//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef X86ISELLOWERING_H #define X86ISELLOWERING_H #include "X86Subtarget.h" #include "X86RegisterInfo.h" #include "X86MachineFunctionInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/CallingConvLower.h" namespace llvm { namespace X86ISD { // X86 Specific DAG Nodes enum NodeType { // Start the numbering where the builtin ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, /// BSF - Bit scan forward. /// BSR - Bit scan reverse. BSF, BSR, /// SHLD, SHRD - Double shift instructions. These correspond to /// X86::SHLDxx and X86::SHRDxx instructions. SHLD, SHRD, /// FAND - Bitwise logical AND of floating point values. This corresponds /// to X86::ANDPS or X86::ANDPD. FAND, /// FOR - Bitwise logical OR of floating point values. This corresponds /// to X86::ORPS or X86::ORPD. FOR, /// FXOR - Bitwise logical XOR of floating point values. This corresponds /// to X86::XORPS or X86::XORPD. FXOR, /// FSRL - Bitwise logical right shift of floating point values. These /// corresponds to X86::PSRLDQ. FSRL, /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the /// integer source in memory and FP reg result. This corresponds to the /// X86::FILD*m instructions. It has three inputs (token chain, address, /// and source type) and two outputs (FP value and token chain). FILD_FLAG /// also produces a flag). FILD, FILD_FLAG, /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the /// integer destination in memory and a FP reg source. This corresponds /// to the X86::FIST*m instructions and the rounding mode change stuff. It /// has two inputs (token chain and address) and two outputs (int value /// and token chain). FP_TO_INT16_IN_MEM, FP_TO_INT32_IN_MEM, FP_TO_INT64_IN_MEM, /// FLD - This instruction implements an extending load to FP stack slots. /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain /// operand, ptr to load from, and a ValueType node indicating the type /// to load to. FLD, /// FST - This instruction implements a truncating store to FP stack /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a /// chain operand, value to store, address, and a ValueType to store it /// as. FST, /// CALL/TAILCALL - These operations represent an abstract X86 call /// instruction, which includes a bunch of information. In particular the /// operands of these node are: /// /// #0 - The incoming token chain /// #1 - The callee /// #2 - The number of arg bytes the caller pushes on the stack. /// #3 - The number of arg bytes the callee pops off the stack. /// #4 - The value to pass in AL/AX/EAX (optional) /// #5 - The value to pass in DL/DX/EDX (optional) /// /// The result values of these nodes are: /// /// #0 - The outgoing token chain /// #1 - The first register result value (optional) /// #2 - The second register result value (optional) /// /// The CALL vs TAILCALL distinction boils down to whether the callee is /// known not to modify the caller's stack frame, as is standard with /// LLVM. CALL, TAILCALL, /// RDTSC_DAG - This operation implements the lowering for /// readcyclecounter RDTSC_DAG, /// X86 compare and logical compare instructions. CMP, COMI, UCOMI, /// X86 bit-test instructions. BT, /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag /// operand produced by a CMP instruction. SETCC, /// X86 conditional moves. Operand 0 and operand 1 are the two values /// to select from. Operand 2 is the condition code, and operand 3 is the /// flag operand produced by a CMP or TEST instruction. It also writes a /// flag result. CMOV, /// X86 conditional branches. Operand 0 is the chain operand, operand 1 /// is the block to branch if condition is true, operand 2 is the /// condition code, and operand 3 is the flag operand produced by a CMP /// or TEST instruction. BRCOND, /// Return with a flag operand. Operand 0 is the chain operand, operand /// 1 is the number of bytes of stack to pop. RET_FLAG, /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx. REP_STOS, /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx. REP_MOVS, /// GlobalBaseReg - On Darwin, this node represents the result of the popl /// at function entry, used for PIC code. GlobalBaseReg, /// Wrapper - A wrapper node for TargetConstantPool, /// TargetExternalSymbol, and TargetGlobalAddress. Wrapper, /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP /// relative displacements. WrapperRIP, /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to /// i32, corresponds to X86::PEXTRB. PEXTRB, /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to /// i32, corresponds to X86::PEXTRW. PEXTRW, /// INSERTPS - Insert any element of a 4 x float vector into any element /// of a destination 4 x floatvector. INSERTPS, /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector, /// corresponds to X86::PINSRB. PINSRB, /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector, /// corresponds to X86::PINSRW. PINSRW, /// PSHUFB - Shuffle 16 8-bit values within a vector. PSHUFB, /// FMAX, FMIN - Floating point max and min. /// FMAX, FMIN, /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal /// approximation. Note that these typically require refinement /// in order to obtain suitable precision. FRSQRT, FRCP, // TLSADDR - Thread Local Storage. TLSADDR, // SegmentBaseAddress - The address segment:0 SegmentBaseAddress, // EH_RETURN - Exception Handling helpers. EH_RETURN, /// TC_RETURN - Tail call return. /// operand #0 chain /// operand #1 callee (register or absolute) /// operand #2 stack adjustment /// operand #3 optional in flag TC_RETURN, // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap. LCMPXCHG_DAG, LCMPXCHG8_DAG, // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG, // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG - // Atomic 64-bit binary operations. ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMXOR64_DAG, ATOMAND64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG, // FNSTCW16m - Store FP control world into i16 memory. FNSTCW16m, // VZEXT_MOVL - Vector move low and zero extend. VZEXT_MOVL, // VZEXT_LOAD - Load, scalar_to_vector, and zero extend. VZEXT_LOAD, // VSHL, VSRL - Vector logical left / right shift. VSHL, VSRL, // CMPPD, CMPPS - Vector double/float comparison. // CMPPD, CMPPS - Vector double/float comparison. CMPPD, CMPPS, // PCMP* - Vector integer comparisons. PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ, PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ, // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results. ADD, SUB, SMUL, UMUL, INC, DEC, // MUL_IMM - X86 specific multiply by immediate. MUL_IMM }; } /// Define some predicates that are used for node matching. namespace X86 { /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool isPSHUFDMask(ShuffleVectorSDNode *N); /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool isPSHUFHWMask(ShuffleVectorSDNode *N); /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool isPSHUFLWMask(ShuffleVectorSDNode *N); /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to SHUFP*. bool isSHUFPMask(ShuffleVectorSDNode *N); /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHLPS. bool isMOVHLPSMask(ShuffleVectorSDNode *N); /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, /// <2, 3, 2, 3> bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N); /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for MOVLP{S|D}. bool isMOVLPMask(ShuffleVectorSDNode *N); /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for MOVHP{S|D}. /// as well as MOVLHPS. bool isMOVHPMask(ShuffleVectorSDNode *N); /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false); /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false); /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N); /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, /// <2, 2, 3, 3> bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N); /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSS, /// MOVSD, and MOVD, i.e. setting the lowest element. bool isMOVLMask(ShuffleVectorSDNode *N); /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. bool isMOVSHDUPMask(ShuffleVectorSDNode *N); /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. bool isMOVSLDUPMask(ShuffleVectorSDNode *N); /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVDDUP. bool isMOVDDUPMask(ShuffleVectorSDNode *N); /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* /// instructions. unsigned getShuffleSHUFImmediate(SDNode *N); /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW /// instructions. unsigned getShufflePSHUFHWImmediate(SDNode *N); /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW /// instructions. unsigned getShufflePSHUFLWImmediate(SDNode *N); } //===--------------------------------------------------------------------===// // X86TargetLowering - X86 Implementation of the TargetLowering interface class X86TargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. int RegSaveFrameIndex; // X86-64 vararg func register save area. unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset. unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset. int BytesToPopOnReturn; // Number of arg bytes ret should pop. int BytesCallerReserves; // Number of arg bytes caller makes. public: explicit X86TargetLowering(X86TargetMachine &TM); /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC /// jumptable. SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const; // Return the number of bytes that a function should pop when it returns (in // addition to the space used by the return address). // unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; } // Return the number of bytes that the caller reserves for arguments passed // to this function. unsigned getBytesCallerReserves() const { return BytesCallerReserves; } /// getStackPtrReg - Return the stack pointer register we are using: either /// ESP or RSP. unsigned getStackPtrReg() const { return X86StackPtr; } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. For X86, aggregates /// that contains are placed at 16-byte boundaries while the rest are at /// 4-byte boundaries. virtual unsigned getByValTypeAlignment(const Type *Ty) const; /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for /// determining it. virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align, bool isSrcConst, bool isSrcStr) const; /// LowerOperation - Provide custom lowering hooks for some operations. /// virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG); /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG); virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; /// getTargetNodeName - This method returns the name of a target specific /// DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; /// getSetCCResultType - Return the ISD::SETCC ValueType virtual MVT getSetCCResultType(MVT VT) const; /// computeMaskedBitsForTargetNode - Determine which of the bits specified /// in Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const; virtual bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const; SDValue getReturnAddressFrameIndex(SelectionDAG &DAG); ConstraintType getConstraintType(const std::string &Constraint) const; std::vector getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT VT) const; virtual const char *LowerXConstraint(MVT ConstraintVT) const; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. If hasMemory is /// true it means one of the asm constraint of the inline asm instruction /// being processed is 'm'. virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter, bool hasMemory, std::vector &Ops, SelectionDAG &DAG) const; /// getRegForInlineAsmConstraint - Given a physical register constraint /// (e.g. {edx}), return the register number and the register class for the /// register. This should only be used for C_Register constraints. On /// error, this returns a register number of 0. std::pair getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const; /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const; /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const; virtual bool isTruncateFree(MVT VT1, MVT VT2) const; /// isZExtFree - Return true if any actual instruction that defines a /// value of type Ty1 implicit zero-extends the value to Ty2 in the result /// register. This does not necessarily include registers defined in /// unknown ways, such as incoming arguments, or copies from unknown /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this /// does not necessarily apply to truncate instructions. e.g. on x86-64, /// all instructions that define 32-bit values implicit zero-extend the /// result out to 64 bits. virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const; virtual bool isZExtFree(MVT VT1, MVT VT2) const; /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask /// values are assumed to be legal. virtual bool isShuffleMaskLegal(const SmallVectorImpl &Mask, MVT VT) const; /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is /// used by Targets can use this to indicate if there is a suitable /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant /// pool entry. virtual bool isVectorClearMaskLegal(const SmallVectorImpl &Mask, MVT VT) const; /// ShouldShrinkFPConstant - If true, then instruction selection should /// seek to shrink the FP constant of the specified type to a smaller type /// in order to save space and / or reduce runtime. virtual bool ShouldShrinkFPConstant(MVT VT) const { // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more // expensive than a straight movsd. On the other hand, it's important to // shrink long double fp constant since fldt is very slow. return !X86ScalarSSEf64 || VT == MVT::f80; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Target which want to do tail call /// optimization should implement this function. virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall, SDValue Ret, SelectionDAG &DAG) const; virtual const X86Subtarget* getSubtarget() { return Subtarget; } /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is /// computed in an SSE register, not on the X87 floating point stack. bool isScalarFPTypeInSSEReg(MVT VT) const { return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 } /// getWidenVectorType: given a vector type, returns the type to widen /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself. /// If there is no vector type that we want to widen to, returns MVT::Other /// When and were to widen is target dependent based on the cost of /// scalarizing vs using the wider vector type. virtual MVT getWidenVectorType(MVT VT) const; /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. virtual FastISel * createFastISel(MachineFunction &mf, MachineModuleInfo *mmi, DwarfWriter *dw, DenseMap &, DenseMap &, DenseMap & #ifndef NDEBUG , SmallSet & #endif ); private: /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; const X86RegisterInfo *RegInfo; const TargetData *TD; /// X86StackPtr - X86 physical register used as stack ptr. unsigned X86StackPtr; /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 /// floating point ops. /// When SSE is available, use it for f32 operations. /// When SSE2 is available, use it for f64 operations. bool X86ScalarSSEf32; bool X86ScalarSSEf64; SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, unsigned CallingConv, SelectionDAG &DAG); SDValue LowerMemArgument(SDValue Op, SelectionDAG &DAG, const CCValAssign &VA, MachineFrameInfo *MFI, unsigned CC, SDValue Root, unsigned i); SDValue LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG, const SDValue &StackPtr, const CCValAssign &VA, SDValue Chain, SDValue Arg, ISD::ArgFlagsTy Flags); // Call lowering helpers. bool IsCalleePop(bool isVarArg, unsigned CallingConv); bool CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall); bool CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall); SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, bool Is64Bit, int FPDiff, DebugLoc dl); CCAssignFn *CCAssignFnForNode(unsigned CallingConv) const; NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDValue Op); unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG); std::pair FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG); SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG); SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG); SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG); SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG); SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG); SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG); SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG); SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG); SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, int64_t Offset, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG); SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG); SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG); SDValue LowerShift(SDValue Op, SelectionDAG &DAG); SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG); SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG); SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG); SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG); SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG); SDValue LowerFABS(SDValue Op, SelectionDAG &DAG); SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG); SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG); SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG); SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG); SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG); SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG); SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG); SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG); SDValue LowerCALL(SDValue Op, SelectionDAG &DAG); SDValue LowerRET(SDValue Op, SelectionDAG &DAG); SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG); SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG); SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG); SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG); SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG); SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG); SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG); SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG); SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG); SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG); SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG); SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG); SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG); SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG); SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG); SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG); SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG); SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG); SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG); void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, unsigned NewOp); SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, const Value *DstSV, uint64_t DstSVOff); SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool AlwaysInline, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff); /// Utility function to emit atomic bitwise operations (and, or, xor). // It takes the bitwise instruction to expand, the associated machine basic // block, and the associated X86 opcodes for reg/reg and reg/imm. MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter( MachineInstr *BInstr, MachineBasicBlock *BB, unsigned regOpc, unsigned immOpc, unsigned loadOpc, unsigned cxchgOpc, unsigned copyOpc, unsigned notOpc, unsigned EAXreg, TargetRegisterClass *RC, bool invSrc = false) const; MachineBasicBlock *EmitAtomicBit6432WithCustomInserter( MachineInstr *BInstr, MachineBasicBlock *BB, unsigned regOpcL, unsigned regOpcH, unsigned immOpcL, unsigned immOpcH, bool invSrc = false) const; /// Utility function to emit atomic min and max. It takes the min/max /// instruction to expand, the associated basic block, and the associated /// cmov opcode for moving the min or max value. MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr, MachineBasicBlock *BB, unsigned cmovOpc) const; /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent, for use with the given x86 condition code. SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG); /// Emit nodes that will be selected as "cmp Op0,Op1", or something /// equivalent, for use with the given x86 condition code. SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SelectionDAG &DAG); }; namespace X86 { FastISel *createFastISel(MachineFunction &mf, MachineModuleInfo *mmi, DwarfWriter *dw, DenseMap &, DenseMap &, DenseMap & #ifndef NDEBUG , SmallSet & #endif ); } } #endif // X86ISELLOWERING_H