//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// /// The AMDGPUAsmPrinter is used to print both assembly string and also binary /// code. When passed an MCAsmStreamer it prints assembly and when passed /// an MCObjectStreamer it outputs binary code. // //===----------------------------------------------------------------------===// // #include "AMDGPUAsmPrinter.h" #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "R600Defines.h" #include "R600MachineFunctionInfo.h" #include "R600RegisterInfo.h" #include "SIDefines.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/ELF.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetLoweringObjectFile.h" using namespace llvm; // TODO: This should get the default rounding mode from the kernel. We just set // the default here, but this could change if the OpenCL rounding mode pragmas // are used. // // The denormal mode here should match what is reported by the OpenCL runtime // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but // can also be override to flush with the -cl-denorms-are-zero compiler flag. // // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double // precision, and leaves single precision to flush all and does not report // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports // CL_FP_DENORM for both. // // FIXME: It seems some instructions do not support single precision denormals // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, // and sin_f32, cos_f32 on most parts). // We want to use these instructions, and using fp32 denormals also causes // instructions to run at the double precision rate for the device so it's // probably best to just report no single precision denormals. static uint32_t getFPMode(const MachineFunction &F) { const AMDGPUSubtarget& ST = F.getTarget().getSubtarget(); // TODO: Is there any real use for the flush in only / flush out only modes? uint32_t FP32Denormals = ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; uint32_t FP64Denormals = ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | FP_DENORM_MODE_SP(FP32Denormals) | FP_DENORM_MODE_DP(FP64Denormals); } static AsmPrinter *createAMDGPUAsmPrinterPass(TargetMachine &tm, MCStreamer &Streamer) { return new AMDGPUAsmPrinter(tm, Streamer); } extern "C" void LLVMInitializeR600AsmPrinter() { TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass); } AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer) : AsmPrinter(TM, Streamer) { DisasmEnabled = TM.getSubtarget().dumpCode(); } void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { // This label is used to mark the end of the .text section. const TargetLoweringObjectFile &TLOF = getObjFileLowering(); OutStreamer.SwitchSection(TLOF.getTextSection()); MCSymbol *EndOfTextLabel = OutContext.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME)); OutStreamer.EmitLabel(EndOfTextLabel); } bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); OutStreamer.emitRawComment(Twine('@') + MF.getName() + Twine(':')); MCContext &Context = getObjFileLowering().getContext(); const MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0, SectionKind::getReadOnly()); OutStreamer.SwitchSection(ConfigSection); const AMDGPUSubtarget &STM = TM.getSubtarget(); SIProgramInfo KernelInfo; if (STM.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { getSIProgramInfo(KernelInfo, MF); EmitProgramInfoSI(MF, KernelInfo); } else { EmitProgramInfoR600(MF); } DisasmLines.clear(); HexLines.clear(); DisasmLineMaxLen = 0; OutStreamer.SwitchSection(getObjFileLowering().getTextSection()); EmitFunctionBody(); if (isVerbose()) { const MCSectionELF *CommentSection = Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0, SectionKind::getReadOnly()); OutStreamer.SwitchSection(CommentSection); if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { OutStreamer.emitRawComment(" Kernel info:", false); OutStreamer.emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen), false); OutStreamer.emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR), false); OutStreamer.emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR), false); OutStreamer.emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode), false); OutStreamer.emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode), false); OutStreamer.emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize), false); } else { R600MachineFunctionInfo *MFI = MF.getInfo(); OutStreamer.emitRawComment( Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->StackSize))); } } if (STM.dumpCode()) { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) MF.dump(); #endif if (DisasmEnabled) { OutStreamer.SwitchSection(Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0, SectionKind::getReadOnly())); for (size_t i = 0; i < DisasmLines.size(); ++i) { std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' '); Comment += " ; " + HexLines[i] + "\n"; OutStreamer.EmitBytes(StringRef(DisasmLines[i])); OutStreamer.EmitBytes(StringRef(Comment)); } } } return false; } void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) { unsigned MaxGPR = 0; bool killPixel = false; const R600RegisterInfo *RI = static_cast(TM.getRegisterInfo()); const R600MachineFunctionInfo *MFI = MF.getInfo(); const AMDGPUSubtarget &STM = TM.getSubtarget(); for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { if (MI.getOpcode() == AMDGPU::KILLGT) killPixel = true; unsigned numOperands = MI.getNumOperands(); for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { const MachineOperand &MO = MI.getOperand(op_idx); if (!MO.isReg()) continue; unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff; // Register with value > 127 aren't GPR if (HWReg > 127) continue; MaxGPR = std::max(MaxGPR, HWReg); } } } unsigned RsrcReg; if (STM.getGeneration() >= AMDGPUSubtarget::EVERGREEN) { // Evergreen / Northern Islands switch (MFI->getShaderType()) { default: // Fall through case ShaderType::COMPUTE: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break; case ShaderType::GEOMETRY: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break; case ShaderType::PIXEL: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break; case ShaderType::VERTEX: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break; } } else { // R600 / R700 switch (MFI->getShaderType()) { default: // Fall through case ShaderType::GEOMETRY: // Fall through case ShaderType::COMPUTE: // Fall through case ShaderType::VERTEX: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break; case ShaderType::PIXEL: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break; } } OutStreamer.EmitIntValue(RsrcReg, 4); OutStreamer.EmitIntValue(S_NUM_GPRS(MaxGPR + 1) | S_STACK_SIZE(MFI->StackSize), 4); OutStreamer.EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4); OutStreamer.EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4); if (MFI->getShaderType() == ShaderType::COMPUTE) { OutStreamer.EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4); OutStreamer.EmitIntValue(RoundUpToAlignment(MFI->LDSSize, 4) >> 2, 4); } } void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, const MachineFunction &MF) const { uint64_t CodeSize = 0; unsigned MaxSGPR = 0; unsigned MaxVGPR = 0; bool VCCUsed = false; const SIRegisterInfo *RI = static_cast(TM.getRegisterInfo()); for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: CodeSize should account for multiple functions. CodeSize += MI.getDesc().Size; unsigned numOperands = MI.getNumOperands(); for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { const MachineOperand &MO = MI.getOperand(op_idx); unsigned width = 0; bool isSGPR = false; if (!MO.isReg()) { continue; } unsigned reg = MO.getReg(); if (reg == AMDGPU::VCC || reg == AMDGPU::VCC_LO || reg == AMDGPU::VCC_HI) { VCCUsed = true; continue; } switch (reg) { default: break; case AMDGPU::SCC: case AMDGPU::EXEC: case AMDGPU::M0: continue; } if (AMDGPU::SReg_32RegClass.contains(reg)) { isSGPR = true; width = 1; } else if (AMDGPU::VReg_32RegClass.contains(reg)) { isSGPR = false; width = 1; } else if (AMDGPU::SReg_64RegClass.contains(reg)) { isSGPR = true; width = 2; } else if (AMDGPU::VReg_64RegClass.contains(reg)) { isSGPR = false; width = 2; } else if (AMDGPU::VReg_96RegClass.contains(reg)) { isSGPR = false; width = 3; } else if (AMDGPU::SReg_128RegClass.contains(reg)) { isSGPR = true; width = 4; } else if (AMDGPU::VReg_128RegClass.contains(reg)) { isSGPR = false; width = 4; } else if (AMDGPU::SReg_256RegClass.contains(reg)) { isSGPR = true; width = 8; } else if (AMDGPU::VReg_256RegClass.contains(reg)) { isSGPR = false; width = 8; } else if (AMDGPU::SReg_512RegClass.contains(reg)) { isSGPR = true; width = 16; } else if (AMDGPU::VReg_512RegClass.contains(reg)) { isSGPR = false; width = 16; } else { llvm_unreachable("Unknown register class"); } unsigned hwReg = RI->getEncodingValue(reg) & 0xff; unsigned maxUsed = hwReg + width - 1; if (isSGPR) { MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR; } else { MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR; } } } } if (VCCUsed) MaxSGPR += 2; ProgInfo.NumVGPR = MaxVGPR; ProgInfo.NumSGPR = MaxSGPR; // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode // register. ProgInfo.FloatMode = getFPMode(MF); // XXX: Not quite sure what this does, but sc seems to unset this. ProgInfo.IEEEMode = 0; // Do not clamp NAN to 0. ProgInfo.DX10Clamp = 0; const MachineFrameInfo *FrameInfo = MF.getFrameInfo(); ProgInfo.ScratchSize = FrameInfo->estimateStackSize(MF); ProgInfo.CodeLen = CodeSize; } void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &KernelInfo) { const AMDGPUSubtarget &STM = TM.getSubtarget(); const SIMachineFunctionInfo *MFI = MF.getInfo(); unsigned RsrcReg; switch (MFI->getShaderType()) { default: // Fall through case ShaderType::COMPUTE: RsrcReg = R_00B848_COMPUTE_PGM_RSRC1; break; case ShaderType::GEOMETRY: RsrcReg = R_00B228_SPI_SHADER_PGM_RSRC1_GS; break; case ShaderType::PIXEL: RsrcReg = R_00B028_SPI_SHADER_PGM_RSRC1_PS; break; case ShaderType::VERTEX: RsrcReg = R_00B128_SPI_SHADER_PGM_RSRC1_VS; break; } unsigned LDSAlignShift; if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { // LDS is allocated in 64 dword blocks. LDSAlignShift = 8; } else { // LDS is allocated in 128 dword blocks. LDSAlignShift = 9; } unsigned LDSBlocks = RoundUpToAlignment(MFI->LDSSize, 1 << LDSAlignShift) >> LDSAlignShift; // Scratch is allocated in 256 dword blocks. unsigned ScratchAlignShift = 10; // We need to program the hardware with the amount of scratch memory that // is used by the entire wave. KernelInfo.ScratchSize is the amount of // scratch memory used per thread. unsigned ScratchBlocks = RoundUpToAlignment(KernelInfo.ScratchSize * STM.getWavefrontSize(), 1 << ScratchAlignShift) >> ScratchAlignShift; if (MFI->getShaderType() == ShaderType::COMPUTE) { OutStreamer.EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); const uint32_t ComputePGMRSrc1 = S_00B848_VGPRS(KernelInfo.NumVGPR / 4) | S_00B848_SGPRS(KernelInfo.NumSGPR / 8) | S_00B848_PRIORITY(KernelInfo.Priority) | S_00B848_FLOAT_MODE(KernelInfo.FloatMode) | S_00B848_PRIV(KernelInfo.Priv) | S_00B848_DX10_CLAMP(KernelInfo.DX10Clamp) | S_00B848_IEEE_MODE(KernelInfo.DebugMode) | S_00B848_IEEE_MODE(KernelInfo.IEEEMode); OutStreamer.EmitIntValue(ComputePGMRSrc1, 4); OutStreamer.EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); const uint32_t ComputePGMRSrc2 = S_00B84C_LDS_SIZE(LDSBlocks) | S_00B02C_SCRATCH_EN(ScratchBlocks > 0); OutStreamer.EmitIntValue(ComputePGMRSrc2, 4); OutStreamer.EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); OutStreamer.EmitIntValue(S_00B860_WAVESIZE(ScratchBlocks), 4); } else { OutStreamer.EmitIntValue(RsrcReg, 4); OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.NumVGPR / 4) | S_00B028_SGPRS(KernelInfo.NumSGPR / 8), 4); } if (MFI->getShaderType() == ShaderType::PIXEL) { OutStreamer.EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(LDSBlocks), 4); OutStreamer.EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); OutStreamer.EmitIntValue(MFI->PSInputAddr, 4); } }