//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86 specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "X86Subtarget.h" #include "X86InstrInfo.h" #include "X86TargetMachine.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #if defined(_MSC_VER) #include #endif using namespace llvm; #define DEBUG_TYPE "subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "X86GenSubtargetInfo.inc" // Temporary option to control early if-conversion for x86 while adding machine // models. static cl::opt X86EarlyIfConv("x86-early-ifcvt", cl::Hidden, cl::desc("Enable early if-conversion on X86")); /// Classify a blockaddress reference for the current subtarget according to how /// we should reference it in a non-pcrel context. unsigned char X86Subtarget::ClassifyBlockAddressReference() const { if (isPICStyleGOT()) // 32-bit ELF targets. return X86II::MO_GOTOFF; if (isPICStyleStubPIC()) // Darwin/32 in PIC mode. return X86II::MO_PIC_BASE_OFFSET; // Direct static reference to label. return X86II::MO_NO_FLAG; } /// Classify a global variable reference for the current subtarget according to /// how we should reference it in a non-pcrel context. unsigned char X86Subtarget:: ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { // DLLImport only exists on windows, it is implemented as a load from a // DLLIMPORT stub. if (GV->hasDLLImportStorageClass()) return X86II::MO_DLLIMPORT; bool isDef = GV->isStrongDefinitionForLinker(); // X86-64 in PIC mode. if (isPICStyleRIPRel()) { // Large model never uses stubs. if (TM.getCodeModel() == CodeModel::Large) return X86II::MO_NO_FLAG; if (isTargetDarwin()) { // If symbol visibility is hidden, the extra load is not needed if // target is x86-64 or the symbol is definitely defined in the current // translation unit. if (GV->hasDefaultVisibility() && !isDef) return X86II::MO_GOTPCREL; } else if (!isTargetWin64()) { assert(isTargetELF() && "Unknown rip-relative target"); // Extra load is needed for all externally visible. if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) return X86II::MO_GOTPCREL; } return X86II::MO_NO_FLAG; } if (isPICStyleGOT()) { // 32-bit ELF targets. // Extra load is needed for all externally visible. if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return X86II::MO_GOTOFF; return X86II::MO_GOT; } if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode. // Determine whether we have a stub reference and/or whether the reference // is relative to the PIC base or not. // If this is a strong reference to a definition, it is definitely not // through a stub. if (isDef) return X86II::MO_PIC_BASE_OFFSET; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY_PIC_BASE; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (GV->isDeclarationForLinker() || GV->hasCommonLinkage()) { // Hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE; } // Otherwise, no stub. return X86II::MO_PIC_BASE_OFFSET; } if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode. // Determine whether we have a stub reference. // If this is a strong reference to a definition, it is definitely not // through a stub. if (isDef) return X86II::MO_NO_FLAG; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY; // Otherwise, no stub. return X86II::MO_NO_FLAG; } // Direct static reference to global. return X86II::MO_NO_FLAG; } /// This function returns the name of a function which has an interface like /// the non-standard bzero function, if such a function exists on the /// current subtarget and it is considered preferable over memset with zero /// passed as the second argument. Otherwise it returns null. const char *X86Subtarget::getBZeroEntry() const { // Darwin 10 has a __bzero entry point for this purpose. if (getTargetTriple().isMacOSX() && !getTargetTriple().isMacOSXVersionLT(10, 6)) return "__bzero"; return nullptr; } bool X86Subtarget::hasSinCos() const { return getTargetTriple().isMacOSX() && !getTargetTriple().isMacOSXVersionLT(10, 9) && is64Bit(); } /// Return true if the subtarget allows calls to immediate address. bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does, // the following check for Win32 should be removed. if (In64BitMode || isTargetWin32()) return false; return isTargetELF() || TM.getRelocationModel() == Reloc::Static; } void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { std::string CPUName = CPU; if (CPUName.empty()) CPUName = "generic"; // Make sure 64-bit features are available in 64-bit mode. (But make sure // SSE2 can be turned off explicitly.) std::string FullFS = FS; if (In64BitMode) { if (!FullFS.empty()) FullFS = "+64bit,+sse2," + FullFS; else FullFS = "+64bit,+sse2"; } // Parse features string and set the CPU. ParseSubtargetFeatures(CPUName, FullFS); // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of // 16-bytes and under that are reasonably fast. These features were // introduced with Intel's Nehalem/Silvermont and AMD's Family10h // micro-architectures respectively. if (hasSSE42() || hasSSE4A()) IsUAMem16Slow = false; InstrItins = getInstrItineraryForCPU(CPUName); // It's important to keep the MCSubtargetInfo feature bits in sync with // target data structure which is shared with MC code emitter, etc. if (In64BitMode) ToggleFeature(X86::Mode64Bit); else if (In32BitMode) ToggleFeature(X86::Mode32Bit); else if (In16BitMode) ToggleFeature(X86::Mode16Bit); else llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!"); DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel << ", 3DNowLevel " << X863DNowLevel << ", 64bit " << HasX86_64 << "\n"); assert((!In64BitMode || HasX86_64) && "64-bit code requested on a subtarget that doesn't support it!"); // Stack alignment is 16 bytes on Darwin, Linux and Solaris (both // 32 and 64 bit) and for all 64-bit targets. if (StackAlignOverride) stackAlignment = StackAlignOverride; else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() || In64BitMode) stackAlignment = 16; } void X86Subtarget::initializeEnvironment() { X86SSELevel = NoMMXSSE; X863DNowLevel = NoThreeDNow; HasCMov = false; HasX86_64 = false; HasPOPCNT = false; HasSSE4A = false; HasAES = false; HasPCLMUL = false; HasFMA = false; HasFMA4 = false; HasXOP = false; HasTBM = false; HasMOVBE = false; HasRDRAND = false; HasF16C = false; HasFSGSBase = false; HasLZCNT = false; HasBMI = false; HasBMI2 = false; HasRTM = false; HasHLE = false; HasERI = false; HasCDI = false; HasPFI = false; HasDQI = false; HasBWI = false; HasVLX = false; HasADX = false; HasSHA = false; HasPRFCHW = false; HasRDSEED = false; HasMPX = false; IsBTMemSlow = false; IsSHLDSlow = false; IsUAMem16Slow = false; IsUAMem32Slow = false; HasSSEUnalignedMem = false; HasCmpxchg16b = false; UseLeaForSP = false; HasSlowDivide32 = false; HasSlowDivide64 = false; PadShortFunctions = false; CallRegIndirect = false; LEAUsesAG = false; SlowLEA = false; SlowIncDec = false; stackAlignment = 4; // FIXME: this is a known good value for Yonah. How about others? MaxInlineSizeThreshold = 128; UseSoftFloat = false; } X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { initializeEnvironment(); initSubtargetFeatures(CPU, FS); return *this; } X86Subtarget::X86Subtarget(const Triple &TT, const std::string &CPU, const std::string &FS, const X86TargetMachine &TM, unsigned StackAlignOverride) : X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others), PICStyle(PICStyles::None), TargetTriple(TT), StackAlignOverride(StackAlignOverride), In64BitMode(TargetTriple.getArch() == Triple::x86_64), In32BitMode(TargetTriple.getArch() == Triple::x86 && TargetTriple.getEnvironment() != Triple::CODE16), In16BitMode(TargetTriple.getArch() == Triple::x86 && TargetTriple.getEnvironment() == Triple::CODE16), TSInfo(), InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) { // Determine the PICStyle based on the target selected. if (TM.getRelocationModel() == Reloc::Static) { // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None. setPICStyle(PICStyles::None); } else if (is64Bit()) { // PIC in 64 bit mode is always rip-rel. setPICStyle(PICStyles::RIPRel); } else if (isTargetCOFF()) { setPICStyle(PICStyles::None); } else if (isTargetDarwin()) { if (TM.getRelocationModel() == Reloc::PIC_) setPICStyle(PICStyles::StubPIC); else { assert(TM.getRelocationModel() == Reloc::DynamicNoPIC); setPICStyle(PICStyles::StubDynamicNoPIC); } } else if (isTargetELF()) { setPICStyle(PICStyles::GOT); } } bool X86Subtarget::enableEarlyIfConversion() const { return hasCMov() && X86EarlyIfConv; }