//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // InductionVariableSimplify - Transform induction variables in a program // to all use a single cannonical induction variable per loop. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/IndVarSimplify.h" #include "llvm/Analysis/InductionVariable.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/Type.h" #include "llvm/BasicBlock.h" #include "llvm/ConstantVals.h" #include "llvm/Pass.h" #include "llvm/Support/CFG.h" #include "Support/STLExtras.h" #if 0 #define DEBUG #include "llvm/Analysis/Writer.h" #endif // InsertCast - Cast Val to Ty, setting a useful name on the cast if Val has a // name... // static Instruction *InsertCast(Instruction *Val, const Type *Ty, BasicBlock::iterator It) { Instruction *Cast = new CastInst(Val, Ty); if (Val->hasName()) Cast->setName(Val->getName()+"-casted"); Val->getParent()->getInstList().insert(It, Cast); return Cast; } static bool TransformLoop(cfg::LoopInfo *Loops, cfg::Loop *Loop) { // Transform all subloops before this loop... bool Changed = reduce_apply_bool(Loop->getSubLoops().begin(), Loop->getSubLoops().end(), std::bind1st(std::ptr_fun(TransformLoop), Loops)); // Get the header node for this loop. All of the phi nodes that could be // induction variables must live in this basic block. BasicBlock *Header = (BasicBlock*)Loop->getBlocks().front(); // Loop over all of the PHI nodes in the basic block, calculating the // induction variables that they represent... stuffing the induction variable // info into a vector... // std::vector IndVars; // Induction variables for block for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast(*I); ++I) IndVars.push_back(InductionVariable(PN, Loops)); // If there are no phi nodes in this basic block, there can't be indvars... if (IndVars.empty()) return Changed; // Loop over the induction variables, looking for a cannonical induction // variable, and checking to make sure they are not all unknown induction // variables. // bool FoundIndVars = false; InductionVariable *Cannonical = 0; for (unsigned i = 0; i < IndVars.size(); ++i) { if (IndVars[i].InductionType == InductionVariable::Cannonical) Cannonical = &IndVars[i]; if (IndVars[i].InductionType != InductionVariable::Unknown) FoundIndVars = true; } // No induction variables, bail early... don't add a cannonnical indvar if (!FoundIndVars) return Changed; // Okay, we want to convert other induction variables to use a cannonical // indvar. If we don't have one, add one now... if (!Cannonical) { // Create the PHI node for the new induction variable PHINode *PN = new PHINode(Type::UIntTy, "cann-indvar"); // Insert the phi node at the end of the other phi nodes... Header->getInstList().insert(Header->begin()+IndVars.size(), PN); // Create the increment instruction to add one to the counter... Instruction *Add = BinaryOperator::create(Instruction::Add, PN, ConstantUInt::get(Type::UIntTy,1), "add1-indvar"); // Insert the add instruction after all of the PHI nodes... Header->getInstList().insert(Header->begin()+(IndVars.size()+1), Add); // Figure out which block is incoming and which is the backedge for the loop BasicBlock *Incoming, *BackEdgeBlock; pred_iterator PI = pred_begin(Header); assert(PI != pred_end(Header) && "Loop headers should have 2 preds!"); if (Loop->contains(*PI)) { // First pred is back edge... BackEdgeBlock = *PI++; Incoming = *PI++; } else { Incoming = *PI++; BackEdgeBlock = *PI++; } assert(PI == pred_end(Header) && "Loop headers should have 2 preds!"); // Add incoming values for the PHI node... PN->addIncoming(Constant::getNullValue(Type::UIntTy), Incoming); PN->addIncoming(Add, BackEdgeBlock); // Analyze the new induction variable... IndVars.push_back(InductionVariable(PN, Loops)); assert(IndVars.back().InductionType == InductionVariable::Cannonical && "Just inserted cannonical indvar that is not cannonical!"); Cannonical = &IndVars.back(); Changed = true; } #ifdef DEBUG cerr << "Induction variables:\n"; #endif // Get the current loop iteration count, which is always the value of the // cannonical phi node... // PHINode *IterCount = Cannonical->Phi; // Loop through and replace all of the auxillary induction variables with // references to the primary induction variable... // unsigned InsertPos = IndVars.size(); for (unsigned i = 0; i < IndVars.size(); ++i) { InductionVariable *IV = &IndVars[i]; #ifdef DEBUG cerr << IndVars[i]; #endif // Don't modify the cannonical indvar or unrecognized indvars... if (IV != Cannonical && IV->InductionType != InductionVariable::Unknown) { Instruction *Val = IterCount; if (!isa(IV->Step) || // If the step != 1 !cast(IV->Step)->equalsInt(1)) { std::string Name; // Create a scale by the step value... if (IV->Phi->hasName()) Name = IV->Phi->getName()+"-scale"; // If the types are not compatible, insert a cast now... if (Val->getType() != IV->Step->getType()) Val = InsertCast(Val, IV->Step->getType(), Header->begin()+InsertPos++); Val = BinaryOperator::create(Instruction::Mul, Val, IV->Step, Name); // Insert the phi node at the end of the other phi nodes... Header->getInstList().insert(Header->begin()+InsertPos++, Val); } if (!isa(IV->Start) || // If the start != 0 !cast(IV->Start)->isNullValue()) { std::string Name; // Create a offset by the start value... if (IV->Phi->hasName()) Name = IV->Phi->getName()+"-offset"; // If the types are not compatible, insert a cast now... if (Val->getType() != IV->Start->getType()) Val = InsertCast(Val, IV->Start->getType(), Header->begin()+InsertPos++); Val = BinaryOperator::create(Instruction::Add, Val, IV->Start, Name); // Insert the phi node at the end of the other phi nodes... Header->getInstList().insert(Header->begin()+InsertPos++, Val); } // If the PHI node has a different type than val is, insert a cast now... if (Val->getType() != IV->Phi->getType()) Val = InsertCast(Val, IV->Phi->getType(), Header->begin()+InsertPos++); // Replace all uses of the old PHI node with the new computed value... IV->Phi->replaceAllUsesWith(Val); // Move the PHI name to it's new equivalent value... std::string OldName = IV->Phi->getName(); IV->Phi->setName(""); Val->setName(OldName); // Delete the old, now unused, phi node... Header->getInstList().remove(IV->Phi); delete IV->Phi; InsertPos--; // Deleted an instr, decrement insert position Changed = true; } } return Changed; } static bool doit(Function *M, cfg::LoopInfo &Loops) { // Induction Variables live in the header nodes of the loops of the function return reduce_apply_bool(Loops.getTopLevelLoops().begin(), Loops.getTopLevelLoops().end(), std::bind1st(std::ptr_fun(TransformLoop), &Loops)); } namespace { struct InductionVariableSimplify : public FunctionPass { virtual bool runOnFunction(Function *F) { return doit(F, getAnalysis()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(cfg::LoopInfo::ID); } }; } Pass *createIndVarSimplifyPass() { return new InductionVariableSimplify(); }