//===- lib/CodeGen/MachineTraceMetrics.h - Super-scalar metrics -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interface for the MachineTraceMetrics analysis pass // that estimates CPU resource usage and critical data dependency paths through // preferred traces. This is useful for super-scalar CPUs where execution speed // can be limited both by data dependencies and by limited execution resources. // // Out-of-order CPUs will often be executing instructions from multiple basic // blocks at the same time. This makes it difficult to estimate the resource // usage accurately in a single basic block. Resources can be estimated better // by looking at a trace through the current basic block. // // For every block, the MachineTraceMetrics pass will pick a preferred trace // that passes through the block. The trace is chosen based on loop structure, // branch probabilities, and resource usage. The intention is to pick likely // traces that would be the most affected by code transformations. // // It is expensive to compute a full arbitrary trace for every block, so to // save some computations, traces are chosen to be convergent. This means that // if the traces through basic blocks A and B ever cross when moving away from // A and B, they never diverge again. This applies in both directions - If the // traces meet above A and B, they won't diverge when going further back. // // Traces tend to align with loops. The trace through a block in an inner loop // will begin at the loop entry block and end at a back edge. If there are // nested loops, the trace may begin and end at those instead. // // For each trace, we compute the critical path length, which is the number of // cycles required to execute the trace when execution is limited by data // dependencies only. We also compute the resource height, which is the number // of cycles required to execute all instructions in the trace when ignoring // data dependencies. // // Every instruction in the current block has a slack - the number of cycles // execution of the instruction can be delayed without extending the critical // path. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINE_TRACE_METRICS_H #define LLVM_CODEGEN_MACHINE_TRACE_METRICS_H #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFunctionPass.h" namespace llvm { class TargetInstrInfo; class TargetRegisterInfo; class MachineBasicBlock; class MachineRegisterInfo; class MachineLoopInfo; class MachineLoop; class raw_ostream; class MachineTraceMetrics : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; const MachineRegisterInfo *MRI; const MachineLoopInfo *Loops; public: class Ensemble; class Trace; static char ID; MachineTraceMetrics(); void getAnalysisUsage(AnalysisUsage&) const; bool runOnMachineFunction(MachineFunction&); void releaseMemory(); friend class Ensemble; friend class Trace; /// Per-basic block information that doesn't depend on the trace through the /// block. struct FixedBlockInfo { /// The number of non-trivial instructions in the block. /// Doesn't count PHI and COPY instructions that are likely to be removed. unsigned InstrCount; /// True when the block contains calls. bool HasCalls; FixedBlockInfo() : InstrCount(~0u), HasCalls(false) {} /// Returns true when resource information for this block has been computed. bool hasResources() const { return InstrCount != ~0u; } /// Invalidate resource information. void invalidate() { InstrCount = ~0u; } }; /// Get the fixed resource information about MBB. Compute it on demand. const FixedBlockInfo *getResources(const MachineBasicBlock*); /// Per-basic block information that relates to a specific trace through the /// block. Convergent traces means that only one of these is required per /// block in a trace ensemble. struct TraceBlockInfo { /// Trace predecessor, or NULL for the first block in the trace. /// Valid when hasValidDepth(). const MachineBasicBlock *Pred; /// Trace successor, or NULL for the last block in the trace. /// Valid when hasValidHeight(). const MachineBasicBlock *Succ; /// The block number of the head of the trace. (When hasValidDepth()). unsigned Head; /// The block number of the tail of the trace. (When hasValidHeight()). unsigned Tail; /// Accumulated number of instructions in the trace above this block. /// Does not include instructions in this block. unsigned InstrDepth; /// Accumulated number of instructions in the trace below this block. /// Includes instructions in this block. unsigned InstrHeight; TraceBlockInfo() : Pred(0), Succ(0), InstrDepth(~0u), InstrHeight(~0u) {} /// Returns true if the depth resources have been computed from the trace /// above this block. bool hasValidDepth() const { return InstrDepth != ~0u; } /// Returns true if the height resources have been computed from the trace /// below this block. bool hasValidHeight() const { return InstrHeight != ~0u; } /// Invalidate depth resources when some block above this one has changed. void invalidateDepth() { InstrDepth = ~0u; } /// Invalidate height resources when a block below this one has changed. void invalidateHeight() { InstrHeight = ~0u; } void print(raw_ostream&) const; }; /// A trace represents a plausible sequence of executed basic blocks that /// passes through the current basic block one. The Trace class serves as a /// handle to internal cached data structures. class Trace { Ensemble &TE; TraceBlockInfo &TBI; public: explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {} void print(raw_ostream&) const; /// Compute the total number of instructions in the trace. unsigned getInstrCount() const { return TBI.InstrDepth + TBI.InstrHeight; } }; /// A trace ensemble is a collection of traces selected using the same /// strategy, for example 'minimum resource height'. There is one trace for /// every block in the function. class Ensemble { SmallVector BlockInfo; friend class Trace; void computeTrace(const MachineBasicBlock*); void computeDepthResources(const MachineBasicBlock*); void computeHeightResources(const MachineBasicBlock*); protected: MachineTraceMetrics &CT; virtual const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) =0; virtual const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) =0; explicit Ensemble(MachineTraceMetrics*); MachineLoop *getLoopFor(const MachineBasicBlock*); const TraceBlockInfo *getDepthResources(const MachineBasicBlock*) const; const TraceBlockInfo *getHeightResources(const MachineBasicBlock*) const; public: virtual ~Ensemble(); virtual const char *getName() const =0; void print(raw_ostream&) const; void invalidate(const MachineBasicBlock *MBB); /// Get the trace that passes through MBB. /// The trace is computed on demand. Trace getTrace(const MachineBasicBlock *MBB); }; /// Strategies for selecting traces. enum Strategy { /// Select the trace through a block that has the fewest instructions. TS_MinInstrCount, TS_NumStrategies }; /// Get the trace ensemble representing the given trace selection strategy. /// The returned Ensemble object is owned by the MachineTraceMetrics analysis, /// and valid for the lifetime of the analysis pass. Ensemble *getEnsemble(Strategy); /// Invalidate cached information about MBB. This must be called *before* MBB /// is erased, or the CFG is otherwise changed. void invalidate(const MachineBasicBlock *MBB); private: // One entry per basic block, indexed by block number. SmallVector BlockInfo; // One ensemble per strategy. Ensemble* Ensembles[TS_NumStrategies]; }; inline raw_ostream &operator<<(raw_ostream &OS, const MachineTraceMetrics::Trace &Tr) { Tr.print(OS); return OS; } inline raw_ostream &operator<<(raw_ostream &OS, const MachineTraceMetrics::Ensemble &En) { En.print(OS); return OS; } } // end namespace llvm #endif