operator whose type is v*i16. let Constraints = "$src1 = $dst" in { multiclass SS3I_binop_rm_int_16 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128, bit Commutable = 0> { def rr64 : SS38I { let isCommutable = Commutable; } def rm64 : SS38I; def rr128 : SS38I, OpSize { let isCommutable = Commutable; } def rm128 : SS38I, OpSize; } } /// SS3I_binop_rm_int_32 - Simple SSSE3 binary operator whose type is v*i32. let Constraints = "$src1 = $dst" in { multiclass SS3I_binop_rm_int_32 opc, string OpcodeStr, Intrinsic IntId64, Intrinsic IntId128, bit Commutable = 0> { def rr64 : SS38I { let isCommutable = Commutable; } def rm64 : SS38I; def rr128 : SS38I, OpSize { let isCommutable = Commutable; } def rm128 : SS38I, OpSize; } } let ImmT = NoImm in { // None of these have i8 immediate fields. defm PHADDW : SS3I_binop_rm_int_16<0x01, "phaddw", int_x86_ssse3_phadd_w, int_x86_ssse3_phadd_w_128>; defm PHADDD : SS3I_binop_rm_int_32<0x02, "phaddd", int_x86_ssse3_phadd_d, int_x86_ssse3_phadd_d_128>; defm PHADDSW : SS3I_binop_rm_int_16<0x03, "phaddsw", int_x86_ssse3_phadd_sw, int_x86_ssse3_phadd_sw_128>; defm PHSUBW : SS3I_binop_rm_int_16<0x05, "phsubw", int_x86_ssse3_phsub_w, int_x86_ssse3_phsub_w_128>; defm PHSUBD : SS3I_binop_rm_int_32<0x06, "phsubd", int_x86_ssse3_phsub_d, int_x86_ssse3_phsub_d_128>; defm PHSUBSW : SS3I_binop_rm_int_16<0x07, "phsubsw", int_x86_ssse3_phsub_sw, int_x86_ssse3_phsub_sw_128>; defm PMADDUBSW : SS3I_binop_rm_int_8 <0x04, "pmaddubsw", int_x86_ssse3_pmadd_ub_sw, int_x86_ssse3_pmadd_ub_sw_128>; defm PMULHRSW : SS3I_binop_rm_int_16<0x0B, "pmulhrsw", int_x86_ssse3_pmul_hr_sw, int_x86_ssse3_pmul_hr_sw_128, 1>; defm PSHUFB : SS3I_binop_rm_int_8 <0x00, "pshufb", int_x86_ssse3_pshuf_b, int_x86_ssse3_pshuf_b_128>; defm PSIGNB : SS3I_binop_rm_int_8 <0x08, "psignb", int_x86_ssse3_psign_b, int_x86_ssse3_psign_b_128>; defm PSIGNW : SS3I_binop_rm_int_16<0x09, "psignw", int_x86_ssse3_psign_w, int_x86_ssse3_psign_w_128>; defm PSIGND : SS3I_binop_rm_int_32<0x0A, "psignd", int_x86_ssse3_psign_d, int_x86_ssse3_psign_d_128>; } // palignr patterns. let Constraints = "$src1 = $dst" in { def PALIGNR64rr : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, VR64:$src2, i8imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", []>; def PALIGNR64rm : SS3AI<0x0F, MRMSrcMem, (outs VR64:$dst), (ins VR64:$src1, i64mem:$src2, i8imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", []>; def PALIGNR128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", []>, OpSize; def PALIGNR128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", []>, OpSize; } let AddedComplexity = 5 in { def : Pat<(v1i64 (palign:$src3 VR64:$src1, VR64:$src2)), (PALIGNR64rr VR64:$src2, VR64:$src1, (SHUFFLE_get_palign_imm VR64:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v2i32 (palign:$src3 VR64:$src1, VR64:$src2)), (PALIGNR64rr VR64:$src2, VR64:$src1, (SHUFFLE_get_palign_imm VR64:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v2f32 (palign:$src3 VR64:$src1, VR64:$src2)), (PALIGNR64rr VR64:$src2, VR64:$src1, (SHUFFLE_get_palign_imm VR64:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v4i16 (palign:$src3 VR64:$src1, VR64:$src2)), (PALIGNR64rr VR64:$src2, VR64:$src1, (SHUFFLE_get_palign_imm VR64:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v8i8 (palign:$src3 VR64:$src1, VR64:$src2)), (PALIGNR64rr VR64:$src2, VR64:$src1, (SHUFFLE_get_palign_imm VR64:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v4i32 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v4f32 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v8i16 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v16i8 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; } def : Pat<(X86pshufb VR128:$src, VR128:$mask), (PSHUFBrr128 VR128:$src, VR128:$mask)>, Requires<[HasSSSE3]>; def : Pat<(X86pshufb VR128:$src, (bc_v16i8 (memopv2i64 addr:$mask))), (PSHUFBrm128 VR128:$src, addr:$mask)>, Requires<[HasSSSE3]>; //===---------------------------------------------------------------------===// // Non-Instruction Patterns //===---------------------------------------------------------------------===// // extload f32 -> f64. This matches load+fextend because we have a hack in // the isel (PreprocessForFPConvert) that can introduce loads after dag // combine. // Since these loads aren't folded into the fextend, we have to match it // explicitly here. let Predicates = [HasSSE2] in def : Pat<(fextend (loadf32 addr:$src)), (CVTSS2SDrm addr:$src)>; // bit_convert let Predicates = [HasSSE2] in { def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; } // Move scalar to XMM zero-extended // movd to XMM register zero-extends let AddedComplexity = 15 in { // Zeroing a VR128 then do a MOVS{S|D} to the lower bits. def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))), (MOVSDrr (v2f64 (V_SET0PS)), FR64:$src)>; def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))), (MOVSSrr (v4f32 (V_SET0PS)), FR32:$src)>; def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), (MOVSSrr (v4f32 (V_SET0PS)), (f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss)))>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), (MOVSSrr (v4i32 (V_SET0PI)), (EXTRACT_SUBREG (v4i32 VR128:$src), sub_ss))>; } // Splat v2f64 / v2i64 let AddedComplexity = 10 in { def : Pat<(splat_lo (v2f64 VR128:$src), (undef)), (UNPCKLPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(unpckh (v2f64 VR128:$src), (undef)), (UNPCKHPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(splat_lo (v2i64 VR128:$src), (undef)), (PUNPCKLQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(unpckh (v2i64 VR128:$src), (undef)), (PUNPCKHQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; } // Special unary SHUFPSrri case. def : Pat<(v4f32 (pshufd:$src3 VR128:$src1, (undef))), (SHUFPSrri VR128:$src1, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>; let AddedComplexity = 5 in def : Pat<(v4f32 (pshufd:$src2 VR128:$src1, (undef))), (PSHUFDri VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[HasSSE2]>; // Special unary SHUFPDrri case. def : Pat<(v2i64 (pshufd:$src3 VR128:$src1, (undef))), (SHUFPDrri VR128:$src1, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // Special unary SHUFPDrri case. def : Pat<(v2f64 (pshufd:$src3 VR128:$src1, (undef))), (SHUFPDrri VR128:$src1, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // Unary v4f32 shuffle with PSHUF* in order to fold a load. def : Pat<(pshufd:$src2 (bc_v4i32 (memopv4f32 addr:$src1)), (undef)), (PSHUFDmi addr:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[HasSSE2]>; // Special binary v4i32 shuffle cases with SHUFPS. def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (v4i32 VR128:$src2))), (SHUFPSrri VR128:$src1, VR128:$src2, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)))), (SHUFPSrmi VR128:$src1, addr:$src2, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // Special binary v2i64 shuffle cases using SHUFPDrri. def : Pat<(v2i64 (shufp:$src3 VR128:$src1, VR128:$src2)), (SHUFPDrri VR128:$src1, VR128:$src2, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // vector_shuffle v1, , <0, 0, 1, 1, ...> let AddedComplexity = 15 in { def : Pat<(v4i32 (unpckl_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; def : Pat<(v4f32 (unpckl_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; } let AddedComplexity = 10 in { def : Pat<(v4f32 (unpckl_undef VR128:$src, (undef))), (UNPCKLPSrr VR128:$src, VR128:$src)>; def : Pat<(v16i8 (unpckl_undef VR128:$src, (undef))), (PUNPCKLBWrr VR128:$src, VR128:$src)>; def : Pat<(v8i16 (unpckl_undef VR128:$src, (undef))), (PUNPCKLWDrr VR128:$src, VR128:$src)>; def : Pat<(v4i32 (unpckl_undef VR128:$src, (undef))), (PUNPCKLDQrr VR128:$src, VR128:$src)>; } // vector_shuffle v1, , <2, 2, 3, 3, ...> let AddedComplexity = 15 in { def : Pat<(v4i32 (unpckh_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; def : Pat<(v4f32 (unpckh_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; } let AddedComplexity = 10 in { def : Pat<(v4f32 (unpckh_undef VR128:$src, (undef))), (UNPCKHPSrr VR128:$src, VR128:$src)>; def : Pat<(v16i8 (unpckh_undef VR128:$src, (undef))), (PUNPCKHBWrr VR128:$src, VR128:$src)>; def : Pat<(v8i16 (unpckh_undef VR128:$src, (undef))), (PUNPCKHWDrr VR128:$src, VR128:$src)>; def : Pat<(v4i32 (unpckh_undef VR128:$src, (undef))), (PUNPCKHDQrr VR128:$src, VR128:$src)>; } let AddedComplexity = 20 in { // vector_shuffle v1, v2 <0, 1, 4, 5> using MOVLHPS def : Pat<(v4i32 (movlhps VR128:$src1, VR128:$src2)), (MOVLHPSrr VR128:$src1, VR128:$src2)>; // vector_shuffle v1, v2 <6, 7, 2, 3> using MOVHLPS def : Pat<(v4i32 (movhlps VR128:$src1, VR128:$src2)), (MOVHLPSrr VR128:$src1, VR128:$src2)>; // vector_shuffle v1, undef <2, ?, ?, ?> using MOVHLPS def : Pat<(v4f32 (movhlps_undef VR128:$src1, (undef))), (MOVHLPSrr VR128:$src1, VR128:$src1)>; def : Pat<(v4i32 (movhlps_undef VR128:$src1, (undef))), (MOVHLPSrr VR128:$src1, VR128:$src1)>; } let AddedComplexity = 20 in { // vector_shuffle v1, (load v2) <4, 5, 2, 3> using MOVLPS def : Pat<(v4f32 (movlp VR128:$src1, (load addr:$src2))), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (movlp VR128:$src1, (load addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (movlp VR128:$src1, (load addr:$src2))), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (movlp VR128:$src1, (load addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; } // (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS def : Pat<(store (v4f32 (movlp (load addr:$src1), VR128:$src2)), addr:$src1), (MOVLPSmr addr:$src1, VR128:$src2)>; def : Pat<(store (v2f64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1), (MOVLPDmr addr:$src1, VR128:$src2)>; def : Pat<(store (v4i32 (movlp (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)), addr:$src1), (MOVLPSmr addr:$src1, VR128:$src2)>; def : Pat<(store (v2i64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1), (MOVLPDmr addr:$src1, VR128:$src2)>; let AddedComplexity = 15 in { // Setting the lowest element in the vector. def : Pat<(v4i32 (movl VR128:$src1, VR128:$src2)), (MOVSSrr (v4i32 VR128:$src1), (EXTRACT_SUBREG (v4i32 VR128:$src2), sub_ss))>; def : Pat<(v2i64 (movl VR128:$src1, VR128:$src2)), (MOVSDrr (v2i64 VR128:$src1), (EXTRACT_SUBREG (v2i64 VR128:$src2), sub_sd))>; // vector_shuffle v1, v2 <4, 5, 2, 3> using movsd def : Pat<(v4f32 (movlp VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG VR128:$src2, sub_sd))>, Requires<[HasSSE2]>; def : Pat<(v4i32 (movlp VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG VR128:$src2, sub_sd))>, Requires<[HasSSE2]>; } // vector_shuffle v1, v2 <4, 5, 2, 3> using SHUFPSrri (we prefer movsd, but // fall back to this for SSE1) def : Pat<(v4f32 (movlp:$src3 VR128:$src1, (v4f32 VR128:$src2))), (SHUFPSrri VR128:$src2, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>; // Set lowest element and zero upper elements. def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))), (MOVZPQILo2PQIrr VR128:$src)>, Requires<[HasSSE2]>; // Some special case pandn patterns. def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))), VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))), VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))), VR128:$src2)), (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))), (memop addr:$src2))), (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))), (memop addr:$src2))), (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))), (memop addr:$src2))), (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>; // vector -> vector casts def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))), (Int_CVTDQ2PSrr VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))), (Int_CVTTPS2DQrr VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v2f64 (sint_to_fp (v2i32 VR64:$src))), (Int_CVTPI2PDrr VR64:$src)>, Requires<[HasSSE2]>; def : Pat<(v2i32 (fp_to_sint (v2f64 VR128:$src))), (Int_CVTTPD2PIrr VR128:$src)>, Requires<[HasSSE2]>; // Use movaps / movups for SSE integer load / store (one byte shorter). def : Pat<(alignedloadv4i32 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(loadv4i32 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(alignedloadv2i64 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(loadv2i64 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v2i64 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v4i32 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v8i16 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v16i8 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; //===----------------------------------------------------------------------===// // SSE4.1 Instructions //===----------------------------------------------------------------------===// multiclass sse41_fp_unop_rm opcps, bits<8> opcpd, string OpcodeStr, Intrinsic V4F32Int, Intrinsic V2F64Int> { // Intrinsic operation, reg. // Vector intrinsic operation, reg def PSr_Int : SS4AIi8, OpSize; // Vector intrinsic operation, mem def PSm_Int : Ii8, TA, OpSize, Requires<[HasSSE41]>; // Vector intrinsic operation, reg def PDr_Int : SS4AIi8, OpSize; // Vector intrinsic operation, mem def PDm_Int : SS4AIi8, OpSize; } let Constraints = "$src1 = $dst" in { multiclass sse41_fp_binop_rm opcss, bits<8> opcsd, string OpcodeStr, Intrinsic F32Int, Intrinsic F64Int> { // Intrinsic operation, reg. def SSr_Int : SS4AIi8, OpSize; // Intrinsic operation, mem. def SSm_Int : SS4AIi8, OpSize; // Intrinsic operation, reg. def SDr_Int : SS4AIi8, OpSize; // Intrinsic operation, mem. def SDm_Int : SS4AIi8, OpSize; } } // FP round - roundss, roundps, roundsd, roundpd defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", int_x86_sse41_round_ps, int_x86_sse41_round_pd>; defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round", int_x86_sse41_round_ss, int_x86_sse41_round_sd>; // SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16. multiclass SS41I_unop_rm_int_v16 opc, string OpcodeStr, Intrinsic IntId128> { def rr128 : SS48I, OpSize; def rm128 : SS48I, OpSize; } defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw", int_x86_sse41_phminposuw>; /// SS41I_binop_rm_int - Simple SSE 4.1 binary operator let Constraints = "$src1 = $dst" in { multiclass SS41I_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, bit Commutable = 0> { def rr : SS48I, OpSize { let isCommutable = Commutable; } def rm : SS48I, OpSize; } } defm PCMPEQQ : SS41I_binop_rm_int<0x29, "pcmpeqq", int_x86_sse41_pcmpeqq, 1>; defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", int_x86_sse41_packusdw, 0>; defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb", int_x86_sse41_pminsb, 1>; defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd", int_x86_sse41_pminsd, 1>; defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud", int_x86_sse41_pminud, 1>; defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw", int_x86_sse41_pminuw, 1>; defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb", int_x86_sse41_pmaxsb, 1>; defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd", int_x86_sse41_pmaxsd, 1>; defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud", int_x86_sse41_pmaxud, 1>; defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw", int_x86_sse41_pmaxuw, 1>; defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq, 1>; def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, VR128:$src2)), (PCMPEQQrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, (memop addr:$src2))), (PCMPEQQrm VR128:$src1, addr:$src2)>; /// SS41I_binop_rm_int - Simple SSE 4.1 binary operator let Constraints = "$src1 = $dst" in { multiclass SS41I_binop_patint opc, string OpcodeStr, ValueType OpVT, SDNode OpNode, Intrinsic IntId128, bit Commutable = 0> { def rr : SS48I, OpSize { let isCommutable = Commutable; } def rr_int : SS48I, OpSize { let isCommutable = Commutable; } def rm : SS48I, OpSize; def rm_int : SS48I, OpSize; } } /// SS48I_binop_rm - Simple SSE41 binary operator. let Constraints = "$src1 = $dst" in { multiclass SS48I_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, bit Commutable = 0> { def rr : SS48I, OpSize { let isCommutable = Commutable; } def rm : SS48I, OpSize; } } defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, 1>; /// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate let Constraints = "$src1 = $dst" in { multiclass SS41I_binop_rmi_int opc, string OpcodeStr, Intrinsic IntId128, bit Commutable = 0> { def rri : SS4AIi8, OpSize { let isCommutable = Commutable; } def rmi : SS4AIi8, OpSize; } } defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps, 0>; defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd, 0>; defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw, 0>; defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps, 1>; defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd, 1>; defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw, 0>; /// SS41I_ternary_int - SSE 4.1 ternary operator let Uses = [XMM0], Constraints = "$src1 = $dst" in { multiclass SS41I_ternary_int opc, string OpcodeStr, Intrinsic IntId> { def rr0 : SS48I, OpSize; def rm0 : SS48I, OpSize; } } defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>; defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>; defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>; multiclass SS41I_binop_rm_int8 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; def rm : SS48I, OpSize; } defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw>; defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd>; defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq>; defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw>; defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd>; defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq>; // Common patterns involving scalar load. def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)), (PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)), (PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)), (PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)), (PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)), (PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)), (PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)), (PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)), (PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)), (PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)), (PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)), (PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)), (PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>; multiclass SS41I_binop_rm_int4 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; def rm : SS48I, OpSize; } defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd>; defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq>; defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd>; defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq>; // Common patterns involving scalar load def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)), (PMOVSXBDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)), (PMOVSXWQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)), (PMOVZXBDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)), (PMOVZXWQrm addr:$src)>, Requires<[HasSSE41]>; multiclass SS41I_binop_rm_int2 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; // Expecting a i16 load any extended to i32 value. def rm : SS48I, OpSize; } defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq>; defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq>; // Common patterns involving scalar load def : Pat<(int_x86_sse41_pmovsxbq (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))), (PMOVSXBQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbq (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))), (PMOVZXBQrm addr:$src)>, Requires<[HasSSE41]>; /// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem multiclass SS41I_extract8 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def mr : SS4AIi8, OpSize; // FIXME: // There's an AssertZext in the way of writing the store pattern // (store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } defm PEXTRB : SS41I_extract8<0x14, "pextrb">; /// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination multiclass SS41I_extract16 opc, string OpcodeStr> { def mr : SS4AIi8, OpSize; // FIXME: // There's an AssertZext in the way of writing the store pattern // (store (i16 (trunc (X86pextrw (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } defm PEXTRW : SS41I_extract16<0x15, "pextrw">; /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination multiclass SS41I_extract32 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def mr : SS4AIi8, OpSize; } defm PEXTRD : SS41I_extract32<0x16, "pextrd">; /// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory /// destination multiclass SS41I_extractf32 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def mr : SS4AIi8, OpSize; } defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">; // Also match an EXTRACTPS store when the store is done as f32 instead of i32. def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))), addr:$dst), (EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>, Requires<[HasSSE41]>; let Constraints = "$src1 = $dst" in { multiclass SS41I_insert8 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def rm : SS4AIi8, OpSize; } } defm PINSRB : SS41I_insert8<0x20, "pinsrb">; let Constraints = "$src1 = $dst" in { multiclass SS41I_insert32 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def rm : SS4AIi8, OpSize; } } defm PINSRD : SS41I_insert32<0x22, "pinsrd">; // insertps has a few different modes, there's the first two here below which // are optimized inserts that won't zero arbitrary elements in the destination // vector. The next one matches the intrinsic and could zero arbitrary elements // in the target vector. let Constraints = "$src1 = $dst" in { multiclass SS41I_insertf32 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def rm : SS4AIi8, OpSize; } } defm INSERTPS : SS41I_insertf32<0x21, "insertps">; def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3), (INSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>; // ptest instruction we'll lower to this in X86ISelLowering primarily from // the intel intrinsic that corresponds to this. let Defs = [EFLAGS] in { def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "ptest \t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, VR128:$src2))]>, OpSize; def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2), "ptest \t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (load addr:$src2)))]>, OpSize; } def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movntdqa\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>, OpSize; //===----------------------------------------------------------------------===// // SSE4.2 Instructions //===----------------------------------------------------------------------===// /// SS42I_binop_rm_int - Simple SSE 4.2 binary operator let Constraints = "$src1 = $dst" in { multiclass SS42I_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, bit Commutable = 0> { def rr : SS428I, OpSize { let isCommutable = Commutable; } def rm : SS428I, OpSize; } } defm PCMPGTQ : SS42I_binop_rm_int<0x37, "pcmpgtq", int_x86_sse42_pcmpgtq>; def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, VR128:$src2)), (PCMPGTQrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, (memop addr:$src2))), (PCMPGTQrm VR128:$src1, addr:$src2)>; // crc intrinsic instruction // This set of instructions are only rm, the only difference is the size // of r and m. let Constraints = "$src1 = $dst" in { def CRC32m8 : SS42FI<0xF0, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i8mem:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_8 GR32:$src1, (load addr:$src2)))]>; def CRC32r8 : SS42FI<0xF0, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR8:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_8 GR32:$src1, GR8:$src2))]>; def CRC32m16 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i16mem:$src2), "crc32{w} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_16 GR32:$src1, (load addr:$src2)))]>, OpSize; def CRC32r16 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR16:$src2), "crc32{w} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_16 GR32:$src1, GR16:$src2))]>, OpSize; def CRC32m32 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "crc32{l} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32 GR32:$src1, (load addr:$src2)))]>; def CRC32r32 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "crc32{l} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32 GR32:$src1, GR32:$src2))]>; def CRC64m8 : SS42FI<0xF0, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i8mem:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc64_8 GR64:$src1, (load addr:$src2)))]>, REX_W; def CRC64r8 : SS42FI<0xF0, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR8:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc64_8 GR64:$src1, GR8:$src2))]>, REX_W; def CRC64m64 : SS42FI<0xF1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "crc32{q} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc64_64 GR64:$src1, (load addr:$src2)))]>, REX_W; def CRC64r64 : SS42FI<0xF1, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "crc32{q} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc64_64 GR64:$src1, GR64:$src2))]>, REX_W; } // String/text processing instructions. let Defs = [EFLAGS], usesCustomInserter = 1 in { def PCMPISTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "#PCMPISTRM128rr PSEUDO!", [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2, imm:$src3))]>, OpSize; def PCMPISTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "#PCMPISTRM128rm PSEUDO!", [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, (load addr:$src2), imm:$src3))]>, OpSize; } let Defs = [XMM0, EFLAGS] in { def PCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; def PCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; } let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in { def PCMPESTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst), (ins VR128:$src1, VR128:$src3, i8imm:$src5), "#PCMPESTRM128rr PSEUDO!", [(set VR128:$dst, (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>, OpSize; def PCMPESTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src3, i8imm:$src5), "#PCMPESTRM128rm PSEUDO!", [(set VR128:$dst, (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5))]>, OpSize; } let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in { def PCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, i8imm:$src5), "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; def PCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src3, i8imm:$src5), "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; } let Defs = [ECX, EFLAGS] in { multiclass SS42AI_pcmpistri { def rr : SS42AI<0x63, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}", [(set ECX, (IntId128 VR128:$src1, VR128:$src2, imm:$src3)), (implicit EFLAGS)]>, OpSize; def rm : SS42AI<0x63, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}", [(set ECX, (IntId128 VR128:$src1, (load addr:$src2), imm:$src3)), (implicit EFLAGS)]>, OpSize; } } defm PCMPISTRI : SS42AI_pcmpistri; defm PCMPISTRIA : SS42AI_pcmpistri; defm PCMPISTRIC : SS42AI_pcmpistri; defm PCMPISTRIO : SS42AI_pcmpistri; defm PCMPISTRIS : SS42AI_pcmpistri; defm PCMPISTRIZ : SS42AI_pcmpistri; let Defs = [ECX, EFLAGS] in { let Uses = [EAX, EDX] in { multiclass SS42AI_pcmpestri { def rr : SS42AI<0x61, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, i8imm:$src5), "pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}", [(set ECX, (IntId128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5)), (implicit EFLAGS)]>, OpSize; def rm : SS42AI<0x61, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src3, i8imm:$src5), "pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}", [(set ECX, (IntId128 VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5)), (implicit EFLAGS)]>, OpSize; } } } defm PCMPESTRI : SS42AI_pcmpestri; defm PCMPESTRIA : SS42AI_pcmpestri; defm PCMPESTRIC : SS42AI_pcmpestri; defm PCMPESTRIO : SS42AI_pcmpestri; defm PCMPESTRIS : SS42AI_pcmpestri; defm PCMPESTRIZ : SS42AI_pcmpestri; //===----------------------------------------------------------------------===// // AES-NI Instructions //===----------------------------------------------------------------------===// let Constraints = "$src1 = $dst" in { multiclass AESI_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, bit Commutable = 0> { def rr : AES8I, OpSize { let isCommutable = Commutable; } def rm : AES8I, OpSize; } } defm AESENC : AESI_binop_rm_int<0xDC, "aesenc", int_x86_aesni_aesenc>; defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast", int_x86_aesni_aesenclast>; defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec", int_x86_aesni_aesdec>; defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast", int_x86_aesni_aesdeclast>; def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, VR128:$src2)), (AESENCrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, (memop addr:$src2))), (AESENCrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesenclast VR128:$src1, VR128:$src2)), (AESENCLASTrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesenclast VR128:$src1, (memop addr:$src2))), (AESENCLASTrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdec VR128:$src1, VR128:$src2)), (AESDECrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdec VR128:$src1, (memop addr:$src2))), (AESDECrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, VR128:$src2)), (AESDECLASTrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, (memop addr:$src2))), (AESDECLASTrm VR128:$src1, addr:$src2)>; def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc VR128:$src1))]>, OpSize; def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc (bitconvert (memopv2i64 addr:$src1))))]>, OpSize; def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>, OpSize; def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist (bitconvert (memopv2i64 addr:$src1)), imm:$src2))]>, OpSize;