//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===// // // This file contains a printer that converts from our internal representation // of LLVM code to a nice human readable form that is suitable for debuggging. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Target/TargetMachine.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "Support/Statistic.h" namespace { struct Printer : public FunctionPass { TargetMachine &TM; std::ostream &O; Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {} bool runOnFunction(Function &F); }; } /// createX86CodePrinterPass - Print out the specified machine code function to /// the specified stream. This function should work regardless of whether or /// not the function is in SSA form or not. /// Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) { return new Printer(TM, O); } /// runOnFunction - This uses the X86InstructionInfo::print method /// to print assembly for each instruction. bool Printer::runOnFunction (Function & F) { static unsigned bbnumber = 0; MachineFunction & MF = MachineFunction::get (&F); const MachineInstrInfo & MII = TM.getInstrInfo (); O << "; x86 printing only sorta implemented so far!\n"; // Print out labels for the function. O << "\t.globl\t" << F.getName () << "\n"; O << "\t.type\t" << F.getName () << ", @function\n"; O << F.getName () << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end (); bb_i != bb_e; ++bb_i) { // Print a label for the basic block. O << ".BB" << bbnumber++ << ":\n"; for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e = bb_i->end (); i_i != i_e; ++i_i) { // Print the assembly for the instruction. O << "\t"; MII.print(*i_i, O, TM); } } // We didn't modify anything. return false; } static void printOp(std::ostream &O, const MachineOperand &MO, const MRegisterInfo &RI) { switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_MachineRegister: if (MO.getReg() < MRegisterInfo::FirstVirtualRegister) O << RI.get(MO.getReg()).Name; else O << "%reg" << MO.getReg(); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; default: O << ""; return; } } static inline void toHexDigit(std::ostream &O, unsigned char V) { if (V >= 10) O << (char)('A'+V-10); else O << (char)('0'+V); } static std::ostream &toHex(std::ostream &O, unsigned char V) { toHexDigit(O, V >> 4); toHexDigit(O, V & 0xF); return O; } static std::ostream &emitConstant(std::ostream &O, unsigned Val, unsigned Size){ // Output the constant in little endian byte order... for (unsigned i = 0; i != Size; ++i) { toHex(O, Val) << " "; Val >>= 8; } return O; } static bool isReg(const MachineOperand &MO) { return MO.getType() == MachineOperand::MO_VirtualRegister || MO.getType() == MachineOperand::MO_MachineRegister; } static bool isImmediate(const MachineOperand &MO) { return MO.getType() == MachineOperand::MO_SignExtendedImmed || MO.getType() == MachineOperand::MO_UnextendedImmed; } // getX86RegNum - This function maps LLVM register identifiers to their X86 // specific numbering, which is used in various places encoding instructions. // static unsigned getX86RegNum(unsigned RegNo) { switch(RegNo) { case X86::EAX: case X86::AX: case X86::AL: return 0; case X86::ECX: case X86::CX: case X86::CL: return 1; case X86::EDX: case X86::DX: case X86::DL: return 2; case X86::EBX: case X86::BX: case X86::BL: return 3; case X86::ESP: case X86::SP: case X86::AH: return 4; case X86::EBP: case X86::BP: case X86::CH: return 5; case X86::ESI: case X86::SI: case X86::DH: return 6; case X86::EDI: case X86::DI: case X86::BH: return 7; default: assert(RegNo >= MRegisterInfo::FirstVirtualRegister && "Unknown physical register!"); DEBUG(std::cerr << "Register allocator hasn't allocated " << RegNo << " correctly yet!\n"); return 0; } } inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } static unsigned char regModRMByte(unsigned ModRMReg, unsigned RegOpcodeField) { return ModRMByte(3, RegOpcodeField, getX86RegNum(ModRMReg)); } // print - Print out an x86 instruction in intel syntax void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O, const TargetMachine &TM) const { unsigned Opcode = MI->getOpcode(); const MachineInstrDescriptor &Desc = get(Opcode); // Print instruction prefixes if neccesary if (Desc.TSFlags & X86II::OpSize) O << "66 "; // Operand size... if (Desc.TSFlags & X86II::TB) O << "0F "; // Two-byte opcode prefix switch (Desc.TSFlags & X86II::FormMask) { case X86II::OtherFrm: O << "\t\t\t"; O << "-"; MI->print(O, TM); break; case X86II::RawFrm: toHex(O, getBaseOpcodeFor(Opcode)); O << "\n\t\t\t\t"; O << getName(MI->getOpCode()) << " "; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { if (i) O << ", "; printOp(O, MI->getOperand(i), RI); } O << "\n"; return; case X86II::AddRegFrm: { // There are currently two forms of acceptable AddRegFrm instructions. // Either the instruction JUST takes a single register (like inc, dec, etc), // or it takes a register and an immediate of the same size as the register // (move immediate f.e.). // assert(isReg(MI->getOperand(0)) && (MI->getNumOperands() == 1 || (MI->getNumOperands() == 2 && isImmediate(MI->getOperand(1)))) && "Illegal form for AddRegFrm instruction!"); unsigned Reg = MI->getOperand(0).getReg(); toHex(O, getBaseOpcodeFor(Opcode) + getX86RegNum(Reg)) << " "; if (MI->getNumOperands() == 2) { unsigned Size = 4; emitConstant(O, MI->getOperand(1).getImmedValue(), Size); } O << "\n\t\t\t\t"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); if (MI->getNumOperands() == 2) { O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); } O << "\n"; return; } case X86II::MRMDestReg: { // There are two acceptable forms of MRMDestReg instructions, those with 3 // and 2 operands: // // 3 Operands: in this form, the first two registers (the destination, and // the first operand) should be the same, post register allocation. The 3rd // operand is an additional input. This should be for things like add // instructions. // // 2 Operands: this is for things like mov that do not read a second input // assert(isReg(MI->getOperand(0)) && (MI->getNumOperands() == 2 || (MI->getNumOperands() == 3 && isReg(MI->getOperand(1)))) && isReg(MI->getOperand(MI->getNumOperands()-1)) && "Bad format for MRMDestReg!"); if (MI->getNumOperands() == 3 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; toHex(O, getBaseOpcodeFor(Opcode)) << " "; unsigned ModRMReg = MI->getOperand(0).getReg(); unsigned ExtraReg = MI->getOperand(MI->getNumOperands()-1).getReg(); toHex(O, regModRMByte(ModRMReg, getX86RegNum(ExtraReg))); O << "\n\t\t\t\t"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); O << "\n"; return; } case X86II::MRMSrcReg: { // There is a two forms that are acceptable for MRMSrcReg instructions, // those with 3 and 2 operands: // // 3 Operands: in this form, the last register (the second input) is the // ModR/M input. The first two operands should be the same, post register // allocation. This is for things like: add r32, r/m32 // // 2 Operands: this is for things like mov that do not read a second input // assert(isReg(MI->getOperand(0)) && isReg(MI->getOperand(1)) && (MI->getNumOperands() == 2 || (MI->getNumOperands() == 3 && isReg(MI->getOperand(2)))) && "Bad format for MRMDestReg!"); if (MI->getNumOperands() == 3 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; toHex(O, getBaseOpcodeFor(Opcode)) << " "; unsigned ModRMReg = MI->getOperand(MI->getNumOperands()-1).getReg(); unsigned ExtraReg = MI->getOperand(0).getReg(); toHex(O, regModRMByte(ModRMReg, getX86RegNum(ExtraReg))); O << "\n\t\t\t\t"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); O << "\n"; return; } case X86II::MRMDestMem: case X86II::MRMSrcMem: default: O << "\t\t\t-"; MI->print(O, TM); break; } }