//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "assembler" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Target/TargetMachOWriterInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; class MachObjectWriter; STATISTIC(EmittedFragments, "Number of emitted assembler fragments"); static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, MachObjectWriter &MOW); class MachObjectWriter { // See . enum { Header_Magic32 = 0xFEEDFACE, Header_Magic64 = 0xFEEDFACF }; static const unsigned Header32Size = 28; static const unsigned Header64Size = 32; static const unsigned SegmentLoadCommand32Size = 56; static const unsigned Section32Size = 68; static const unsigned SymtabLoadCommandSize = 24; static const unsigned DysymtabLoadCommandSize = 80; static const unsigned Nlist32Size = 12; static const unsigned RelocationInfoSize = 8; enum HeaderFileType { HFT_Object = 0x1 }; enum HeaderFlags { HF_SubsectionsViaSymbols = 0x2000 }; enum LoadCommandType { LCT_Segment = 0x1, LCT_Symtab = 0x2, LCT_Dysymtab = 0xb }; // See . enum SymbolTypeType { STT_Undefined = 0x00, STT_Absolute = 0x02, STT_Section = 0x0e }; enum SymbolTypeFlags { // If any of these bits are set, then the entry is a stab entry number (see // . Otherwise the other masks apply. STF_StabsEntryMask = 0xe0, STF_TypeMask = 0x0e, STF_External = 0x01, STF_PrivateExtern = 0x10 }; /// IndirectSymbolFlags - Flags for encoding special values in the indirect /// symbol entry. enum IndirectSymbolFlags { ISF_Local = 0x80000000, ISF_Absolute = 0x40000000 }; /// RelocationFlags - Special flags for addresses. enum RelocationFlags { RF_Scattered = 0x80000000 }; enum RelocationInfoType { RIT_Vanilla = 0, RIT_Pair = 1, RIT_Difference = 2, RIT_PreboundLazyPointer = 3, RIT_LocalDifference = 4 }; /// MachSymbolData - Helper struct for containing some precomputed information /// on symbols. struct MachSymbolData { MCSymbolData *SymbolData; uint64_t StringIndex; uint8_t SectionIndex; // Support lexicographic sorting. bool operator<(const MachSymbolData &RHS) const { const std::string &Name = SymbolData->getSymbol().getName(); return Name < RHS.SymbolData->getSymbol().getName(); } }; raw_ostream &OS; bool IsLSB; public: MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true) : OS(_OS), IsLSB(_IsLSB) { } /// @name Helper Methods /// @{ void Write8(uint8_t Value) { OS << char(Value); } void Write16(uint16_t Value) { if (IsLSB) { Write8(uint8_t(Value >> 0)); Write8(uint8_t(Value >> 8)); } else { Write8(uint8_t(Value >> 8)); Write8(uint8_t(Value >> 0)); } } void Write32(uint32_t Value) { if (IsLSB) { Write16(uint16_t(Value >> 0)); Write16(uint16_t(Value >> 16)); } else { Write16(uint16_t(Value >> 16)); Write16(uint16_t(Value >> 0)); } } void Write64(uint64_t Value) { if (IsLSB) { Write32(uint32_t(Value >> 0)); Write32(uint32_t(Value >> 32)); } else { Write32(uint32_t(Value >> 32)); Write32(uint32_t(Value >> 0)); } } void WriteZeros(unsigned N) { const char Zeros[16] = { 0 }; for (unsigned i = 0, e = N / 16; i != e; ++i) OS << StringRef(Zeros, 16); OS << StringRef(Zeros, N % 16); } void WriteString(const StringRef &Str, unsigned ZeroFillSize = 0) { OS << Str; if (ZeroFillSize) WriteZeros(ZeroFillSize - Str.size()); } /// @} void WriteHeader32(unsigned NumLoadCommands, unsigned LoadCommandsSize, bool SubsectionsViaSymbols) { uint32_t Flags = 0; if (SubsectionsViaSymbols) Flags |= HF_SubsectionsViaSymbols; // struct mach_header (28 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(Header_Magic32); // FIXME: Support cputype. Write32(TargetMachOWriterInfo::HDR_CPU_TYPE_I386); // FIXME: Support cpusubtype. Write32(TargetMachOWriterInfo::HDR_CPU_SUBTYPE_I386_ALL); Write32(HFT_Object); Write32(NumLoadCommands); // Object files have a single load command, the // segment. Write32(LoadCommandsSize); Write32(Flags); assert(OS.tell() - Start == Header32Size); } /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command. /// /// \arg NumSections - The number of sections in this segment. /// \arg SectionDataSize - The total size of the sections. void WriteSegmentLoadCommand32(unsigned NumSections, uint64_t SectionDataStartOffset, uint64_t SectionDataSize) { // struct segment_command (56 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Segment); Write32(SegmentLoadCommand32Size + NumSections * Section32Size); WriteString("", 16); Write32(0); // vmaddr Write32(SectionDataSize); // vmsize Write32(SectionDataStartOffset); // file offset Write32(SectionDataSize); // file size Write32(0x7); // maxprot Write32(0x7); // initprot Write32(NumSections); Write32(0); // flags assert(OS.tell() - Start == SegmentLoadCommand32Size); } void WriteSection32(const MCSectionData &SD, uint64_t FileOffset, uint64_t RelocationsStart, unsigned NumRelocations) { // struct section (68 bytes) uint64_t Start = OS.tell(); (void) Start; // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(SD.getSection()); WriteString(Section.getSectionName(), 16); WriteString(Section.getSegmentName(), 16); Write32(SD.getAddress()); // address Write32(SD.getSize()); // size Write32(FileOffset); assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); Write32(Log2_32(SD.getAlignment())); Write32(NumRelocations ? RelocationsStart : 0); Write32(NumRelocations); Write32(Section.getTypeAndAttributes()); Write32(0); // reserved1 Write32(Section.getStubSize()); // reserved2 assert(OS.tell() - Start == Section32Size); } void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols, uint32_t StringTableOffset, uint32_t StringTableSize) { // struct symtab_command (24 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Symtab); Write32(SymtabLoadCommandSize); Write32(SymbolOffset); Write32(NumSymbols); Write32(StringTableOffset); Write32(StringTableSize); assert(OS.tell() - Start == SymtabLoadCommandSize); } void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol, uint32_t NumLocalSymbols, uint32_t FirstExternalSymbol, uint32_t NumExternalSymbols, uint32_t FirstUndefinedSymbol, uint32_t NumUndefinedSymbols, uint32_t IndirectSymbolOffset, uint32_t NumIndirectSymbols) { // struct dysymtab_command (80 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Dysymtab); Write32(DysymtabLoadCommandSize); Write32(FirstLocalSymbol); Write32(NumLocalSymbols); Write32(FirstExternalSymbol); Write32(NumExternalSymbols); Write32(FirstUndefinedSymbol); Write32(NumUndefinedSymbols); Write32(0); // tocoff Write32(0); // ntoc Write32(0); // modtaboff Write32(0); // nmodtab Write32(0); // extrefsymoff Write32(0); // nextrefsyms Write32(IndirectSymbolOffset); Write32(NumIndirectSymbols); Write32(0); // extreloff Write32(0); // nextrel Write32(0); // locreloff Write32(0); // nlocrel assert(OS.tell() - Start == DysymtabLoadCommandSize); } void WriteNlist32(MachSymbolData &MSD) { MCSymbolData &Data = *MSD.SymbolData; MCSymbol &Symbol = Data.getSymbol(); uint8_t Type = 0; // Set the N_TYPE bits. See . // // FIXME: Are the prebound or indirect fields possible here? if (Symbol.isUndefined()) Type = STT_Undefined; else if (Symbol.isAbsolute()) Type = STT_Absolute; else Type = STT_Section; // FIXME: Set STAB bits. if (Data.isPrivateExtern()) Type |= STF_PrivateExtern; // Set external bit. if (Data.isExternal() || Symbol.isUndefined()) Type |= STF_External; // struct nlist (12 bytes) Write32(MSD.StringIndex); Write8(Type); Write8(MSD.SectionIndex); // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' // value. Write16(Data.getFlags() & 0xFFFF); // Write the symbol address. uint32_t Address = 0; if (Symbol.isDefined()) { if (Symbol.isAbsolute()) { llvm_unreachable("FIXME: Not yet implemented!"); } else { Address = Data.getFragment()->getAddress() + Data.getOffset(); } } Write32(Address); } struct MachRelocationEntry { uint32_t Word0; uint32_t Word1; }; void ComputeScatteredRelocationInfo(MCAssembler &Asm, MCSectionData::Fixup &Fixup, DenseMap &SymbolMap, std::vector &Relocs) { uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset; unsigned IsPCRel = 0; unsigned Type = RIT_Vanilla; // See . const MCSymbol *A = Fixup.Value.getSymA(); MCSymbolData *SD = SymbolMap.lookup(A); uint32_t Value = SD->getFragment()->getAddress() + SD->getOffset(); uint32_t Value2 = 0; if (const MCSymbol *B = Fixup.Value.getSymB()) { Type = RIT_LocalDifference; MCSymbolData *SD = SymbolMap.lookup(B); Value2 = SD->getFragment()->getAddress() + SD->getOffset(); } unsigned Log2Size = Log2_32(Fixup.Size); assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!"); // The value which goes in the fixup is current value of the expression. Fixup.FixedValue = Value - Value2 + Fixup.Value.getConstant(); MachRelocationEntry MRE; MRE.Word0 = ((Address << 0) | (Type << 24) | (Log2Size << 28) | (IsPCRel << 30) | RF_Scattered); MRE.Word1 = Value; Relocs.push_back(MRE); if (Type == RIT_LocalDifference) { Type = RIT_Pair; MachRelocationEntry MRE; MRE.Word0 = ((0 << 0) | (Type << 24) | (Log2Size << 28) | (0 << 30) | RF_Scattered); MRE.Word1 = Value2; Relocs.push_back(MRE); } } void ComputeRelocationInfo(MCAssembler &Asm, MCSectionData::Fixup &Fixup, DenseMap &SymbolMap, std::vector &Relocs) { // If this is a local symbol plus an offset or a difference, then we need a // scattered relocation entry. if (Fixup.Value.getSymB()) // a - b return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs); if (Fixup.Value.getSymA() && Fixup.Value.getConstant()) if (!Fixup.Value.getSymA()->isUndefined()) return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs); // See . uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset; uint32_t Value = 0; unsigned Index = 0; unsigned IsPCRel = 0; unsigned IsExtern = 0; unsigned Type = 0; if (Fixup.Value.isAbsolute()) { // constant // SymbolNum of 0 indicates the absolute section. Type = RIT_Vanilla; Value = 0; llvm_unreachable("FIXME: Not yet implemented!"); } else { const MCSymbol *Symbol = Fixup.Value.getSymA(); MCSymbolData *SD = SymbolMap.lookup(Symbol); if (Symbol->isUndefined()) { IsExtern = 1; Index = SD->getIndex(); Value = 0; } else { // The index is the section ordinal. // // FIXME: O(N) Index = 1; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) if (&*it == SD->getFragment()->getParent()) break; Value = SD->getFragment()->getAddress() + SD->getOffset(); } Type = RIT_Vanilla; } // The value which goes in the fixup is current value of the expression. Fixup.FixedValue = Value + Fixup.Value.getConstant(); unsigned Log2Size = Log2_32(Fixup.Size); assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!"); // struct relocation_info (8 bytes) MachRelocationEntry MRE; MRE.Word0 = Address; MRE.Word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (IsExtern << 27) | (Type << 28)); Relocs.push_back(MRE); } void BindIndirectSymbols(MCAssembler &Asm, DenseMap &SymbolMap) { // This is the point where 'as' creates actual symbols for indirect symbols // (in the following two passes). It would be easier for us to do this // sooner when we see the attribute, but that makes getting the order in the // symbol table much more complicated than it is worth. // // FIXME: Revisit this when the dust settles. // Bind non lazy symbol pointers first. for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(it->SectionData->getSection()); unsigned Type = Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; if (Type != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) continue; MCSymbolData *&Entry = SymbolMap[it->Symbol]; if (!Entry) Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm); } // Then lazy symbol pointers and symbol stubs. for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(it->SectionData->getSection()); unsigned Type = Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; if (Type != MCSectionMachO::S_LAZY_SYMBOL_POINTERS && Type != MCSectionMachO::S_SYMBOL_STUBS) continue; MCSymbolData *&Entry = SymbolMap[it->Symbol]; if (!Entry) { Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm); // Set the symbol type to undefined lazy, but only on construction. // // FIXME: Do not hardcode. Entry->setFlags(Entry->getFlags() | 0x0001); } } } /// ComputeSymbolTable - Compute the symbol table data /// /// \param StringTable [out] - The string table data. /// \param StringIndexMap [out] - Map from symbol names to offsets in the /// string table. void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable, std::vector &LocalSymbolData, std::vector &ExternalSymbolData, std::vector &UndefinedSymbolData) { // Build section lookup table. DenseMap SectionIndexMap; unsigned Index = 1; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) SectionIndexMap[&it->getSection()] = Index; assert(Index <= 256 && "Too many sections!"); // Index 0 is always the empty string. StringMap StringIndexMap; StringTable += '\x00'; // Build the symbol arrays and the string table, but only for non-local // symbols. // // The particular order that we collect the symbols and create the string // table, then sort the symbols is chosen to match 'as'. Even though it // doesn't matter for correctness, this is important for letting us diff .o // files. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { MCSymbol &Symbol = it->getSymbol(); // Ignore assembler temporaries. if (it->getSymbol().isTemporary()) continue; if (!it->isExternal() && !Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isUndefined()) { MSD.SectionIndex = 0; UndefinedSymbolData.push_back(MSD); } else if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; ExternalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); ExternalSymbolData.push_back(MSD); } } // Now add the data for local symbols. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { MCSymbol &Symbol = it->getSymbol(); // Ignore assembler temporaries. if (it->getSymbol().isTemporary()) continue; if (it->isExternal() || Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; LocalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); LocalSymbolData.push_back(MSD); } } // External and undefined symbols are required to be in lexicographic order. std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end()); // Set the symbol indices. Index = 0; for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) LocalSymbolData[i].SymbolData->setIndex(Index++); for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) ExternalSymbolData[i].SymbolData->setIndex(Index++); for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) UndefinedSymbolData[i].SymbolData->setIndex(Index++); // The string table is padded to a multiple of 4. // // FIXME: Check to see if this varies per arch. while (StringTable.size() % 4) StringTable += '\x00'; } void WriteObject(MCAssembler &Asm) { unsigned NumSections = Asm.size(); // Compute the symbol -> symbol data map. // // FIXME: This should not be here. DenseMap SymbolMap; for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) SymbolMap[&it->getSymbol()] = it; // Create symbol data for any indirect symbols. BindIndirectSymbols(Asm, SymbolMap); // Compute symbol table information. SmallString<256> StringTable; std::vector LocalSymbolData; std::vector ExternalSymbolData; std::vector UndefinedSymbolData; unsigned NumSymbols = Asm.symbol_size(); // No symbol table command is written if there are no symbols. if (NumSymbols) ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData, UndefinedSymbolData); // The section data starts after the header, the segment load command (and // section headers) and the symbol table. unsigned NumLoadCommands = 1; uint64_t LoadCommandsSize = SegmentLoadCommand32Size + NumSections * Section32Size; // Add the symbol table load command sizes, if used. if (NumSymbols) { NumLoadCommands += 2; LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize; } uint64_t SectionDataStart = Header32Size + LoadCommandsSize; uint64_t SectionDataEnd = SectionDataStart; uint64_t SectionDataSize = 0; if (!Asm.getSectionList().empty()) { MCSectionData &SD = Asm.getSectionList().back(); SectionDataSize = SD.getAddress() + SD.getSize(); SectionDataEnd = SectionDataStart + SD.getAddress() + SD.getFileSize(); } // Write the prolog, starting with the header and load command... WriteHeader32(NumLoadCommands, LoadCommandsSize, Asm.getSubsectionsViaSymbols()); WriteSegmentLoadCommand32(NumSections, SectionDataStart, SectionDataSize); // ... and then the section headers. // // We also compute the section relocations while we do this. Note that // compute relocation info will also update the fixup to have the correct // value; this will be overwrite the appropriate data in the fragment when // it is written. std::vector RelocInfos; uint64_t RelocTableEnd = SectionDataEnd; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { MCSectionData &SD = *it; // The assembler writes relocations in the reverse order they were seen. // // FIXME: It is probably more complicated than this. unsigned NumRelocsStart = RelocInfos.size(); for (unsigned i = 0, e = SD.fixup_size(); i != e; ++i) ComputeRelocationInfo(Asm, SD.getFixups()[e - i - 1], SymbolMap, RelocInfos); unsigned NumRelocs = RelocInfos.size() - NumRelocsStart; uint64_t SectionStart = SectionDataStart + SD.getAddress(); WriteSection32(SD, SectionStart, RelocTableEnd, NumRelocs); RelocTableEnd += NumRelocs * RelocationInfoSize; } // Write the symbol table load command, if used. if (NumSymbols) { unsigned FirstLocalSymbol = 0; unsigned NumLocalSymbols = LocalSymbolData.size(); unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; unsigned NumExternalSymbols = ExternalSymbolData.size(); unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); unsigned NumIndirectSymbols = Asm.indirect_symbol_size(); unsigned NumSymTabSymbols = NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols; uint64_t IndirectSymbolSize = NumIndirectSymbols * 4; uint64_t IndirectSymbolOffset = 0; // If used, the indirect symbols are written after the section data. if (NumIndirectSymbols) IndirectSymbolOffset = RelocTableEnd; // The symbol table is written after the indirect symbol data. uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize; // The string table is written after symbol table. uint64_t StringTableOffset = SymbolTableOffset + NumSymTabSymbols * Nlist32Size; WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols, StringTableOffset, StringTable.size()); WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, FirstExternalSymbol, NumExternalSymbols, FirstUndefinedSymbol, NumUndefinedSymbols, IndirectSymbolOffset, NumIndirectSymbols); } // Write the actual section data. for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) WriteFileData(OS, *it, *this); // Write the relocation entries. for (unsigned i = 0, e = RelocInfos.size(); i != e; ++i) { Write32(RelocInfos[i].Word0); Write32(RelocInfos[i].Word1); } // Write the symbol table data, if used. if (NumSymbols) { // Write the indirect symbol entries. for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // Indirect symbols in the non lazy symbol pointer section have some // special handling. const MCSectionMachO &Section = static_cast(it->SectionData->getSection()); unsigned Type = Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; if (Type == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) { // If this symbol is defined and internal, mark it as such. if (it->Symbol->isDefined() && !SymbolMap.lookup(it->Symbol)->isExternal()) { uint32_t Flags = ISF_Local; if (it->Symbol->isAbsolute()) Flags |= ISF_Absolute; Write32(Flags); continue; } } Write32(SymbolMap[it->Symbol]->getIndex()); } // FIXME: Check that offsets match computed ones. // Write the symbol table entries. for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) WriteNlist32(LocalSymbolData[i]); for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) WriteNlist32(ExternalSymbolData[i]); for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) WriteNlist32(UndefinedSymbolData[i]); // Write the string table. OS << StringTable.str(); } } }; /* *** */ MCFragment::MCFragment() : Kind(FragmentType(~0)) { } MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) : Kind(_Kind), Parent(_Parent), FileSize(~UINT64_C(0)) { if (Parent) Parent->getFragmentList().push_back(this); } MCFragment::~MCFragment() { } uint64_t MCFragment::getAddress() const { assert(getParent() && "Missing Section!"); return getParent()->getAddress() + Offset; } /* *** */ MCSectionData::MCSectionData() : Section(*(MCSection*)0) {} MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) : Section(_Section), Alignment(1), Address(~UINT64_C(0)), Size(~UINT64_C(0)), FileSize(~UINT64_C(0)), LastFixupLookup(~0) { if (A) A->getSectionList().push_back(this); } const MCSectionData::Fixup * MCSectionData::LookupFixup(const MCFragment *Fragment, uint64_t Offset) const { // Use a one level cache to turn the common case of accessing the fixups in // order into O(1) instead of O(N). unsigned i = LastFixupLookup, Count = Fixups.size(), End = Fixups.size(); if (i >= End) i = 0; while (Count--) { const Fixup &F = Fixups[i]; if (F.Fragment == Fragment && F.Offset == Offset) { LastFixupLookup = i; return &F; } ++i; if (i == End) i = 0; } return 0; } /* *** */ MCSymbolData::MCSymbolData() : Symbol(*(MCSymbol*)0) {} MCSymbolData::MCSymbolData(MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset, MCAssembler *A) : Symbol(_Symbol), Fragment(_Fragment), Offset(_Offset), IsExternal(false), IsPrivateExtern(false), Flags(0), Index(0) { if (A) A->getSymbolList().push_back(this); } /* *** */ MCAssembler::MCAssembler(raw_ostream &_OS) : OS(_OS), SubsectionsViaSymbols(false) { } MCAssembler::~MCAssembler() { } void MCAssembler::LayoutSection(MCSectionData &SD, unsigned NextAlign) { uint64_t Address = SD.getAddress(); for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) { MCFragment &F = *it; F.setOffset(Address - SD.getAddress()); // Evaluate fragment size. switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t Size = RoundUpToAlignment(Address, AF.getAlignment()) - Address; if (Size > AF.getMaxBytesToEmit()) AF.setFileSize(0); else AF.setFileSize(Size); break; } case MCFragment::FT_Data: F.setFileSize(F.getMaxFileSize()); break; case MCFragment::FT_Fill: { MCFillFragment &FF = cast(F); F.setFileSize(F.getMaxFileSize()); // If the fill value is constant, thats it. if (FF.getValue().isAbsolute()) break; // Otherwise, add fixups for the values. for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { MCSectionData::Fixup Fix(F, i * FF.getValueSize(), FF.getValue(),FF.getValueSize()); SD.getFixups().push_back(Fix); } break; } case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); if (!OF.getOffset().isAbsolute()) llvm_unreachable("FIXME: Not yet implemented!"); uint64_t OrgOffset = OF.getOffset().getConstant(); uint64_t Offset = Address - SD.getAddress(); // FIXME: We need a way to communicate this error. if (OrgOffset < Offset) llvm_report_error("invalid .org offset '" + Twine(OrgOffset) + "' (at offset '" + Twine(Offset) + "'"); F.setFileSize(OrgOffset - Offset); break; } } Address += F.getFileSize(); } // Set the section sizes. SD.setSize(Address - SD.getAddress()); SD.setFileSize(RoundUpToAlignment(Address, NextAlign) - SD.getAddress()); } /// WriteFileData - Write the \arg F data to the output file. static void WriteFileData(raw_ostream &OS, const MCFragment &F, MachObjectWriter &MOW) { uint64_t Start = OS.tell(); (void) Start; ++EmittedFragments; // FIXME: Embed in fragments instead? switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t Count = AF.getFileSize() / AF.getValueSize(); // FIXME: This error shouldn't actually occur (the front end should emit // multiple .align directives to enforce the semantics it wants), but is // severe enough that we want to report it. How to handle this? if (Count * AF.getValueSize() != AF.getFileSize()) llvm_report_error("undefined .align directive, value size '" + Twine(AF.getValueSize()) + "' is not a divisor of padding size '" + Twine(AF.getFileSize()) + "'"); for (uint64_t i = 0; i != Count; ++i) { switch (AF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (AF.getValue())); break; case 2: MOW.Write16(uint16_t(AF.getValue())); break; case 4: MOW.Write32(uint32_t(AF.getValue())); break; case 8: MOW.Write64(uint64_t(AF.getValue())); break; } } break; } case MCFragment::FT_Data: OS << cast(F).getContents().str(); break; case MCFragment::FT_Fill: { MCFillFragment &FF = cast(F); int64_t Value = 0; if (!FF.getValue().isAbsolute()) Value = FF.getValue().getConstant(); for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { if (!FF.getValue().isAbsolute()) { // Find the fixup. // // FIXME: Find a better way to write in the fixes. const MCSectionData::Fixup *Fixup = F.getParent()->LookupFixup(&F, i * FF.getValueSize()); assert(Fixup && "Missing fixup for fill value!"); Value = Fixup->FixedValue; } switch (FF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (Value)); break; case 2: MOW.Write16(uint16_t(Value)); break; case 4: MOW.Write32(uint32_t(Value)); break; case 8: MOW.Write64(uint64_t(Value)); break; } } break; } case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i) MOW.Write8(uint8_t(OF.getValue())); break; } } assert(OS.tell() - Start == F.getFileSize()); } /// WriteFileData - Write the \arg SD data to the output file. static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, MachObjectWriter &MOW) { uint64_t Start = OS.tell(); (void) Start; for (MCSectionData::const_iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) WriteFileData(OS, *it, MOW); // Add section padding. assert(SD.getFileSize() >= SD.getSize() && "Invalid section sizes!"); MOW.WriteZeros(SD.getFileSize() - SD.getSize()); assert(OS.tell() - Start == SD.getFileSize()); } void MCAssembler::Finish() { // Layout the sections and fragments. uint64_t Address = 0; for (iterator it = begin(), ie = end(); it != ie;) { MCSectionData &SD = *it; // Select the amount of padding alignment we need, based on either the next // sections alignment or the default alignment. // // FIXME: This should probably match the native word size. unsigned NextAlign = 4; ++it; if (it != ie) NextAlign = it->getAlignment(); // Layout the section fragments and its size. SD.setAddress(Address); LayoutSection(SD, NextAlign); Address += SD.getFileSize(); } // Write the object file. MachObjectWriter MOW(OS); MOW.WriteObject(*this); OS.flush(); }