//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Fuzzer's main loop. //===----------------------------------------------------------------------===// #include "FuzzerCorpus.h" #include "FuzzerInternal.h" #include "FuzzerIO.h" #include "FuzzerMutate.h" #include "FuzzerRandom.h" #include "FuzzerShmem.h" #include "FuzzerTracePC.h" #include #include #include #include #if defined(__has_include) #if __has_include() #include #endif #if __has_include() #include #endif #endif #define NO_SANITIZE_MEMORY #if defined(__has_feature) #if __has_feature(memory_sanitizer) #undef NO_SANITIZE_MEMORY #define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) #endif #endif namespace fuzzer { static const size_t kMaxUnitSizeToPrint = 256; thread_local bool Fuzzer::IsMyThread; SharedMemoryRegion SMR; // Only one Fuzzer per process. static Fuzzer *F; // Leak detection is expensive, so we first check if there were more mallocs // than frees (using the sanitizer malloc hooks) and only then try to call lsan. struct MallocFreeTracer { void Start(int TraceLevel) { this->TraceLevel = TraceLevel; if (TraceLevel) Printf("MallocFreeTracer: START\n"); Mallocs = 0; Frees = 0; } // Returns true if there were more mallocs than frees. bool Stop() { if (TraceLevel) Printf("MallocFreeTracer: STOP %zd %zd (%s)\n", Mallocs.load(), Frees.load(), Mallocs == Frees ? "same" : "DIFFERENT"); bool Result = Mallocs > Frees; Mallocs = 0; Frees = 0; TraceLevel = 0; return Result; } std::atomic Mallocs; std::atomic Frees; int TraceLevel = 0; }; static MallocFreeTracer AllocTracer; ATTRIBUTE_NO_SANITIZE_MEMORY void MallocHook(const volatile void *ptr, size_t size) { size_t N = AllocTracer.Mallocs++; F->HandleMalloc(size); if (int TraceLevel = AllocTracer.TraceLevel) { Printf("MALLOC[%zd] %p %zd\n", N, ptr, size); if (TraceLevel >= 2 && EF) EF->__sanitizer_print_stack_trace(); } } ATTRIBUTE_NO_SANITIZE_MEMORY void FreeHook(const volatile void *ptr) { size_t N = AllocTracer.Frees++; if (int TraceLevel = AllocTracer.TraceLevel) { Printf("FREE[%zd] %p\n", N, ptr); if (TraceLevel >= 2 && EF) EF->__sanitizer_print_stack_trace(); } } // Crash on a single malloc that exceeds the rss limit. void Fuzzer::HandleMalloc(size_t Size) { if (!Options.RssLimitMb || (Size >> 20) < (size_t)Options.RssLimitMb) return; Printf("==%d== ERROR: libFuzzer: out-of-memory (malloc(%zd))\n", GetPid(), Size); Printf(" To change the out-of-memory limit use -rss_limit_mb=\n\n"); if (EF->__sanitizer_print_stack_trace) EF->__sanitizer_print_stack_trace(); DumpCurrentUnit("oom-"); Printf("SUMMARY: libFuzzer: out-of-memory\n"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // Stop right now. } Fuzzer::Fuzzer(UserCallback CB, InputCorpus &Corpus, MutationDispatcher &MD, FuzzingOptions Options) : CB(CB), Corpus(Corpus), MD(MD), Options(Options) { if (EF->__sanitizer_set_death_callback) EF->__sanitizer_set_death_callback(StaticDeathCallback); InitializeTraceState(); assert(!F); F = this; TPC.ResetMaps(); IsMyThread = true; if (Options.DetectLeaks && EF->__sanitizer_install_malloc_and_free_hooks) EF->__sanitizer_install_malloc_and_free_hooks(MallocHook, FreeHook); TPC.SetUseCounters(Options.UseCounters); TPC.SetUseValueProfile(Options.UseValueProfile); TPC.SetPrintNewPCs(Options.PrintNewCovPcs); if (Options.Verbosity) TPC.PrintModuleInfo(); if (!Options.OutputCorpus.empty() && Options.ReloadIntervalSec) EpochOfLastReadOfOutputCorpus = GetEpoch(Options.OutputCorpus); MaxInputLen = MaxMutationLen = Options.MaxLen; AllocateCurrentUnitData(); CurrentUnitSize = 0; memset(BaseSha1, 0, sizeof(BaseSha1)); } Fuzzer::~Fuzzer() { } void Fuzzer::AllocateCurrentUnitData() { if (CurrentUnitData || MaxInputLen == 0) return; CurrentUnitData = new uint8_t[MaxInputLen]; } void Fuzzer::StaticDeathCallback() { assert(F); F->DeathCallback(); } void Fuzzer::DumpCurrentUnit(const char *Prefix) { if (!CurrentUnitData) return; // Happens when running individual inputs. MD.PrintMutationSequence(); Printf("; base unit: %s\n", Sha1ToString(BaseSha1).c_str()); size_t UnitSize = CurrentUnitSize; if (UnitSize <= kMaxUnitSizeToPrint) { PrintHexArray(CurrentUnitData, UnitSize, "\n"); PrintASCII(CurrentUnitData, UnitSize, "\n"); } WriteUnitToFileWithPrefix({CurrentUnitData, CurrentUnitData + UnitSize}, Prefix); } NO_SANITIZE_MEMORY void Fuzzer::DeathCallback() { DumpCurrentUnit("crash-"); PrintFinalStats(); } void Fuzzer::StaticAlarmCallback() { assert(F); F->AlarmCallback(); } void Fuzzer::StaticCrashSignalCallback() { assert(F); F->CrashCallback(); } void Fuzzer::StaticInterruptCallback() { assert(F); F->InterruptCallback(); } void Fuzzer::StaticFileSizeExceedCallback() { Printf("==%lu== ERROR: libFuzzer: file size exceeded\n", GetPid()); exit(1); } void Fuzzer::CrashCallback() { Printf("==%lu== ERROR: libFuzzer: deadly signal\n", GetPid()); if (EF->__sanitizer_print_stack_trace) EF->__sanitizer_print_stack_trace(); Printf("NOTE: libFuzzer has rudimentary signal handlers.\n" " Combine libFuzzer with AddressSanitizer or similar for better " "crash reports.\n"); Printf("SUMMARY: libFuzzer: deadly signal\n"); DumpCurrentUnit("crash-"); PrintFinalStats(); exit(Options.ErrorExitCode); } void Fuzzer::InterruptCallback() { Printf("==%lu== libFuzzer: run interrupted; exiting\n", GetPid()); PrintFinalStats(); _Exit(0); // Stop right now, don't perform any at-exit actions. } NO_SANITIZE_MEMORY void Fuzzer::AlarmCallback() { assert(Options.UnitTimeoutSec > 0); // In Windows Alarm callback is executed by a different thread. #if !LIBFUZZER_WINDOWS if (!InFuzzingThread()) return; #endif if (!RunningCB) return; // We have not started running units yet. size_t Seconds = duration_cast(system_clock::now() - UnitStartTime).count(); if (Seconds == 0) return; if (Options.Verbosity >= 2) Printf("AlarmCallback %zd\n", Seconds); if (Seconds >= (size_t)Options.UnitTimeoutSec) { Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds); Printf(" and the timeout value is %d (use -timeout=N to change)\n", Options.UnitTimeoutSec); DumpCurrentUnit("timeout-"); Printf("==%lu== ERROR: libFuzzer: timeout after %d seconds\n", GetPid(), Seconds); if (EF->__sanitizer_print_stack_trace) EF->__sanitizer_print_stack_trace(); Printf("SUMMARY: libFuzzer: timeout\n"); PrintFinalStats(); _Exit(Options.TimeoutExitCode); // Stop right now. } } void Fuzzer::RssLimitCallback() { Printf( "==%lu== ERROR: libFuzzer: out-of-memory (used: %zdMb; limit: %zdMb)\n", GetPid(), GetPeakRSSMb(), Options.RssLimitMb); Printf(" To change the out-of-memory limit use -rss_limit_mb=\n\n"); if (EF->__sanitizer_print_memory_profile) EF->__sanitizer_print_memory_profile(95, 8); DumpCurrentUnit("oom-"); Printf("SUMMARY: libFuzzer: out-of-memory\n"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // Stop right now. } void Fuzzer::PrintStats(const char *Where, const char *End, size_t Units) { size_t ExecPerSec = execPerSec(); if (!Options.Verbosity) return; Printf("#%zd\t%s", TotalNumberOfRuns, Where); if (size_t N = TPC.GetTotalPCCoverage()) Printf(" cov: %zd", N); if (size_t N = Corpus.NumFeatures()) Printf( " ft: %zd", N); if (!Corpus.empty()) { Printf(" corp: %zd", Corpus.NumActiveUnits()); if (size_t N = Corpus.SizeInBytes()) { if (N < (1<<14)) Printf("/%zdb", N); else if (N < (1 << 24)) Printf("/%zdKb", N >> 10); else Printf("/%zdMb", N >> 20); } } if (Units) Printf(" units: %zd", Units); Printf(" exec/s: %zd", ExecPerSec); Printf(" rss: %zdMb", GetPeakRSSMb()); Printf("%s", End); } void Fuzzer::PrintFinalStats() { if (Options.PrintCoverage) TPC.PrintCoverage(); if (Options.DumpCoverage) TPC.DumpCoverage(); if (Options.PrintCorpusStats) Corpus.PrintStats(); if (!Options.PrintFinalStats) return; size_t ExecPerSec = execPerSec(); Printf("stat::number_of_executed_units: %zd\n", TotalNumberOfRuns); Printf("stat::average_exec_per_sec: %zd\n", ExecPerSec); Printf("stat::new_units_added: %zd\n", NumberOfNewUnitsAdded); Printf("stat::slowest_unit_time_sec: %zd\n", TimeOfLongestUnitInSeconds); Printf("stat::peak_rss_mb: %zd\n", GetPeakRSSMb()); } void Fuzzer::SetMaxInputLen(size_t MaxInputLen) { assert(this->MaxInputLen == 0); // Can only reset MaxInputLen from 0 to non-0. assert(MaxInputLen); this->MaxInputLen = MaxInputLen; this->MaxMutationLen = MaxInputLen; AllocateCurrentUnitData(); Printf("INFO: -max_len is not provided, using %zd\n", MaxInputLen); } void Fuzzer::SetMaxMutationLen(size_t MaxMutationLen) { assert(MaxMutationLen && MaxMutationLen <= MaxInputLen); this->MaxMutationLen = MaxMutationLen; } void Fuzzer::CheckExitOnSrcPosOrItem() { if (!Options.ExitOnSrcPos.empty()) { static auto *PCsSet = new std::set; for (size_t i = 1, N = TPC.GetNumPCs(); i < N; i++) { uintptr_t PC = TPC.GetPC(i); if (!PC) continue; if (!PCsSet->insert(PC).second) continue; std::string Descr = DescribePC("%L", PC); if (Descr.find(Options.ExitOnSrcPos) != std::string::npos) { Printf("INFO: found line matching '%s', exiting.\n", Options.ExitOnSrcPos.c_str()); _Exit(0); } } } if (!Options.ExitOnItem.empty()) { if (Corpus.HasUnit(Options.ExitOnItem)) { Printf("INFO: found item with checksum '%s', exiting.\n", Options.ExitOnItem.c_str()); _Exit(0); } } } void Fuzzer::RereadOutputCorpus(size_t MaxSize) { if (Options.OutputCorpus.empty() || !Options.ReloadIntervalSec) return; std::vector AdditionalCorpus; ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus, &EpochOfLastReadOfOutputCorpus, MaxSize, /*ExitOnError*/ false); if (Options.Verbosity >= 2) Printf("Reload: read %zd new units.\n", AdditionalCorpus.size()); bool Reloaded = false; for (auto &U : AdditionalCorpus) { if (U.size() > MaxSize) U.resize(MaxSize); if (!Corpus.HasUnit(U)) { if (size_t NumFeatures = RunOne(U)) { CheckExitOnSrcPosOrItem(); Corpus.AddToCorpus(U, NumFeatures); Reloaded = true; } } } if (Reloaded) PrintStats("RELOAD"); } void Fuzzer::ShuffleCorpus(UnitVector *V) { std::shuffle(V->begin(), V->end(), MD.GetRand()); if (Options.PreferSmall) std::stable_sort(V->begin(), V->end(), [](const Unit &A, const Unit &B) { return A.size() < B.size(); }); } void Fuzzer::ShuffleAndMinimize(UnitVector *InitialCorpus) { Printf("#0\tREAD units: %zd\n", InitialCorpus->size()); if (Options.ShuffleAtStartUp) ShuffleCorpus(InitialCorpus); // Test the callback with empty input and never try it again. uint8_t dummy; ExecuteCallback(&dummy, 0); for (const auto &U : *InitialCorpus) { if (size_t NumFeatures = RunOne(U)) { CheckExitOnSrcPosOrItem(); Corpus.AddToCorpus(U, NumFeatures); } TryDetectingAMemoryLeak(U.data(), U.size(), /*DuringInitialCorpusExecution*/ true); } PrintStats("INITED"); if (Corpus.empty()) { Printf("ERROR: no interesting inputs were found. " "Is the code instrumented for coverage? Exiting.\n"); exit(1); } } size_t Fuzzer::RunOne(const uint8_t *Data, size_t Size) { if (!Size) return 0; TotalNumberOfRuns++; ExecuteCallback(Data, Size); size_t NumUpdatesBefore = Corpus.NumFeatureUpdates(); TPC.CollectFeatures([&](size_t Feature) { Corpus.AddFeature(Feature, Size, Options.Shrink); }); size_t NumUpdatesAfter = Corpus.NumFeatureUpdates(); auto TimeOfUnit = duration_cast(UnitStopTime - UnitStartTime).count(); if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) && secondsSinceProcessStartUp() >= 2) PrintStats("pulse "); if (TimeOfUnit > TimeOfLongestUnitInSeconds * 1.1 && TimeOfUnit >= Options.ReportSlowUnits) { TimeOfLongestUnitInSeconds = TimeOfUnit; Printf("Slowest unit: %zd s:\n", TimeOfLongestUnitInSeconds); WriteUnitToFileWithPrefix({Data, Data + Size}, "slow-unit-"); } return NumUpdatesAfter - NumUpdatesBefore; } size_t Fuzzer::GetCurrentUnitInFuzzingThead(const uint8_t **Data) const { assert(InFuzzingThread()); *Data = CurrentUnitData; return CurrentUnitSize; } void Fuzzer::ExecuteCallback(const uint8_t *Data, size_t Size) { assert(InFuzzingThread()); if (SMR.IsClient()) SMR.WriteByteArray(Data, Size); // We copy the contents of Unit into a separate heap buffer // so that we reliably find buffer overflows in it. uint8_t *DataCopy = new uint8_t[Size]; memcpy(DataCopy, Data, Size); if (CurrentUnitData && CurrentUnitData != Data) memcpy(CurrentUnitData, Data, Size); CurrentUnitSize = Size; AllocTracer.Start(Options.TraceMalloc); UnitStartTime = system_clock::now(); TPC.ResetMaps(); RunningCB = true; int Res = CB(DataCopy, Size); RunningCB = false; UnitStopTime = system_clock::now(); (void)Res; assert(Res == 0); HasMoreMallocsThanFrees = AllocTracer.Stop(); CurrentUnitSize = 0; delete[] DataCopy; } void Fuzzer::WriteToOutputCorpus(const Unit &U) { if (Options.OnlyASCII) assert(IsASCII(U)); if (Options.OutputCorpus.empty()) return; std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U)); WriteToFile(U, Path); if (Options.Verbosity >= 2) Printf("Written to %s\n", Path.c_str()); } void Fuzzer::WriteUnitToFileWithPrefix(const Unit &U, const char *Prefix) { if (!Options.SaveArtifacts) return; std::string Path = Options.ArtifactPrefix + Prefix + Hash(U); if (!Options.ExactArtifactPath.empty()) Path = Options.ExactArtifactPath; // Overrides ArtifactPrefix. WriteToFile(U, Path); Printf("artifact_prefix='%s'; Test unit written to %s\n", Options.ArtifactPrefix.c_str(), Path.c_str()); if (U.size() <= kMaxUnitSizeToPrint) Printf("Base64: %s\n", Base64(U).c_str()); } void Fuzzer::PrintStatusForNewUnit(const Unit &U) { if (!Options.PrintNEW) return; PrintStats("NEW ", ""); if (Options.Verbosity) { Printf(" L: %zd ", U.size()); MD.PrintMutationSequence(); Printf("\n"); } } void Fuzzer::ReportNewCoverage(InputInfo *II, const Unit &U) { II->NumSuccessfullMutations++; MD.RecordSuccessfulMutationSequence(); PrintStatusForNewUnit(U); WriteToOutputCorpus(U); NumberOfNewUnitsAdded++; TPC.PrintNewPCs(); } // Tries detecting a memory leak on the particular input that we have just // executed before calling this function. void Fuzzer::TryDetectingAMemoryLeak(const uint8_t *Data, size_t Size, bool DuringInitialCorpusExecution) { if (!HasMoreMallocsThanFrees) return; // mallocs==frees, a leak is unlikely. if (!Options.DetectLeaks) return; if (!&(EF->__lsan_enable) || !&(EF->__lsan_disable) || !(EF->__lsan_do_recoverable_leak_check)) return; // No lsan. // Run the target once again, but with lsan disabled so that if there is // a real leak we do not report it twice. EF->__lsan_disable(); ExecuteCallback(Data, Size); EF->__lsan_enable(); if (!HasMoreMallocsThanFrees) return; // a leak is unlikely. if (NumberOfLeakDetectionAttempts++ > 1000) { Options.DetectLeaks = false; Printf("INFO: libFuzzer disabled leak detection after every mutation.\n" " Most likely the target function accumulates allocated\n" " memory in a global state w/o actually leaking it.\n" " You may try running this binary with -trace_malloc=[12]" " to get a trace of mallocs and frees.\n" " If LeakSanitizer is enabled in this process it will still\n" " run on the process shutdown.\n"); return; } // Now perform the actual lsan pass. This is expensive and we must ensure // we don't call it too often. if (EF->__lsan_do_recoverable_leak_check()) { // Leak is found, report it. if (DuringInitialCorpusExecution) Printf("\nINFO: a leak has been found in the initial corpus.\n\n"); Printf("INFO: to ignore leaks on libFuzzer side use -detect_leaks=0.\n\n"); CurrentUnitSize = Size; DumpCurrentUnit("leak-"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // not exit() to disable lsan further on. } } static size_t ComputeMutationLen(size_t MaxInputSize, size_t MaxMutationLen, Random &Rand) { assert(MaxInputSize <= MaxMutationLen); if (MaxInputSize == MaxMutationLen) return MaxMutationLen; size_t Result = MaxInputSize; size_t R = Rand.Rand(); if ((R % (1U << 7)) == 0) Result++; if ((R % (1U << 15)) == 0) Result += 10 + Result / 2; return Min(Result, MaxMutationLen); } void Fuzzer::MutateAndTestOne() { MD.StartMutationSequence(); auto &II = Corpus.ChooseUnitToMutate(MD.GetRand()); const auto &U = II.U; memcpy(BaseSha1, II.Sha1, sizeof(BaseSha1)); assert(CurrentUnitData); size_t Size = U.size(); assert(Size <= MaxInputLen && "Oversized Unit"); memcpy(CurrentUnitData, U.data(), Size); assert(MaxMutationLen > 0); size_t CurrentMaxMutationLen = Options.ExperimentalLenControl ? ComputeMutationLen(Corpus.MaxInputSize(), MaxMutationLen, MD.GetRand()) : MaxMutationLen; for (int i = 0; i < Options.MutateDepth; i++) { if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) break; size_t NewSize = 0; NewSize = MD.Mutate(CurrentUnitData, Size, CurrentMaxMutationLen); assert(NewSize > 0 && "Mutator returned empty unit"); assert(NewSize <= CurrentMaxMutationLen && "Mutator return overisized unit"); Size = NewSize; if (i == 0) StartTraceRecording(); II.NumExecutedMutations++; if (size_t NumFeatures = RunOne(CurrentUnitData, Size)) { Corpus.AddToCorpus({CurrentUnitData, CurrentUnitData + Size}, NumFeatures, /*MayDeleteFile=*/true); ReportNewCoverage(&II, {CurrentUnitData, CurrentUnitData + Size}); CheckExitOnSrcPosOrItem(); } StopTraceRecording(); TryDetectingAMemoryLeak(CurrentUnitData, Size, /*DuringInitialCorpusExecution*/ false); } } void Fuzzer::Loop() { TPC.InitializePrintNewPCs(); system_clock::time_point LastCorpusReload = system_clock::now(); if (Options.DoCrossOver) MD.SetCorpus(&Corpus); while (true) { auto Now = system_clock::now(); if (duration_cast(Now - LastCorpusReload).count() >= Options.ReloadIntervalSec) { RereadOutputCorpus(MaxInputLen); LastCorpusReload = system_clock::now(); } if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) break; if (TimedOut()) break; // Perform several mutations and runs. MutateAndTestOne(); } PrintStats("DONE ", "\n"); MD.PrintRecommendedDictionary(); } void Fuzzer::MinimizeCrashLoop(const Unit &U) { if (U.size() <= 1) return; while (!TimedOut() && TotalNumberOfRuns < Options.MaxNumberOfRuns) { MD.StartMutationSequence(); memcpy(CurrentUnitData, U.data(), U.size()); for (int i = 0; i < Options.MutateDepth; i++) { size_t NewSize = MD.Mutate(CurrentUnitData, U.size(), MaxMutationLen); assert(NewSize > 0 && NewSize <= MaxMutationLen); RunOne(CurrentUnitData, NewSize); TryDetectingAMemoryLeak(CurrentUnitData, NewSize, /*DuringInitialCorpusExecution*/ false); } } } void Fuzzer::AnnounceOutput(const uint8_t *Data, size_t Size) { if (SMR.IsServer()) { SMR.WriteByteArray(Data, Size); } else if (SMR.IsClient()) { SMR.PostClient(); SMR.WaitServer(); size_t OtherSize = SMR.ReadByteArraySize(); uint8_t *OtherData = SMR.GetByteArray(); if (Size != OtherSize || memcmp(Data, OtherData, Size) != 0) { size_t i = 0; for (i = 0; i < Min(Size, OtherSize); i++) if (Data[i] != OtherData[i]) break; Printf("==%lu== ERROR: libFuzzer: equivalence-mismatch. Sizes: %zd %zd; " "offset %zd\n", GetPid(), Size, OtherSize, i); DumpCurrentUnit("mismatch-"); Printf("SUMMARY: libFuzzer: equivalence-mismatch\n"); PrintFinalStats(); _Exit(Options.ErrorExitCode); } } } } // namespace fuzzer extern "C" { size_t LLVMFuzzerMutate(uint8_t *Data, size_t Size, size_t MaxSize) { assert(fuzzer::F); return fuzzer::F->GetMD().DefaultMutate(Data, Size, MaxSize); } // Experimental void LLVMFuzzerAnnounceOutput(const uint8_t *Data, size_t Size) { assert(fuzzer::F); fuzzer::F->AnnounceOutput(Data, Size); } } // extern "C"