//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // MachineScheduler schedules machine instructions after phi elimination. It // preserves LiveIntervals so it can be invoked before register allocation. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "misched" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/PriorityQueue.h" #include using namespace llvm; namespace llvm { cl::opt ForceTopDown("misched-topdown", cl::Hidden, cl::desc("Force top-down list scheduling")); cl::opt ForceBottomUp("misched-bottomup", cl::Hidden, cl::desc("Force bottom-up list scheduling")); } #ifndef NDEBUG static cl::opt ViewMISchedDAGs("view-misched-dags", cl::Hidden, cl::desc("Pop up a window to show MISched dags after they are processed")); static cl::opt MISchedCutoff("misched-cutoff", cl::Hidden, cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); #else static bool ViewMISchedDAGs = false; #endif // NDEBUG //===----------------------------------------------------------------------===// // Machine Instruction Scheduling Pass and Registry //===----------------------------------------------------------------------===// MachineSchedContext::MachineSchedContext(): MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { RegClassInfo = new RegisterClassInfo(); } MachineSchedContext::~MachineSchedContext() { delete RegClassInfo; } namespace { /// MachineScheduler runs after coalescing and before register allocation. class MachineScheduler : public MachineSchedContext, public MachineFunctionPass { public: MachineScheduler(); virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory() {} virtual bool runOnMachineFunction(MachineFunction&); virtual void print(raw_ostream &O, const Module* = 0) const; static char ID; // Class identification, replacement for typeinfo }; } // namespace char MachineScheduler::ID = 0; char &llvm::MachineSchedulerID = MachineScheduler::ID; INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", "Machine Instruction Scheduler", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(MachineScheduler, "misched", "Machine Instruction Scheduler", false, false) MachineScheduler::MachineScheduler() : MachineFunctionPass(ID) { initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); } void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(MachineDominatorsID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } MachinePassRegistry MachineSchedRegistry::Registry; /// A dummy default scheduler factory indicates whether the scheduler /// is overridden on the command line. static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { return 0; } /// MachineSchedOpt allows command line selection of the scheduler. static cl::opt > MachineSchedOpt("misched", cl::init(&useDefaultMachineSched), cl::Hidden, cl::desc("Machine instruction scheduler to use")); static MachineSchedRegistry DefaultSchedRegistry("default", "Use the target's default scheduler choice.", useDefaultMachineSched); /// Forward declare the standard machine scheduler. This will be used as the /// default scheduler if the target does not set a default. static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); /// Decrement this iterator until reaching the top or a non-debug instr. static MachineBasicBlock::iterator priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { assert(I != Beg && "reached the top of the region, cannot decrement"); while (--I != Beg) { if (!I->isDebugValue()) break; } return I; } /// If this iterator is a debug value, increment until reaching the End or a /// non-debug instruction. static MachineBasicBlock::iterator nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { for(; I != End; ++I) { if (!I->isDebugValue()) break; } return I; } /// Top-level MachineScheduler pass driver. /// /// Visit blocks in function order. Divide each block into scheduling regions /// and visit them bottom-up. Visiting regions bottom-up is not required, but is /// consistent with the DAG builder, which traverses the interior of the /// scheduling regions bottom-up. /// /// This design avoids exposing scheduling boundaries to the DAG builder, /// simplifying the DAG builder's support for "special" target instructions. /// At the same time the design allows target schedulers to operate across /// scheduling boundaries, for example to bundle the boudary instructions /// without reordering them. This creates complexity, because the target /// scheduler must update the RegionBegin and RegionEnd positions cached by /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler /// design would be to split blocks at scheduling boundaries, but LLVM has a /// general bias against block splitting purely for implementation simplicity. bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); // Initialize the context of the pass. MF = &mf; MLI = &getAnalysis(); MDT = &getAnalysis(); PassConfig = &getAnalysis(); AA = &getAnalysis(); LIS = &getAnalysis(); const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); RegClassInfo->runOnMachineFunction(*MF); // Select the scheduler, or set the default. MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; if (Ctor == useDefaultMachineSched) { // Get the default scheduler set by the target. Ctor = MachineSchedRegistry::getDefault(); if (!Ctor) { Ctor = createConvergingSched; MachineSchedRegistry::setDefault(Ctor); } } // Instantiate the selected scheduler. OwningPtr Scheduler(Ctor(this)); // Visit all machine basic blocks. // // TODO: Visit blocks in global postorder or postorder within the bottom-up // loop tree. Then we can optionally compute global RegPressure. for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); MBB != MBBEnd; ++MBB) { Scheduler->startBlock(MBB); // Break the block into scheduling regions [I, RegionEnd), and schedule each // region as soon as it is discovered. RegionEnd points the scheduling // boundary at the bottom of the region. The DAG does not include RegionEnd, // but the region does (i.e. the next RegionEnd is above the previous // RegionBegin). If the current block has no terminator then RegionEnd == // MBB->end() for the bottom region. // // The Scheduler may insert instructions during either schedule() or // exitRegion(), even for empty regions. So the local iterators 'I' and // 'RegionEnd' are invalid across these calls. unsigned RemainingCount = MBB->size(); for(MachineBasicBlock::iterator RegionEnd = MBB->end(); RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { // Avoid decrementing RegionEnd for blocks with no terminator. if (RegionEnd != MBB->end() || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { --RegionEnd; // Count the boundary instruction. --RemainingCount; } // The next region starts above the previous region. Look backward in the // instruction stream until we find the nearest boundary. MachineBasicBlock::iterator I = RegionEnd; for(;I != MBB->begin(); --I, --RemainingCount) { if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) break; } // Notify the scheduler of the region, even if we may skip scheduling // it. Perhaps it still needs to be bundled. Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount); // Skip empty scheduling regions (0 or 1 schedulable instructions). if (I == RegionEnd || I == llvm::prior(RegionEnd)) { // Close the current region. Bundle the terminator if needed. // This invalidates 'RegionEnd' and 'I'. Scheduler->exitRegion(); continue; } DEBUG(dbgs() << "********** MI Scheduling **********\n"); DEBUG(dbgs() << MF->getName() << ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: "; if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; else dbgs() << "End"; dbgs() << " Remaining: " << RemainingCount << "\n"); // Schedule a region: possibly reorder instructions. // This invalidates 'RegionEnd' and 'I'. Scheduler->schedule(); // Close the current region. Scheduler->exitRegion(); // Scheduling has invalidated the current iterator 'I'. Ask the // scheduler for the top of it's scheduled region. RegionEnd = Scheduler->begin(); } assert(RemainingCount == 0 && "Instruction count mismatch!"); Scheduler->finishBlock(); } Scheduler->finalizeSchedule(); DEBUG(LIS->print(dbgs())); return true; } void MachineScheduler::print(raw_ostream &O, const Module* m) const { // unimplemented } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ReadyQueue::dump() { dbgs() << Name << ": "; for (unsigned i = 0, e = Queue.size(); i < e; ++i) dbgs() << Queue[i]->NodeNum << " "; dbgs() << "\n"; } #endif //===----------------------------------------------------------------------===// // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals // preservation. //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When /// NumPredsLeft reaches zero, release the successor node. /// /// FIXME: Adjust SuccSU height based on MinLatency. void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { SUnit *SuccSU = SuccEdge->getSUnit(); #ifndef NDEBUG if (SuccSU->NumPredsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; SuccSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --SuccSU->NumPredsLeft; if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) SchedImpl->releaseTopNode(SuccSU); } /// releaseSuccessors - Call releaseSucc on each of SU's successors. void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { releaseSucc(SU, &*I); } } /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When /// NumSuccsLeft reaches zero, release the predecessor node. /// /// FIXME: Adjust PredSU height based on MinLatency. void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { SUnit *PredSU = PredEdge->getSUnit(); #ifndef NDEBUG if (PredSU->NumSuccsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; PredSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --PredSU->NumSuccsLeft; if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) SchedImpl->releaseBottomNode(PredSU); } /// releasePredecessors - Call releasePred on each of SU's predecessors. void ScheduleDAGMI::releasePredecessors(SUnit *SU) { for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { releasePred(SU, &*I); } } void ScheduleDAGMI::moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { // Advance RegionBegin if the first instruction moves down. if (&*RegionBegin == MI) ++RegionBegin; // Update the instruction stream. BB->splice(InsertPos, BB, MI); // Update LiveIntervals LIS->handleMove(MI); // Recede RegionBegin if an instruction moves above the first. if (RegionBegin == InsertPos) RegionBegin = MI; } bool ScheduleDAGMI::checkSchedLimit() { #ifndef NDEBUG if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { CurrentTop = CurrentBottom; return false; } ++NumInstrsScheduled; #endif return true; } /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after /// crossing a scheduling boundary. [begin, end) includes all instructions in /// the region, including the boundary itself and single-instruction regions /// that don't get scheduled. void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); // For convenience remember the end of the liveness region. LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); } // Setup the register pressure trackers for the top scheduled top and bottom // scheduled regions. void ScheduleDAGMI::initRegPressure() { TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); // Close the RPTracker to finalize live ins. RPTracker.closeRegion(); DEBUG(RPTracker.getPressure().dump(TRI)); // Initialize the live ins and live outs. TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); // Close one end of the tracker so we can call // getMaxUpward/DownwardPressureDelta before advancing across any // instructions. This converts currently live regs into live ins/outs. TopRPTracker.closeTop(); BotRPTracker.closeBottom(); // Account for liveness generated by the region boundary. if (LiveRegionEnd != RegionEnd) BotRPTracker.recede(); assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); // Cache the list of excess pressure sets in this region. This will also track // the max pressure in the scheduled code for these sets. RegionCriticalPSets.clear(); std::vector RegionPressure = RPTracker.getPressure().MaxSetPressure; for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { unsigned Limit = TRI->getRegPressureSetLimit(i); DEBUG(dbgs() << TRI->getRegPressureSetName(i) << "Limit " << Limit << " Actual " << RegionPressure[i] << "\n"); if (RegionPressure[i] > Limit) RegionCriticalPSets.push_back(PressureElement(i, 0)); } DEBUG(dbgs() << "Excess PSets: "; for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) dbgs() << TRI->getRegPressureSetName( RegionCriticalPSets[i].PSetID) << " "; dbgs() << "\n"); } // FIXME: When the pressure tracker deals in pressure differences then we won't // iterate over all RegionCriticalPSets[i]. void ScheduleDAGMI:: updateScheduledPressure(std::vector NewMaxPressure) { for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { unsigned ID = RegionCriticalPSets[i].PSetID; int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; if ((int)NewMaxPressure[ID] > MaxUnits) MaxUnits = NewMaxPressure[ID]; } } // Release all DAG roots for scheduling. void ScheduleDAGMI::releaseRoots() { SmallVector BotRoots; for (std::vector::iterator I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { // A SUnit is ready to top schedule if it has no predecessors. if (I->Preds.empty()) SchedImpl->releaseTopNode(&(*I)); // A SUnit is ready to bottom schedule if it has no successors. if (I->Succs.empty()) BotRoots.push_back(&(*I)); } // Release bottom roots in reverse order so the higher priority nodes appear // first. This is more natural and slightly more efficient. for (SmallVectorImpl::const_reverse_iterator I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) SchedImpl->releaseBottomNode(*I); } /// schedule - Called back from MachineScheduler::runOnMachineFunction /// after setting up the current scheduling region. [RegionBegin, RegionEnd) /// only includes instructions that have DAG nodes, not scheduling boundaries. /// /// This is a skeletal driver, with all the functionality pushed into helpers, /// so that it can be easilly extended by experimental schedulers. Generally, /// implementing MachineSchedStrategy should be sufficient to implement a new /// scheduling algorithm. However, if a scheduler further subclasses /// ScheduleDAGMI then it will want to override this virtual method in order to /// update any specialized state. void ScheduleDAGMI::schedule() { buildDAGWithRegPressure(); postprocessDAG(); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); if (ViewMISchedDAGs) viewGraph(); initQueues(); bool IsTopNode = false; while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { assert(!SU->isScheduled && "Node already scheduled"); if (!checkSchedLimit()) break; scheduleMI(SU, IsTopNode); updateQueues(SU, IsTopNode); } assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); placeDebugValues(); } /// Build the DAG and setup three register pressure trackers. void ScheduleDAGMI::buildDAGWithRegPressure() { // Initialize the register pressure tracker used by buildSchedGraph. RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); // Account for liveness generate by the region boundary. if (LiveRegionEnd != RegionEnd) RPTracker.recede(); // Build the DAG, and compute current register pressure. buildSchedGraph(AA, &RPTracker); if (ViewMISchedDAGs) viewGraph(); // Initialize top/bottom trackers after computing region pressure. initRegPressure(); } /// Apply each ScheduleDAGMutation step in order. void ScheduleDAGMI::postprocessDAG() { for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { Mutations[i]->apply(this); } } /// Identify DAG roots and setup scheduler queues. void ScheduleDAGMI::initQueues() { // Initialize the strategy before modifying the DAG. SchedImpl->initialize(this); // Release edges from the special Entry node or to the special Exit node. releaseSuccessors(&EntrySU); releasePredecessors(&ExitSU); // Release all DAG roots for scheduling. releaseRoots(); CurrentTop = nextIfDebug(RegionBegin, RegionEnd); CurrentBottom = RegionEnd; } /// Move an instruction and update register pressure. void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { // Move the instruction to its new location in the instruction stream. MachineInstr *MI = SU->getInstr(); if (IsTopNode) { assert(SU->isTopReady() && "node still has unscheduled dependencies"); if (&*CurrentTop == MI) CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); else { moveInstruction(MI, CurrentTop); TopRPTracker.setPos(MI); } // Update top scheduled pressure. TopRPTracker.advance(); assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); } else { assert(SU->isBottomReady() && "node still has unscheduled dependencies"); MachineBasicBlock::iterator priorII = priorNonDebug(CurrentBottom, CurrentTop); if (&*priorII == MI) CurrentBottom = priorII; else { if (&*CurrentTop == MI) { CurrentTop = nextIfDebug(++CurrentTop, priorII); TopRPTracker.setPos(CurrentTop); } moveInstruction(MI, CurrentBottom); CurrentBottom = MI; } // Update bottom scheduled pressure. BotRPTracker.recede(); assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); } } /// Update scheduler queues after scheduling an instruction. void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { // Release dependent instructions for scheduling. if (IsTopNode) releaseSuccessors(SU); else releasePredecessors(SU); SU->isScheduled = true; // Notify the scheduling strategy after updating the DAG. SchedImpl->schedNode(SU, IsTopNode); } /// Reinsert any remaining debug_values, just like the PostRA scheduler. void ScheduleDAGMI::placeDebugValues() { // If first instruction was a DBG_VALUE then put it back. if (FirstDbgValue) { BB->splice(RegionBegin, BB, FirstDbgValue); RegionBegin = FirstDbgValue; } for (std::vector >::iterator DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { std::pair P = *prior(DI); MachineInstr *DbgValue = P.first; MachineBasicBlock::iterator OrigPrevMI = P.second; BB->splice(++OrigPrevMI, BB, DbgValue); if (OrigPrevMI == llvm::prior(RegionEnd)) RegionEnd = DbgValue; } DbgValues.clear(); FirstDbgValue = NULL; } //===----------------------------------------------------------------------===// // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. //===----------------------------------------------------------------------===// namespace { /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance /// the schedule. class ConvergingScheduler : public MachineSchedStrategy { /// Store the state used by ConvergingScheduler heuristics, required for the /// lifetime of one invocation of pickNode(). struct SchedCandidate { // The best SUnit candidate. SUnit *SU; // Register pressure values for the best candidate. RegPressureDelta RPDelta; SchedCandidate(): SU(NULL) {} }; /// Represent the type of SchedCandidate found within a single queue. enum CandResult { NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure }; /// Each Scheduling boundary is associated with ready queues. It tracks the /// current cycle in whichever direction at has moved, and maintains the state /// of "hazards" and other interlocks at the current cycle. struct SchedBoundary { ScheduleDAGMI *DAG; ReadyQueue Available; ReadyQueue Pending; bool CheckPending; ScheduleHazardRecognizer *HazardRec; unsigned CurrCycle; unsigned IssueCount; /// MinReadyCycle - Cycle of the soonest available instruction. unsigned MinReadyCycle; // Remember the greatest min operand latency. unsigned MaxMinLatency; /// Pending queues extend the ready queues with the same ID and the /// PendingFlag set. SchedBoundary(unsigned ID, const Twine &Name): DAG(0), Available(ID, Name+".A"), Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), CheckPending(false), HazardRec(0), CurrCycle(0), IssueCount(0), MinReadyCycle(UINT_MAX), MaxMinLatency(0) {} ~SchedBoundary() { delete HazardRec; } bool isTop() const { return Available.getID() == ConvergingScheduler::TopQID; } bool checkHazard(SUnit *SU); void releaseNode(SUnit *SU, unsigned ReadyCycle); void bumpCycle(); void bumpNode(SUnit *SU); void releasePending(); void removeReady(SUnit *SU); SUnit *pickOnlyChoice(); }; ScheduleDAGMI *DAG; const TargetRegisterInfo *TRI; // State of the top and bottom scheduled instruction boundaries. SchedBoundary Top; SchedBoundary Bot; public: /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) enum { TopQID = 1, BotQID = 2, LogMaxQID = 2 }; ConvergingScheduler(): DAG(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} virtual void initialize(ScheduleDAGMI *dag); virtual SUnit *pickNode(bool &IsTopNode); virtual void schedNode(SUnit *SU, bool IsTopNode); virtual void releaseTopNode(SUnit *SU); virtual void releaseBottomNode(SUnit *SU); protected: SUnit *pickNodeBidrectional(bool &IsTopNode); CandResult pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker, SchedCandidate &Candidate); #ifndef NDEBUG void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU, PressureElement P = PressureElement()); #endif }; } // namespace void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { DAG = dag; TRI = DAG->TRI; Top.DAG = dag; Bot.DAG = dag; // Initialize the HazardRecognizers. const TargetMachine &TM = DAG->MF.getTarget(); const InstrItineraryData *Itin = TM.getInstrItineraryData(); Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); assert((!ForceTopDown || !ForceBottomUp) && "-misched-topdown incompatible with -misched-bottomup"); } void ConvergingScheduler::releaseTopNode(SUnit *SU) { if (SU->isScheduled) return; for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; unsigned MinLatency = I->getMinLatency(); #ifndef NDEBUG Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); #endif if (SU->TopReadyCycle < PredReadyCycle + MinLatency) SU->TopReadyCycle = PredReadyCycle + MinLatency; } Top.releaseNode(SU, SU->TopReadyCycle); } void ConvergingScheduler::releaseBottomNode(SUnit *SU) { if (SU->isScheduled) return; assert(SU->getInstr() && "Scheduled SUnit must have instr"); for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; unsigned MinLatency = I->getMinLatency(); #ifndef NDEBUG Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); #endif if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) SU->BotReadyCycle = SuccReadyCycle + MinLatency; } Bot.releaseNode(SU, SU->BotReadyCycle); } /// Does this SU have a hazard within the current instruction group. /// /// The scheduler supports two modes of hazard recognition. The first is the /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that /// supports highly complicated in-order reservation tables /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. /// /// The second is a streamlined mechanism that checks for hazards based on /// simple counters that the scheduler itself maintains. It explicitly checks /// for instruction dispatch limitations, including the number of micro-ops that /// can dispatch per cycle. /// /// TODO: Also check whether the SU must start a new group. bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { if (HazardRec->isEnabled()) return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; if (IssueCount + DAG->getNumMicroOps(SU->getInstr()) > DAG->getIssueWidth()) return true; return false; } void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; // Check for interlocks first. For the purpose of other heuristics, an // instruction that cannot issue appears as if it's not in the ReadyQueue. if (ReadyCycle > CurrCycle || checkHazard(SU)) Pending.push(SU); else Available.push(SU); } /// Move the boundary of scheduled code by one cycle. void ConvergingScheduler::SchedBoundary::bumpCycle() { unsigned Width = DAG->getIssueWidth(); IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle); if (!HazardRec->isEnabled()) { // Bypass HazardRec virtual calls. CurrCycle = NextCycle; } else { // Bypass getHazardType calls in case of long latency. for (; CurrCycle != NextCycle; ++CurrCycle) { if (isTop()) HazardRec->AdvanceCycle(); else HazardRec->RecedeCycle(); } } CheckPending = true; DEBUG(dbgs() << "*** " << Available.getName() << " cycle " << CurrCycle << '\n'); } /// Move the boundary of scheduled code by one SUnit. void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { // Update the reservation table. if (HazardRec->isEnabled()) { if (!isTop() && SU->isCall) { // Calls are scheduled with their preceding instructions. For bottom-up // scheduling, clear the pipeline state before emitting. HazardRec->Reset(); } HazardRec->EmitInstruction(SU); } // Check the instruction group dispatch limit. // TODO: Check if this SU must end a dispatch group. IssueCount += DAG->getNumMicroOps(SU->getInstr()); if (IssueCount >= DAG->getIssueWidth()) { DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n'); bumpCycle(); } } /// Release pending ready nodes in to the available queue. This makes them /// visible to heuristics. void ConvergingScheduler::SchedBoundary::releasePending() { // If the available queue is empty, it is safe to reset MinReadyCycle. if (Available.empty()) MinReadyCycle = UINT_MAX; // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = Pending.size(); i != e; ++i) { SUnit *SU = *(Pending.begin()+i); unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; if (ReadyCycle > CurrCycle) continue; if (checkHazard(SU)) continue; Available.push(SU); Pending.remove(Pending.begin()+i); --i; --e; } CheckPending = false; } /// Remove SU from the ready set for this boundary. void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { if (Available.isInQueue(SU)) Available.remove(Available.find(SU)); else { assert(Pending.isInQueue(SU) && "bad ready count"); Pending.remove(Pending.find(SU)); } } /// If this queue only has one ready candidate, return it. As a side effect, /// advance the cycle until at least one node is ready. If multiple instructions /// are ready, return NULL. SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { if (CheckPending) releasePending(); for (unsigned i = 0; Available.empty(); ++i) { assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && "permanent hazard"); (void)i; bumpCycle(); releasePending(); } if (Available.size() == 1) return *Available.begin(); return NULL; } #ifndef NDEBUG void ConvergingScheduler::traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU, PressureElement P) { dbgs() << Label << " " << Q.getName() << " "; if (P.isValid()) dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease << " "; else dbgs() << " "; SU->dump(DAG); } #endif /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is /// more desirable than RHS from scheduling standpoint. static bool compareRPDelta(const RegPressureDelta &LHS, const RegPressureDelta &RHS) { // Compare each component of pressure in decreasing order of importance // without checking if any are valid. Invalid PressureElements are assumed to // have UnitIncrease==0, so are neutral. // Avoid increasing the max critical pressure in the scheduled region. if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; // Avoid increasing the max critical pressure in the scheduled region. if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; // Avoid increasing the max pressure of the entire region. if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; return false; } /// Pick the best candidate from the top queue. /// /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during /// DAG building. To adjust for the current scheduling location we need to /// maintain the number of vreg uses remaining to be top-scheduled. ConvergingScheduler::CandResult ConvergingScheduler:: pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker, SchedCandidate &Candidate) { DEBUG(Q.dump()); // getMaxPressureDelta temporarily modifies the tracker. RegPressureTracker &TempTracker = const_cast(RPTracker); // BestSU remains NULL if no top candidates beat the best existing candidate. CandResult FoundCandidate = NoCand; for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { RegPressureDelta RPDelta; TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, DAG->getRegionCriticalPSets(), DAG->getRegPressure().MaxSetPressure); // Initialize the candidate if needed. if (!Candidate.SU) { Candidate.SU = *I; Candidate.RPDelta = RPDelta; FoundCandidate = NodeOrder; continue; } // Avoid exceeding the target's limit. if (RPDelta.Excess.UnitIncrease < Candidate.RPDelta.Excess.UnitIncrease) { DEBUG(traceCandidate("ECAND", Q, *I, RPDelta.Excess)); Candidate.SU = *I; Candidate.RPDelta = RPDelta; FoundCandidate = SingleExcess; continue; } if (RPDelta.Excess.UnitIncrease > Candidate.RPDelta.Excess.UnitIncrease) continue; if (FoundCandidate == SingleExcess) FoundCandidate = MultiPressure; // Avoid increasing the max critical pressure in the scheduled region. if (RPDelta.CriticalMax.UnitIncrease < Candidate.RPDelta.CriticalMax.UnitIncrease) { DEBUG(traceCandidate("PCAND", Q, *I, RPDelta.CriticalMax)); Candidate.SU = *I; Candidate.RPDelta = RPDelta; FoundCandidate = SingleCritical; continue; } if (RPDelta.CriticalMax.UnitIncrease > Candidate.RPDelta.CriticalMax.UnitIncrease) continue; if (FoundCandidate == SingleCritical) FoundCandidate = MultiPressure; // Avoid increasing the max pressure of the entire region. if (RPDelta.CurrentMax.UnitIncrease < Candidate.RPDelta.CurrentMax.UnitIncrease) { DEBUG(traceCandidate("MCAND", Q, *I, RPDelta.CurrentMax)); Candidate.SU = *I; Candidate.RPDelta = RPDelta; FoundCandidate = SingleMax; continue; } if (RPDelta.CurrentMax.UnitIncrease > Candidate.RPDelta.CurrentMax.UnitIncrease) continue; if (FoundCandidate == SingleMax) FoundCandidate = MultiPressure; // Fall through to original instruction order. // Only consider node order if Candidate was chosen from this Q. if (FoundCandidate == NoCand) continue; if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum) || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) { DEBUG(traceCandidate("NCAND", Q, *I)); Candidate.SU = *I; Candidate.RPDelta = RPDelta; FoundCandidate = NodeOrder; } } return FoundCandidate; } /// Pick the best candidate node from either the top or bottom queue. SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) { // Schedule as far as possible in the direction of no choice. This is most // efficient, but also provides the best heuristics for CriticalPSets. if (SUnit *SU = Bot.pickOnlyChoice()) { IsTopNode = false; return SU; } if (SUnit *SU = Top.pickOnlyChoice()) { IsTopNode = true; return SU; } SchedCandidate BotCand; // Prefer bottom scheduling when heuristics are silent. CandResult BotResult = pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand); assert(BotResult != NoCand && "failed to find the first candidate"); // If either Q has a single candidate that provides the least increase in // Excess pressure, we can immediately schedule from that Q. // // RegionCriticalPSets summarizes the pressure within the scheduled region and // affects picking from either Q. If scheduling in one direction must // increase pressure for one of the excess PSets, then schedule in that // direction first to provide more freedom in the other direction. if (BotResult == SingleExcess || BotResult == SingleCritical) { IsTopNode = false; return BotCand.SU; } // Check if the top Q has a better candidate. SchedCandidate TopCand; CandResult TopResult = pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand); assert(TopResult != NoCand && "failed to find the first candidate"); if (TopResult == SingleExcess || TopResult == SingleCritical) { IsTopNode = true; return TopCand.SU; } // If either Q has a single candidate that minimizes pressure above the // original region's pressure pick it. if (BotResult == SingleMax) { IsTopNode = false; return BotCand.SU; } if (TopResult == SingleMax) { IsTopNode = true; return TopCand.SU; } // Check for a salient pressure difference and pick the best from either side. if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { IsTopNode = true; return TopCand.SU; } // Otherwise prefer the bottom candidate in node order. IsTopNode = false; return BotCand.SU; } /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { if (DAG->top() == DAG->bottom()) { assert(Top.Available.empty() && Top.Pending.empty() && Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); return NULL; } SUnit *SU; do { if (ForceTopDown) { SU = Top.pickOnlyChoice(); if (!SU) { SchedCandidate TopCand; CandResult TopResult = pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand); assert(TopResult != NoCand && "failed to find the first candidate"); (void)TopResult; SU = TopCand.SU; } IsTopNode = true; } else if (ForceBottomUp) { SU = Bot.pickOnlyChoice(); if (!SU) { SchedCandidate BotCand; CandResult BotResult = pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand); assert(BotResult != NoCand && "failed to find the first candidate"); (void)BotResult; SU = BotCand.SU; } IsTopNode = false; } else { SU = pickNodeBidrectional(IsTopNode); } } while (SU->isScheduled); if (SU->isTopReady()) Top.removeReady(SU); if (SU->isBottomReady()) Bot.removeReady(SU); DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") << " Scheduling Instruction in cycle " << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; SU->dump(DAG)); return SU; } /// Update the scheduler's state after scheduling a node. This is the same node /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update /// it's state based on the current cycle before MachineSchedStrategy does. void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { if (IsTopNode) { SU->TopReadyCycle = Top.CurrCycle; Top.bumpNode(SU); } else { SU->BotReadyCycle = Bot.CurrCycle; Bot.bumpNode(SU); } } /// Create the standard converging machine scheduler. This will be used as the /// default scheduler if the target does not set a default. static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { assert((!ForceTopDown || !ForceBottomUp) && "-misched-topdown incompatible with -misched-bottomup"); return new ScheduleDAGMI(C, new ConvergingScheduler()); } static MachineSchedRegistry ConvergingSchedRegistry("converge", "Standard converging scheduler.", createConvergingSched); //===----------------------------------------------------------------------===// // Machine Instruction Shuffler for Correctness Testing //===----------------------------------------------------------------------===// #ifndef NDEBUG namespace { /// Apply a less-than relation on the node order, which corresponds to the /// instruction order prior to scheduling. IsReverse implements greater-than. template struct SUnitOrder { bool operator()(SUnit *A, SUnit *B) const { if (IsReverse) return A->NodeNum > B->NodeNum; else return A->NodeNum < B->NodeNum; } }; /// Reorder instructions as much as possible. class InstructionShuffler : public MachineSchedStrategy { bool IsAlternating; bool IsTopDown; // Using a less-than relation (SUnitOrder) for the TopQ priority // gives nodes with a higher number higher priority causing the latest // instructions to be scheduled first. PriorityQueue, SUnitOrder > TopQ; // When scheduling bottom-up, use greater-than as the queue priority. PriorityQueue, SUnitOrder > BottomQ; public: InstructionShuffler(bool alternate, bool topdown) : IsAlternating(alternate), IsTopDown(topdown) {} virtual void initialize(ScheduleDAGMI *) { TopQ.clear(); BottomQ.clear(); } /// Implement MachineSchedStrategy interface. /// ----------------------------------------- virtual SUnit *pickNode(bool &IsTopNode) { SUnit *SU; if (IsTopDown) { do { if (TopQ.empty()) return NULL; SU = TopQ.top(); TopQ.pop(); } while (SU->isScheduled); IsTopNode = true; } else { do { if (BottomQ.empty()) return NULL; SU = BottomQ.top(); BottomQ.pop(); } while (SU->isScheduled); IsTopNode = false; } if (IsAlternating) IsTopDown = !IsTopDown; return SU; } virtual void schedNode(SUnit *SU, bool IsTopNode) {} virtual void releaseTopNode(SUnit *SU) { TopQ.push(SU); } virtual void releaseBottomNode(SUnit *SU) { BottomQ.push(SU); } }; } // namespace static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { bool Alternate = !ForceTopDown && !ForceBottomUp; bool TopDown = !ForceBottomUp; assert((TopDown || !ForceTopDown) && "-misched-topdown incompatible with -misched-bottomup"); return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); } static MachineSchedRegistry ShufflerRegistry( "shuffle", "Shuffle machine instructions alternating directions", createInstructionShuffler); #endif // !NDEBUG