//===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the COFFObjectFile class. // //===----------------------------------------------------------------------===// #include "llvm/Object/COFF.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace object; using support::ulittle8_t; using support::ulittle16_t; using support::ulittle32_t; using support::little16_t; // Returns false if size is greater than the buffer size. And sets ec. static bool checkSize(const MemoryBuffer &M, std::error_code &EC, uint64_t Size) { if (M.getBufferSize() < Size) { EC = object_error::unexpected_eof; return false; } return true; } // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. // Returns unexpected_eof if error. template static std::error_code getObject(const T *&Obj, const MemoryBuffer &M, const uint8_t *Ptr, const size_t Size = sizeof(T)) { uintptr_t Addr = uintptr_t(Ptr); if (Addr + Size < Addr || Addr + Size < Size || Addr + Size > uintptr_t(M.getBufferEnd())) { return object_error::unexpected_eof; } Obj = reinterpret_cast(Addr); return object_error::success; } // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without // prefixed slashes. static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { assert(Str.size() <= 6 && "String too long, possible overflow."); if (Str.size() > 6) return true; uint64_t Value = 0; while (!Str.empty()) { unsigned CharVal; if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 CharVal = Str[0] - 'A'; else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 CharVal = Str[0] - 'a' + 26; else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 CharVal = Str[0] - '0' + 52; else if (Str[0] == '+') // 62 CharVal = 62; else if (Str[0] == '/') // 63 CharVal = 63; else return true; Value = (Value * 64) + CharVal; Str = Str.substr(1); } if (Value > std::numeric_limits::max()) return true; Result = static_cast(Value); return false; } const coff_symbol *COFFObjectFile::toSymb(DataRefImpl Ref) const { const coff_symbol *Addr = reinterpret_cast(Ref.p); # ifndef NDEBUG // Verify that the symbol points to a valid entry in the symbol table. uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); if (Offset < COFFHeader->PointerToSymbolTable || Offset >= COFFHeader->PointerToSymbolTable + (COFFHeader->NumberOfSymbols * sizeof(coff_symbol))) report_fatal_error("Symbol was outside of symbol table."); assert((Offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol) == 0 && "Symbol did not point to the beginning of a symbol"); # endif return Addr; } const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { const coff_section *Addr = reinterpret_cast(Ref.p); # ifndef NDEBUG // Verify that the section points to a valid entry in the section table. if (Addr < SectionTable || Addr >= (SectionTable + COFFHeader->NumberOfSections)) report_fatal_error("Section was outside of section table."); uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); assert(Offset % sizeof(coff_section) == 0 && "Section did not point to the beginning of a section"); # endif return Addr; } void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { const coff_symbol *Symb = toSymb(Ref); Symb += 1 + Symb->NumberOfAuxSymbols; Ref.p = reinterpret_cast(Symb); } std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, StringRef &Result) const { const coff_symbol *Symb = toSymb(Ref); return getSymbolName(Symb, Result); } std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, uint64_t &Result) const { const coff_symbol *Symb = toSymb(Ref); const coff_section *Section = nullptr; if (std::error_code EC = getSection(Symb->SectionNumber, Section)) return EC; if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) Result = UnknownAddressOrSize; else if (Section) Result = Section->VirtualAddress + Symb->Value; else Result = Symb->Value; return object_error::success; } std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, SymbolRef::Type &Result) const { const coff_symbol *Symb = toSymb(Ref); Result = SymbolRef::ST_Other; if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL && Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) { Result = SymbolRef::ST_Unknown; } else if (Symb->isFunctionDefinition()) { Result = SymbolRef::ST_Function; } else { uint32_t Characteristics = 0; if (!COFF::isReservedSectionNumber(Symb->SectionNumber)) { const coff_section *Section = nullptr; if (std::error_code EC = getSection(Symb->SectionNumber, Section)) return EC; Characteristics = Section->Characteristics; } if (Characteristics & COFF::IMAGE_SCN_MEM_READ && ~Characteristics & COFF::IMAGE_SCN_MEM_WRITE) // Read only. Result = SymbolRef::ST_Data; } return object_error::success; } uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { const coff_symbol *Symb = toSymb(Ref); uint32_t Result = SymbolRef::SF_None; // TODO: Correctly set SF_FormatSpecific, SF_Common if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) { if (Symb->Value == 0) Result |= SymbolRef::SF_Undefined; else Result |= SymbolRef::SF_Common; } // TODO: This are certainly too restrictive. if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL) Result |= SymbolRef::SF_Global; if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL) Result |= SymbolRef::SF_Weak; if (Symb->SectionNumber == COFF::IMAGE_SYM_ABSOLUTE) Result |= SymbolRef::SF_Absolute; return Result; } std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, uint64_t &Result) const { // FIXME: Return the correct size. This requires looking at all the symbols // in the same section as this symbol, and looking for either the next // symbol, or the end of the section. const coff_symbol *Symb = toSymb(Ref); const coff_section *Section = nullptr; if (std::error_code EC = getSection(Symb->SectionNumber, Section)) return EC; if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) Result = UnknownAddressOrSize; else if (Section) Result = Section->SizeOfRawData - Symb->Value; else Result = 0; return object_error::success; } std::error_code COFFObjectFile::getSymbolSection(DataRefImpl Ref, section_iterator &Result) const { const coff_symbol *Symb = toSymb(Ref); if (COFF::isReservedSectionNumber(Symb->SectionNumber)) { Result = section_end(); } else { const coff_section *Sec = nullptr; if (std::error_code EC = getSection(Symb->SectionNumber, Sec)) return EC; DataRefImpl Ref; Ref.p = reinterpret_cast(Sec); Result = section_iterator(SectionRef(Ref, this)); } return object_error::success; } void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { const coff_section *Sec = toSec(Ref); Sec += 1; Ref.p = reinterpret_cast(Sec); } std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, StringRef &Result) const { const coff_section *Sec = toSec(Ref); return getSectionName(Sec, Result); } std::error_code COFFObjectFile::getSectionAddress(DataRefImpl Ref, uint64_t &Result) const { const coff_section *Sec = toSec(Ref); Result = Sec->VirtualAddress; return object_error::success; } std::error_code COFFObjectFile::getSectionSize(DataRefImpl Ref, uint64_t &Result) const { const coff_section *Sec = toSec(Ref); Result = Sec->SizeOfRawData; return object_error::success; } std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, StringRef &Result) const { const coff_section *Sec = toSec(Ref); ArrayRef Res; std::error_code EC = getSectionContents(Sec, Res); Result = StringRef(reinterpret_cast(Res.data()), Res.size()); return EC; } std::error_code COFFObjectFile::getSectionAlignment(DataRefImpl Ref, uint64_t &Res) const { const coff_section *Sec = toSec(Ref); if (!Sec) return object_error::parse_failed; Res = uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); return object_error::success; } std::error_code COFFObjectFile::isSectionText(DataRefImpl Ref, bool &Result) const { const coff_section *Sec = toSec(Ref); Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; return object_error::success; } std::error_code COFFObjectFile::isSectionData(DataRefImpl Ref, bool &Result) const { const coff_section *Sec = toSec(Ref); Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; return object_error::success; } std::error_code COFFObjectFile::isSectionBSS(DataRefImpl Ref, bool &Result) const { const coff_section *Sec = toSec(Ref); Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; return object_error::success; } std::error_code COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Ref, bool &Result) const { // FIXME: Unimplemented Result = true; return object_error::success; } std::error_code COFFObjectFile::isSectionVirtual(DataRefImpl Ref, bool &Result) const { const coff_section *Sec = toSec(Ref); Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; return object_error::success; } std::error_code COFFObjectFile::isSectionZeroInit(DataRefImpl Ref, bool &Result) const { // FIXME: Unimplemented. Result = false; return object_error::success; } std::error_code COFFObjectFile::isSectionReadOnlyData(DataRefImpl Ref, bool &Result) const { // FIXME: Unimplemented. Result = false; return object_error::success; } std::error_code COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, DataRefImpl SymbRef, bool &Result) const { const coff_section *Sec = toSec(SecRef); const coff_symbol *Symb = toSymb(SymbRef); const coff_section *SymbSec = nullptr; if (std::error_code EC = getSection(Symb->SectionNumber, SymbSec)) return EC; if (SymbSec == Sec) Result = true; else Result = false; return object_error::success; } relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); DataRefImpl Ret; if (Sec->NumberOfRelocations == 0) { Ret.p = 0; } else { auto begin = reinterpret_cast( base() + Sec->PointerToRelocations); if (Sec->hasExtendedRelocations()) { // Skip the first relocation entry repurposed to store the number of // relocations. begin++; } Ret.p = reinterpret_cast(begin); } return relocation_iterator(RelocationRef(Ret, this)); } static uint32_t getNumberOfRelocations(const coff_section *Sec, const uint8_t *base) { // The field for the number of relocations in COFF section table is only // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to // NumberOfRelocations field, and the actual relocation count is stored in the // VirtualAddress field in the first relocation entry. if (Sec->hasExtendedRelocations()) { auto *FirstReloc = reinterpret_cast( base + Sec->PointerToRelocations); return FirstReloc->VirtualAddress; } return Sec->NumberOfRelocations; } relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); DataRefImpl Ret; if (Sec->NumberOfRelocations == 0) { Ret.p = 0; } else { auto begin = reinterpret_cast( base() + Sec->PointerToRelocations); uint32_t NumReloc = getNumberOfRelocations(Sec, base()); Ret.p = reinterpret_cast(begin + NumReloc); } return relocation_iterator(RelocationRef(Ret, this)); } // Initialize the pointer to the symbol table. std::error_code COFFObjectFile::initSymbolTablePtr() { if (std::error_code EC = getObject( SymbolTable, *Data, base() + COFFHeader->PointerToSymbolTable, COFFHeader->NumberOfSymbols * sizeof(coff_symbol))) return EC; // Find string table. The first four byte of the string table contains the // total size of the string table, including the size field itself. If the // string table is empty, the value of the first four byte would be 4. const uint8_t *StringTableAddr = base() + COFFHeader->PointerToSymbolTable + COFFHeader->NumberOfSymbols * sizeof(coff_symbol); const ulittle32_t *StringTableSizePtr; if (std::error_code EC = getObject(StringTableSizePtr, *Data, StringTableAddr)) return EC; StringTableSize = *StringTableSizePtr; if (std::error_code EC = getObject(StringTable, *Data, StringTableAddr, StringTableSize)) return EC; // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some // tools like cvtres write a size of 0 for an empty table instead of 4. if (StringTableSize < 4) StringTableSize = 4; // Check that the string table is null terminated if has any in it. if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) return object_error::parse_failed; return object_error::success; } // Returns the file offset for the given VA. std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase : (uint64_t)PE32PlusHeader->ImageBase; uint64_t Rva = Addr - ImageBase; assert(Rva <= UINT32_MAX); return getRvaPtr((uint32_t)Rva, Res); } // Returns the file offset for the given RVA. std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { for (const SectionRef &S : sections()) { const coff_section *Section = getCOFFSection(S); uint32_t SectionStart = Section->VirtualAddress; uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; if (SectionStart <= Addr && Addr < SectionEnd) { uint32_t Offset = Addr - SectionStart; Res = uintptr_t(base()) + Section->PointerToRawData + Offset; return object_error::success; } } return object_error::parse_failed; } // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name // table entry. std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, StringRef &Name) const { uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(Rva, IntPtr)) return EC; const uint8_t *Ptr = reinterpret_cast(IntPtr); Hint = *reinterpret_cast(Ptr); Name = StringRef(reinterpret_cast(Ptr + 2)); return object_error::success; } // Find the import table. std::error_code COFFObjectFile::initImportTablePtr() { // First, we get the RVA of the import table. If the file lacks a pointer to // the import table, do nothing. const data_directory *DataEntry; if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) return object_error::success; // Do nothing if the pointer to import table is NULL. if (DataEntry->RelativeVirtualAddress == 0) return object_error::success; uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; NumberOfImportDirectory = DataEntry->Size / sizeof(import_directory_table_entry); // Find the section that contains the RVA. This is needed because the RVA is // the import table's memory address which is different from its file offset. uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) return EC; ImportDirectory = reinterpret_cast< const import_directory_table_entry *>(IntPtr); return object_error::success; } // Find the export table. std::error_code COFFObjectFile::initExportTablePtr() { // First, we get the RVA of the export table. If the file lacks a pointer to // the export table, do nothing. const data_directory *DataEntry; if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) return object_error::success; // Do nothing if the pointer to export table is NULL. if (DataEntry->RelativeVirtualAddress == 0) return object_error::success; uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) return EC; ExportDirectory = reinterpret_cast(IntPtr); return object_error::success; } COFFObjectFile::COFFObjectFile(std::unique_ptr Object, std::error_code &EC) : ObjectFile(Binary::ID_COFF, std::move(Object)), COFFHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), DataDirectory(nullptr), SectionTable(nullptr), SymbolTable(nullptr), StringTable(nullptr), StringTableSize(0), ImportDirectory(nullptr), NumberOfImportDirectory(0), ExportDirectory(nullptr) { // Check that we at least have enough room for a header. if (!checkSize(*Data, EC, sizeof(coff_file_header))) return; // The current location in the file where we are looking at. uint64_t CurPtr = 0; // PE header is optional and is present only in executables. If it exists, // it is placed right after COFF header. bool HasPEHeader = false; // Check if this is a PE/COFF file. if (base()[0] == 0x4d && base()[1] == 0x5a) { // PE/COFF, seek through MS-DOS compatibility stub and 4-byte // PE signature to find 'normal' COFF header. if (!checkSize(*Data, EC, 0x3c + 8)) return; CurPtr = *reinterpret_cast(base() + 0x3c); // Check the PE magic bytes. ("PE\0\0") if (std::memcmp(base() + CurPtr, "PE\0\0", 4) != 0) { EC = object_error::parse_failed; return; } CurPtr += 4; // Skip the PE magic bytes. HasPEHeader = true; } if ((EC = getObject(COFFHeader, *Data, base() + CurPtr))) return; CurPtr += sizeof(coff_file_header); if (HasPEHeader) { const pe32_header *Header; if ((EC = getObject(Header, *Data, base() + CurPtr))) return; const uint8_t *DataDirAddr; uint64_t DataDirSize; if (Header->Magic == 0x10b) { PE32Header = Header; DataDirAddr = base() + CurPtr + sizeof(pe32_header); DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; } else if (Header->Magic == 0x20b) { PE32PlusHeader = reinterpret_cast(Header); DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; } else { // It's neither PE32 nor PE32+. EC = object_error::parse_failed; return; } if ((EC = getObject(DataDirectory, *Data, DataDirAddr, DataDirSize))) return; CurPtr += COFFHeader->SizeOfOptionalHeader; } if (COFFHeader->isImportLibrary()) return; if ((EC = getObject(SectionTable, *Data, base() + CurPtr, COFFHeader->NumberOfSections * sizeof(coff_section)))) return; // Initialize the pointer to the symbol table. if (COFFHeader->PointerToSymbolTable != 0) if ((EC = initSymbolTablePtr())) return; // Initialize the pointer to the beginning of the import table. if ((EC = initImportTablePtr())) return; // Initialize the pointer to the export table. if ((EC = initExportTablePtr())) return; EC = object_error::success; } basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { DataRefImpl Ret; Ret.p = reinterpret_cast(SymbolTable); return basic_symbol_iterator(SymbolRef(Ret, this)); } basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { // The symbol table ends where the string table begins. DataRefImpl Ret; Ret.p = reinterpret_cast(StringTable); return basic_symbol_iterator(SymbolRef(Ret, this)); } library_iterator COFFObjectFile::needed_library_begin() const { // TODO: implement report_fatal_error("Libraries needed unimplemented in COFFObjectFile"); } library_iterator COFFObjectFile::needed_library_end() const { // TODO: implement report_fatal_error("Libraries needed unimplemented in COFFObjectFile"); } StringRef COFFObjectFile::getLoadName() const { // COFF does not have this field. return ""; } import_directory_iterator COFFObjectFile::import_directory_begin() const { return import_directory_iterator( ImportDirectoryEntryRef(ImportDirectory, 0, this)); } import_directory_iterator COFFObjectFile::import_directory_end() const { return import_directory_iterator( ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); } export_directory_iterator COFFObjectFile::export_directory_begin() const { return export_directory_iterator( ExportDirectoryEntryRef(ExportDirectory, 0, this)); } export_directory_iterator COFFObjectFile::export_directory_end() const { if (!ExportDirectory) return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); ExportDirectoryEntryRef Ref(ExportDirectory, ExportDirectory->AddressTableEntries, this); return export_directory_iterator(Ref); } section_iterator COFFObjectFile::section_begin() const { DataRefImpl Ret; Ret.p = reinterpret_cast(SectionTable); return section_iterator(SectionRef(Ret, this)); } section_iterator COFFObjectFile::section_end() const { DataRefImpl Ret; int NumSections = COFFHeader->isImportLibrary() ? 0 : COFFHeader->NumberOfSections; Ret.p = reinterpret_cast(SectionTable + NumSections); return section_iterator(SectionRef(Ret, this)); } uint8_t COFFObjectFile::getBytesInAddress() const { return getArch() == Triple::x86_64 ? 8 : 4; } StringRef COFFObjectFile::getFileFormatName() const { switch(COFFHeader->Machine) { case COFF::IMAGE_FILE_MACHINE_I386: return "COFF-i386"; case COFF::IMAGE_FILE_MACHINE_AMD64: return "COFF-x86-64"; case COFF::IMAGE_FILE_MACHINE_ARMNT: return "COFF-ARM"; default: return "COFF-"; } } unsigned COFFObjectFile::getArch() const { switch(COFFHeader->Machine) { case COFF::IMAGE_FILE_MACHINE_I386: return Triple::x86; case COFF::IMAGE_FILE_MACHINE_AMD64: return Triple::x86_64; case COFF::IMAGE_FILE_MACHINE_ARMNT: return Triple::thumb; default: return Triple::UnknownArch; } } // This method is kept here because lld uses this. As soon as we make // lld to use getCOFFHeader, this method will be removed. std::error_code COFFObjectFile::getHeader(const coff_file_header *&Res) const { return getCOFFHeader(Res); } std::error_code COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const { Res = COFFHeader; return object_error::success; } std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { Res = PE32Header; return object_error::success; } std::error_code COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { Res = PE32PlusHeader; return object_error::success; } std::error_code COFFObjectFile::getDataDirectory(uint32_t Index, const data_directory *&Res) const { // Error if if there's no data directory or the index is out of range. if (!DataDirectory) return object_error::parse_failed; assert(PE32Header || PE32PlusHeader); uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize : PE32PlusHeader->NumberOfRvaAndSize; if (Index > NumEnt) return object_error::parse_failed; Res = &DataDirectory[Index]; return object_error::success; } std::error_code COFFObjectFile::getSection(int32_t Index, const coff_section *&Result) const { // Check for special index values. if (COFF::isReservedSectionNumber(Index)) Result = nullptr; else if (Index > 0 && Index <= COFFHeader->NumberOfSections) // We already verified the section table data, so no need to check again. Result = SectionTable + (Index - 1); else return object_error::parse_failed; return object_error::success; } std::error_code COFFObjectFile::getString(uint32_t Offset, StringRef &Result) const { if (StringTableSize <= 4) // Tried to get a string from an empty string table. return object_error::parse_failed; if (Offset >= StringTableSize) return object_error::unexpected_eof; Result = StringRef(StringTable + Offset); return object_error::success; } std::error_code COFFObjectFile::getSymbol(uint32_t Index, const coff_symbol *&Result) const { if (Index < COFFHeader->NumberOfSymbols) Result = SymbolTable + Index; else return object_error::parse_failed; return object_error::success; } std::error_code COFFObjectFile::getSymbolName(const coff_symbol *Symbol, StringRef &Res) const { // Check for string table entry. First 4 bytes are 0. if (Symbol->Name.Offset.Zeroes == 0) { uint32_t Offset = Symbol->Name.Offset.Offset; if (std::error_code EC = getString(Offset, Res)) return EC; return object_error::success; } if (Symbol->Name.ShortName[7] == 0) // Null terminated, let ::strlen figure out the length. Res = StringRef(Symbol->Name.ShortName); else // Not null terminated, use all 8 bytes. Res = StringRef(Symbol->Name.ShortName, 8); return object_error::success; } ArrayRef COFFObjectFile::getSymbolAuxData( const coff_symbol *Symbol) const { const uint8_t *Aux = nullptr; if (Symbol->NumberOfAuxSymbols > 0) { // AUX data comes immediately after the symbol in COFF Aux = reinterpret_cast(Symbol + 1); # ifndef NDEBUG // Verify that the Aux symbol points to a valid entry in the symbol table. uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); if (Offset < COFFHeader->PointerToSymbolTable || Offset >= COFFHeader->PointerToSymbolTable + (COFFHeader->NumberOfSymbols * sizeof(coff_symbol))) report_fatal_error("Aux Symbol data was outside of symbol table."); assert((Offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol) == 0 && "Aux Symbol data did not point to the beginning of a symbol"); # endif } return ArrayRef(Aux, Symbol->NumberOfAuxSymbols * sizeof(coff_symbol)); } std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, StringRef &Res) const { StringRef Name; if (Sec->Name[7] == 0) // Null terminated, let ::strlen figure out the length. Name = Sec->Name; else // Not null terminated, use all 8 bytes. Name = StringRef(Sec->Name, 8); // Check for string table entry. First byte is '/'. if (Name[0] == '/') { uint32_t Offset; if (Name[1] == '/') { if (decodeBase64StringEntry(Name.substr(2), Offset)) return object_error::parse_failed; } else { if (Name.substr(1).getAsInteger(10, Offset)) return object_error::parse_failed; } if (std::error_code EC = getString(Offset, Name)) return EC; } Res = Name; return object_error::success; } std::error_code COFFObjectFile::getSectionContents(const coff_section *Sec, ArrayRef &Res) const { // The only thing that we need to verify is that the contents is contained // within the file bounds. We don't need to make sure it doesn't cover other // data, as there's nothing that says that is not allowed. uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; uintptr_t ConEnd = ConStart + Sec->SizeOfRawData; if (ConEnd > uintptr_t(Data->getBufferEnd())) return object_error::parse_failed; Res = ArrayRef(reinterpret_cast(ConStart), Sec->SizeOfRawData); return object_error::success; } const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { return reinterpret_cast(Rel.p); } void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { Rel.p = reinterpret_cast( reinterpret_cast(Rel.p) + 1); } std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, uint64_t &Res) const { report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); } std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, uint64_t &Res) const { Res = toRel(Rel)->VirtualAddress; return object_error::success; } symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { const coff_relocation* R = toRel(Rel); DataRefImpl Ref; Ref.p = reinterpret_cast(SymbolTable + R->SymbolTableIndex); return symbol_iterator(SymbolRef(Ref, this)); } std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, uint64_t &Res) const { const coff_relocation* R = toRel(Rel); Res = R->Type; return object_error::success; } const coff_section * COFFObjectFile::getCOFFSection(const SectionRef &Section) const { return toSec(Section.getRawDataRefImpl()); } const coff_symbol * COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { return toSymb(Symbol.getRawDataRefImpl()); } const coff_relocation * COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { return toRel(Reloc.getRawDataRefImpl()); } #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ case COFF::reloc_type: \ Res = #reloc_type; \ break; std::error_code COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, SmallVectorImpl &Result) const { const coff_relocation *Reloc = toRel(Rel); StringRef Res; switch (COFFHeader->Machine) { case COFF::IMAGE_FILE_MACHINE_AMD64: switch (Reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); default: Res = "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_ARMNT: switch (Reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); default: Res = "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_I386: switch (Reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); default: Res = "Unknown"; } break; default: Res = "Unknown"; } Result.append(Res.begin(), Res.end()); return object_error::success; } #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME std::error_code COFFObjectFile::getRelocationValueString(DataRefImpl Rel, SmallVectorImpl &Result) const { const coff_relocation *Reloc = toRel(Rel); const coff_symbol *Symb = nullptr; if (std::error_code EC = getSymbol(Reloc->SymbolTableIndex, Symb)) return EC; DataRefImpl Sym; Sym.p = reinterpret_cast(Symb); StringRef SymName; if (std::error_code EC = getSymbolName(Sym, SymName)) return EC; Result.append(SymName.begin(), SymName.end()); return object_error::success; } std::error_code COFFObjectFile::getLibraryNext(DataRefImpl LibData, LibraryRef &Result) const { report_fatal_error("getLibraryNext not implemented in COFFObjectFile"); } std::error_code COFFObjectFile::getLibraryPath(DataRefImpl LibData, StringRef &Result) const { report_fatal_error("getLibraryPath not implemented in COFFObjectFile"); } bool ImportDirectoryEntryRef:: operator==(const ImportDirectoryEntryRef &Other) const { return ImportTable == Other.ImportTable && Index == Other.Index; } void ImportDirectoryEntryRef::moveNext() { ++Index; } std::error_code ImportDirectoryEntryRef::getImportTableEntry( const import_directory_table_entry *&Result) const { Result = ImportTable; return object_error::success; } std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ImportTable->NameRVA, IntPtr)) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return object_error::success; } std::error_code ImportDirectoryEntryRef::getImportLookupEntry( const import_lookup_table_entry32 *&Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ImportTable->ImportLookupTableRVA, IntPtr)) return EC; Result = reinterpret_cast(IntPtr); return object_error::success; } bool ExportDirectoryEntryRef:: operator==(const ExportDirectoryEntryRef &Other) const { return ExportTable == Other.ExportTable && Index == Other.Index; } void ExportDirectoryEntryRef::moveNext() { ++Index; } // Returns the name of the current export symbol. If the symbol is exported only // by ordinal, the empty string is set as a result. std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return object_error::success; } // Returns the starting ordinal number. std::error_code ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { Result = ExportTable->OrdinalBase; return object_error::success; } // Returns the export ordinal of the current export symbol. std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { Result = ExportTable->OrdinalBase + Index; return object_error::success; } // Returns the address of the current export symbol. std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) return EC; const export_address_table_entry *entry = reinterpret_cast(IntPtr); Result = entry[Index].ExportRVA; return object_error::success; } // Returns the name of the current export symbol. If the symbol is exported only // by ordinal, the empty string is set as a result. std::error_code ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) return EC; const ulittle16_t *Start = reinterpret_cast(IntPtr); uint32_t NumEntries = ExportTable->NumberOfNamePointers; int Offset = 0; for (const ulittle16_t *I = Start, *E = Start + NumEntries; I < E; ++I, ++Offset) { if (*I != Index) continue; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) return EC; const ulittle32_t *NamePtr = reinterpret_cast(IntPtr); if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return object_error::success; } Result = ""; return object_error::success; } ErrorOr> ObjectFile::createCOFFObjectFile(std::unique_ptr Object) { std::error_code EC; std::unique_ptr Ret( new COFFObjectFile(std::move(Object), EC)); if (EC) return EC; return std::move(Ret); }