//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MapValue function, which is shared by various parts of // the lib/Transforms/Utils library. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/ValueMapper.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" using namespace llvm; // Out of line method to get vtable etc for class. void ValueMapTypeRemapper::anchor() {} void ValueMaterializer::anchor() {} void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) { } namespace { class Mapper { ValueToValueMapTy &VM; RemapFlags Flags; ValueMapTypeRemapper *TypeMapper; ValueMaterializer *Materializer; SmallVector DistinctWorklist; public: Mapper(ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) : VM(VM), Flags(Flags), TypeMapper(TypeMapper), Materializer(Materializer) {} ~Mapper(); Value *mapValue(const Value *V); /// Map metadata. /// /// Find the mapping for MD. Guarantees that the return will be resolved /// (not an MDNode, or MDNode::isResolved() returns true). Metadata *mapMetadata(const Metadata *MD); private: /// Map metadata helper. /// /// Co-recursively finds the mapping for MD. If this returns an MDNode, it's /// possible that MDNode::isResolved() will return false. Metadata *mapMetadataImpl(const Metadata *MD); Metadata *mapMetadataOp(Metadata *Op); /// Map metadata that doesn't require visiting operands. Optional mapSimpleMetadata(const Metadata *MD); /// Remap the operands of an MDNode. /// /// If \c Node is temporary, uniquing cycles are ignored. If \c Node is /// distinct, uniquing cycles are resolved as they're found. /// /// \pre \c Node.isDistinct() or \c Node.isTemporary(). bool remapOperands(MDNode &Node); /// Map a distinct MDNode. /// /// Whether distinct nodes change is independent of their operands. If \a /// RF_MoveDistinctMDs, then they are reused, and their operands remapped in /// place; effectively, they're moved from one graph to another. Otherwise, /// they're cloned/duplicated, and the new copy's operands are remapped. Metadata *mapDistinctNode(const MDNode *Node); /// Map a uniqued MDNode. /// /// Uniqued nodes may not need to be recreated (they may map to themselves). Metadata *mapUniquedNode(const MDNode *Node); Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); Metadata *mapToSelf(const Metadata *MD); }; } // end namespace Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { return Mapper(VM, Flags, TypeMapper, Materializer).mapValue(V); } Value *Mapper::mapValue(const Value *V) { ValueToValueMapTy::iterator I = VM.find(V); // If the value already exists in the map, use it. if (I != VM.end() && I->second) return I->second; // If we have a materializer and it can materialize a value, use that. if (Materializer) { if (Value *NewV = Materializer->materializeDeclFor(const_cast(V))) { VM[V] = NewV; if (auto *NewGV = dyn_cast(NewV)) Materializer->materializeInitFor( NewGV, const_cast(cast(V))); return NewV; } } // Global values do not need to be seeded into the VM if they // are using the identity mapping. if (isa(V)) { if (Flags & RF_NullMapMissingGlobalValues) { assert(!(Flags & RF_IgnoreMissingEntries) && "Illegal to specify both RF_NullMapMissingGlobalValues and " "RF_IgnoreMissingEntries"); return nullptr; } return VM[V] = const_cast(V); } if (const InlineAsm *IA = dyn_cast(V)) { // Inline asm may need *type* remapping. FunctionType *NewTy = IA->getFunctionType(); if (TypeMapper) { NewTy = cast(TypeMapper->remapType(NewTy)); if (NewTy != IA->getFunctionType()) V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), IA->hasSideEffects(), IA->isAlignStack()); } return VM[V] = const_cast(V); } if (const auto *MDV = dyn_cast(V)) { const Metadata *MD = MDV->getMetadata(); // If this is a module-level metadata and we know that nothing at the module // level is changing, then use an identity mapping. if (!isa(MD) && (Flags & RF_NoModuleLevelChanges)) return VM[V] = const_cast(V); auto *MappedMD = mapMetadata(MD); if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries))) return VM[V] = const_cast(V); // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert((MappedMD || (Flags & RF_NullMapMissingGlobalValues)) && // "Referenced metadata value not in value map"); return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); } // Okay, this either must be a constant (which may or may not be mappable) or // is something that is not in the mapping table. Constant *C = const_cast(dyn_cast(V)); if (!C) return nullptr; if (BlockAddress *BA = dyn_cast(C)) { Function *F = cast(mapValue(BA->getFunction())); BasicBlock *BB = cast_or_null(mapValue(BA->getBasicBlock())); return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); } // Otherwise, we have some other constant to remap. Start by checking to see // if all operands have an identity remapping. unsigned OpNo = 0, NumOperands = C->getNumOperands(); Value *Mapped = nullptr; for (; OpNo != NumOperands; ++OpNo) { Value *Op = C->getOperand(OpNo); Mapped = mapValue(Op); if (Mapped != C) break; } // See if the type mapper wants to remap the type as well. Type *NewTy = C->getType(); if (TypeMapper) NewTy = TypeMapper->remapType(NewTy); // If the result type and all operands match up, then just insert an identity // mapping. if (OpNo == NumOperands && NewTy == C->getType()) return VM[V] = C; // Okay, we need to create a new constant. We've already processed some or // all of the operands, set them all up now. SmallVector Ops; Ops.reserve(NumOperands); for (unsigned j = 0; j != OpNo; ++j) Ops.push_back(cast(C->getOperand(j))); // If one of the operands mismatch, push it and the other mapped operands. if (OpNo != NumOperands) { Ops.push_back(cast(Mapped)); // Map the rest of the operands that aren't processed yet. for (++OpNo; OpNo != NumOperands; ++OpNo) Ops.push_back(cast(mapValue(C->getOperand(OpNo)))); } Type *NewSrcTy = nullptr; if (TypeMapper) if (auto *GEPO = dyn_cast(C)) NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); if (ConstantExpr *CE = dyn_cast(C)) return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); if (isa(C)) return VM[V] = ConstantArray::get(cast(NewTy), Ops); if (isa(C)) return VM[V] = ConstantStruct::get(cast(NewTy), Ops); if (isa(C)) return VM[V] = ConstantVector::get(Ops); // If this is a no-operand constant, it must be because the type was remapped. if (isa(C)) return VM[V] = UndefValue::get(NewTy); if (isa(C)) return VM[V] = ConstantAggregateZero::get(NewTy); assert(isa(C)); return VM[V] = ConstantPointerNull::get(cast(NewTy)); } Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { VM.MD()[Key].reset(Val); return Val; } Metadata *Mapper::mapToSelf(const Metadata *MD) { return mapToMetadata(MD, const_cast(MD)); } Metadata *Mapper::mapMetadataOp(Metadata *Op) { if (!Op) return nullptr; if (Metadata *MappedOp = mapMetadataImpl(Op)) return MappedOp; // Use identity map if MappedOp is null and we can ignore missing entries. if (Flags & RF_IgnoreMissingEntries) return Op; // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert((Flags & RF_NullMapMissingGlobalValues) && // "Referenced metadata not in value map!"); return nullptr; } /// Resolve uniquing cycles involving the given metadata. static void resolveCycles(Metadata *MD) { if (auto *N = dyn_cast_or_null(MD)) if (!N->isResolved()) N->resolveCycles(); } bool Mapper::remapOperands(MDNode &Node) { assert(!Node.isUniqued() && "Expected temporary or distinct node"); const bool IsDistinct = Node.isDistinct(); bool AnyChanged = false; for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) { Metadata *Old = Node.getOperand(I); Metadata *New = mapMetadataOp(Old); if (Old != New) { AnyChanged = true; Node.replaceOperandWith(I, New); // Resolve uniquing cycles underneath distinct nodes on the fly so they // don't infect later operands. if (IsDistinct) resolveCycles(New); } } return AnyChanged; } Metadata *Mapper::mapDistinctNode(const MDNode *Node) { assert(Node->isDistinct() && "Expected distinct node"); MDNode *NewMD; if (Flags & RF_MoveDistinctMDs) NewMD = const_cast(Node); else NewMD = MDNode::replaceWithDistinct(Node->clone()); // Remap operands later. DistinctWorklist.push_back(NewMD); return mapToMetadata(Node, NewMD); } Metadata *Mapper::mapUniquedNode(const MDNode *Node) { assert(Node->isUniqued() && "Expected uniqued node"); // Create a temporary node and map it upfront in case we have a uniquing // cycle. If necessary, this mapping will get updated by RAUW logic before // returning. auto ClonedMD = Node->clone(); mapToMetadata(Node, ClonedMD.get()); if (!remapOperands(*ClonedMD)) { // No operands changed, so use the original. ClonedMD->replaceAllUsesWith(const_cast(Node)); return const_cast(Node); } // Uniquify the cloned node. return MDNode::replaceWithUniqued(std::move(ClonedMD)); } Optional Mapper::mapSimpleMetadata(const Metadata *MD) { // If the value already exists in the map, use it. if (Optional NewMD = VM.getMappedMD(MD)) return *NewMD; if (isa(MD)) return mapToSelf(MD); if (isa(MD)) if ((Flags & RF_NoModuleLevelChanges)) return mapToSelf(MD); if (const auto *VMD = dyn_cast(MD)) { Value *MappedV = mapValue(VMD->getValue()); if (VMD->getValue() == MappedV || (!MappedV && (Flags & RF_IgnoreMissingEntries))) return mapToSelf(MD); // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert((MappedV || (Flags & RF_NullMapMissingGlobalValues)) && // "Referenced metadata not in value map!"); if (MappedV) return mapToMetadata(MD, ValueAsMetadata::get(MappedV)); return nullptr; } assert(isa(MD) && "Expected a metadata node"); // If this is a module-level metadata and we know that nothing at the // module level is changing, then use an identity mapping. if (Flags & RF_NoModuleLevelChanges) return mapToSelf(MD); return None; } Metadata *Mapper::mapMetadataImpl(const Metadata *MD) { if (Optional NewMD = mapSimpleMetadata(MD)) return *NewMD; // Require resolved nodes whenever metadata might be remapped. auto *Node = cast(MD); assert(Node->isResolved() && "Unexpected unresolved node"); if (Node->isDistinct()) return mapDistinctNode(Node); return mapUniquedNode(Node); } Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { return Mapper(VM, Flags, TypeMapper, Materializer).mapMetadata(MD); } Metadata *Mapper::mapMetadata(const Metadata *MD) { Metadata *NewMD = mapMetadataImpl(MD); // When there are no module-level changes, it's possible that the metadata // graph has temporaries. Skip the logic to resolve cycles, since it's // unnecessary (and invalid) in that case. if (Flags & RF_NoModuleLevelChanges) return NewMD; // Resolve cycles involving the entry metadata. resolveCycles(NewMD); return NewMD; } Mapper::~Mapper() { while (!DistinctWorklist.empty()) remapOperands(*DistinctWorklist.pop_back_val()); } MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { return cast_or_null(MapMetadata(static_cast(MD), VM, Flags, TypeMapper, Materializer)); } /// RemapInstruction - Convert the instruction operands from referencing the /// current values into those specified by VMap. /// void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer){ // Remap operands. for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer); // If we aren't ignoring missing entries, assert that something happened. if (V) *op = V; else assert((Flags & RF_IgnoreMissingEntries) && "Referenced value not in value map!"); } // Remap phi nodes' incoming blocks. if (PHINode *PN = dyn_cast(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); // If we aren't ignoring missing entries, assert that something happened. if (V) PN->setIncomingBlock(i, cast(V)); else assert((Flags & RF_IgnoreMissingEntries) && "Referenced block not in value map!"); } } // Remap attached metadata. SmallVector, 4> MDs; I->getAllMetadata(MDs); for (const auto &MI : MDs) { MDNode *Old = MI.second; MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer); if (New != Old) I->setMetadata(MI.first, New); } if (!TypeMapper) return; // If the instruction's type is being remapped, do so now. if (auto CS = CallSite(I)) { SmallVector Tys; FunctionType *FTy = CS.getFunctionType(); Tys.reserve(FTy->getNumParams()); for (Type *Ty : FTy->params()) Tys.push_back(TypeMapper->remapType(Ty)); CS.mutateFunctionType(FunctionType::get( TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); return; } if (auto *AI = dyn_cast(I)) AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); if (auto *GEP = dyn_cast(I)) { GEP->setSourceElementType( TypeMapper->remapType(GEP->getSourceElementType())); GEP->setResultElementType( TypeMapper->remapType(GEP->getResultElementType())); } I->mutateType(TypeMapper->remapType(I->getType())); }