//===-- APFloat.cpp - Implement APFloat class -----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Neil Booth and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision floating // point values and provide a variety of arithmetic operations on them. // //===----------------------------------------------------------------------===// #include #include "llvm/ADT/APFloat.h" #include "llvm/Support/MathExtras.h" using namespace llvm; #define convolve(lhs, rhs) ((lhs) * 4 + (rhs)) /* Assumed in hexadecimal significand parsing. */ COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); namespace llvm { /* Represents floating point arithmetic semantics. */ struct fltSemantics { /* The largest E such that 2^E is representable; this matches the definition of IEEE 754. */ exponent_t maxExponent; /* The smallest E such that 2^E is a normalized number; this matches the definition of IEEE 754. */ exponent_t minExponent; /* Number of bits in the significand. This includes the integer bit. */ unsigned char precision; /* If the target format has an implicit integer bit. */ bool implicitIntegerBit; }; const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true }; const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true }; const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true }; const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false }; const fltSemantics APFloat::Bogus = { 0, 0, 0, false }; } /* Put a bunch of private, handy routines in an anonymous namespace. */ namespace { inline unsigned int partCountForBits(unsigned int bits) { return ((bits) + integerPartWidth - 1) / integerPartWidth; } unsigned int digitValue(unsigned int c) { unsigned int r; r = c - '0'; if(r <= 9) return r; return -1U; } unsigned int hexDigitValue (unsigned int c) { unsigned int r; r = c - '0'; if(r <= 9) return r; r = c - 'A'; if(r <= 5) return r + 10; r = c - 'a'; if(r <= 5) return r + 10; return -1U; } /* This is ugly and needs cleaning up, but I don't immediately see how whilst remaining safe. */ static int totalExponent(const char *p, int exponentAdjustment) { integerPart unsignedExponent; bool negative, overflow; long exponent; /* Move past the exponent letter and sign to the digits. */ p++; negative = *p == '-'; if(*p == '-' || *p == '+') p++; unsignedExponent = 0; overflow = false; for(;;) { unsigned int value; value = digitValue(*p); if(value == -1U) break; p++; unsignedExponent = unsignedExponent * 10 + value; if(unsignedExponent > 65535) overflow = true; } if(exponentAdjustment > 65535 || exponentAdjustment < -65536) overflow = true; if(!overflow) { exponent = unsignedExponent; if(negative) exponent = -exponent; exponent += exponentAdjustment; if(exponent > 65535 || exponent < -65536) overflow = true; } if(overflow) exponent = negative ? -65536: 65535; return exponent; } const char * skipLeadingZeroesAndAnyDot(const char *p, const char **dot) { *dot = 0; while(*p == '0') p++; if(*p == '.') { *dot = p++; while(*p == '0') p++; } return p; } /* Return the trailing fraction of a hexadecimal number. DIGITVALUE is the first hex digit of the fraction, P points to the next digit. */ lostFraction trailingHexadecimalFraction(const char *p, unsigned int digitValue) { unsigned int hexDigit; /* If the first trailing digit isn't 0 or 8 we can work out the fraction immediately. */ if(digitValue > 8) return lfMoreThanHalf; else if(digitValue < 8 && digitValue > 0) return lfLessThanHalf; /* Otherwise we need to find the first non-zero digit. */ while(*p == '0') p++; hexDigit = hexDigitValue(*p); /* If we ran off the end it is exactly zero or one-half, otherwise a little more. */ if(hexDigit == -1U) return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; else return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; } /* Return the fraction lost were a bignum truncated. */ lostFraction lostFractionThroughTruncation(integerPart *parts, unsigned int partCount, unsigned int bits) { unsigned int lsb; lsb = APInt::tcLSB(parts, partCount); /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ if(bits <= lsb) return lfExactlyZero; if(bits == lsb + 1) return lfExactlyHalf; if(bits <= partCount * integerPartWidth && APInt::tcExtractBit(parts, bits - 1)) return lfMoreThanHalf; return lfLessThanHalf; } /* Shift DST right BITS bits noting lost fraction. */ lostFraction shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) { lostFraction lost_fraction; lost_fraction = lostFractionThroughTruncation(dst, parts, bits); APInt::tcShiftRight(dst, parts, bits); return lost_fraction; } } /* Constructors. */ void APFloat::initialize(const fltSemantics *ourSemantics) { unsigned int count; semantics = ourSemantics; count = partCount(); if(count > 1) significand.parts = new integerPart[count]; } void APFloat::freeSignificand() { if(partCount() > 1) delete [] significand.parts; } void APFloat::assign(const APFloat &rhs) { assert(semantics == rhs.semantics); sign = rhs.sign; category = rhs.category; exponent = rhs.exponent; if(category == fcNormal) copySignificand(rhs); } void APFloat::copySignificand(const APFloat &rhs) { assert(category == fcNormal); assert(rhs.partCount() >= partCount()); APInt::tcAssign(significandParts(), rhs.significandParts(), partCount()); } APFloat & APFloat::operator=(const APFloat &rhs) { if(this != &rhs) { if(semantics != rhs.semantics) { freeSignificand(); initialize(rhs.semantics); } assign(rhs); } return *this; } bool APFloat::bitwiseIsEqual(const APFloat &rhs) const { if (this == &rhs) return true; if (semantics != rhs.semantics || category != rhs.category) return false; if (category==fcQNaN) return true; else if (category==fcZero || category==fcInfinity) return sign==rhs.sign; else { if (sign!=rhs.sign || exponent!=rhs.exponent) return false; int i= partCount(); const integerPart* p=significandParts(); const integerPart* q=rhs.significandParts(); for (; i>0; i--, p++, q++) { if (*p != *q) return false; } return true; } } APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) { initialize(&ourSemantics); sign = 0; zeroSignificand(); exponent = ourSemantics.precision - 1; significandParts()[0] = value; normalize(rmNearestTiesToEven, lfExactlyZero); } APFloat::APFloat(const fltSemantics &ourSemantics, fltCategory ourCategory, bool negative) { initialize(&ourSemantics); category = ourCategory; sign = negative; if(category == fcNormal) category = fcZero; } APFloat::APFloat(const fltSemantics &ourSemantics, const char *text) { initialize(&ourSemantics); convertFromString(text, rmNearestTiesToEven); } APFloat::APFloat(const APFloat &rhs) { initialize(rhs.semantics); assign(rhs); } APFloat::~APFloat() { freeSignificand(); } unsigned int APFloat::partCount() const { return partCountForBits(semantics->precision + 1); } unsigned int APFloat::semanticsPrecision(const fltSemantics &semantics) { return semantics.precision; } const integerPart * APFloat::significandParts() const { return const_cast(this)->significandParts(); } integerPart * APFloat::significandParts() { assert(category == fcNormal); if(partCount() > 1) return significand.parts; else return &significand.part; } /* Combine the effect of two lost fractions. */ lostFraction APFloat::combineLostFractions(lostFraction moreSignificant, lostFraction lessSignificant) { if(lessSignificant != lfExactlyZero) { if(moreSignificant == lfExactlyZero) moreSignificant = lfLessThanHalf; else if(moreSignificant == lfExactlyHalf) moreSignificant = lfMoreThanHalf; } return moreSignificant; } void APFloat::zeroSignificand() { category = fcNormal; APInt::tcSet(significandParts(), 0, partCount()); } /* Increment an fcNormal floating point number's significand. */ void APFloat::incrementSignificand() { integerPart carry; carry = APInt::tcIncrement(significandParts(), partCount()); /* Our callers should never cause us to overflow. */ assert(carry == 0); } /* Add the significand of the RHS. Returns the carry flag. */ integerPart APFloat::addSignificand(const APFloat &rhs) { integerPart *parts; parts = significandParts(); assert(semantics == rhs.semantics); assert(exponent == rhs.exponent); return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); } /* Subtract the significand of the RHS with a borrow flag. Returns the borrow flag. */ integerPart APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) { integerPart *parts; parts = significandParts(); assert(semantics == rhs.semantics); assert(exponent == rhs.exponent); return APInt::tcSubtract(parts, rhs.significandParts(), borrow, partCount()); } /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it on to the full-precision result of the multiplication. Returns the lost fraction. */ lostFraction APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) { unsigned int omsb; // One, not zero, based MSB. unsigned int partsCount, newPartsCount, precision; integerPart *lhsSignificand; integerPart scratch[4]; integerPart *fullSignificand; lostFraction lost_fraction; assert(semantics == rhs.semantics); precision = semantics->precision; newPartsCount = partCountForBits(precision * 2); if(newPartsCount > 4) fullSignificand = new integerPart[newPartsCount]; else fullSignificand = scratch; lhsSignificand = significandParts(); partsCount = partCount(); APInt::tcFullMultiply(fullSignificand, lhsSignificand, rhs.significandParts(), partsCount); lost_fraction = lfExactlyZero; omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; exponent += rhs.exponent; if(addend) { Significand savedSignificand = significand; const fltSemantics *savedSemantics = semantics; fltSemantics extendedSemantics; opStatus status; unsigned int extendedPrecision; /* Normalize our MSB. */ extendedPrecision = precision + precision - 1; if(omsb != extendedPrecision) { APInt::tcShiftLeft(fullSignificand, newPartsCount, extendedPrecision - omsb); exponent -= extendedPrecision - omsb; } /* Create new semantics. */ extendedSemantics = *semantics; extendedSemantics.precision = extendedPrecision; if(newPartsCount == 1) significand.part = fullSignificand[0]; else significand.parts = fullSignificand; semantics = &extendedSemantics; APFloat extendedAddend(*addend); status = extendedAddend.convert(extendedSemantics, rmTowardZero); assert(status == opOK); lost_fraction = addOrSubtractSignificand(extendedAddend, false); /* Restore our state. */ if(newPartsCount == 1) fullSignificand[0] = significand.part; significand = savedSignificand; semantics = savedSemantics; omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; } exponent -= (precision - 1); if(omsb > precision) { unsigned int bits, significantParts; lostFraction lf; bits = omsb - precision; significantParts = partCountForBits(omsb); lf = shiftRight(fullSignificand, significantParts, bits); lost_fraction = combineLostFractions(lf, lost_fraction); exponent += bits; } APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); if(newPartsCount > 4) delete [] fullSignificand; return lost_fraction; } /* Multiply the significands of LHS and RHS to DST. */ lostFraction APFloat::divideSignificand(const APFloat &rhs) { unsigned int bit, i, partsCount; const integerPart *rhsSignificand; integerPart *lhsSignificand, *dividend, *divisor; integerPart scratch[4]; lostFraction lost_fraction; assert(semantics == rhs.semantics); lhsSignificand = significandParts(); rhsSignificand = rhs.significandParts(); partsCount = partCount(); if(partsCount > 2) dividend = new integerPart[partsCount * 2]; else dividend = scratch; divisor = dividend + partsCount; /* Copy the dividend and divisor as they will be modified in-place. */ for(i = 0; i < partsCount; i++) { dividend[i] = lhsSignificand[i]; divisor[i] = rhsSignificand[i]; lhsSignificand[i] = 0; } exponent -= rhs.exponent; unsigned int precision = semantics->precision; /* Normalize the divisor. */ bit = precision - APInt::tcMSB(divisor, partsCount) - 1; if(bit) { exponent += bit; APInt::tcShiftLeft(divisor, partsCount, bit); } /* Normalize the dividend. */ bit = precision - APInt::tcMSB(dividend, partsCount) - 1; if(bit) { exponent -= bit; APInt::tcShiftLeft(dividend, partsCount, bit); } if(APInt::tcCompare(dividend, divisor, partsCount) < 0) { exponent--; APInt::tcShiftLeft(dividend, partsCount, 1); assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); } /* Long division. */ for(bit = precision; bit; bit -= 1) { if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) { APInt::tcSubtract(dividend, divisor, 0, partsCount); APInt::tcSetBit(lhsSignificand, bit - 1); } APInt::tcShiftLeft(dividend, partsCount, 1); } /* Figure out the lost fraction. */ int cmp = APInt::tcCompare(dividend, divisor, partsCount); if(cmp > 0) lost_fraction = lfMoreThanHalf; else if(cmp == 0) lost_fraction = lfExactlyHalf; else if(APInt::tcIsZero(dividend, partsCount)) lost_fraction = lfExactlyZero; else lost_fraction = lfLessThanHalf; if(partsCount > 2) delete [] dividend; return lost_fraction; } unsigned int APFloat::significandMSB() const { return APInt::tcMSB(significandParts(), partCount()); } unsigned int APFloat::significandLSB() const { return APInt::tcLSB(significandParts(), partCount()); } /* Note that a zero result is NOT normalized to fcZero. */ lostFraction APFloat::shiftSignificandRight(unsigned int bits) { /* Our exponent should not overflow. */ assert((exponent_t) (exponent + bits) >= exponent); exponent += bits; return shiftRight(significandParts(), partCount(), bits); } /* Shift the significand left BITS bits, subtract BITS from its exponent. */ void APFloat::shiftSignificandLeft(unsigned int bits) { assert(bits < semantics->precision); if(bits) { unsigned int partsCount = partCount(); APInt::tcShiftLeft(significandParts(), partsCount, bits); exponent -= bits; assert(!APInt::tcIsZero(significandParts(), partsCount)); } } APFloat::cmpResult APFloat::compareAbsoluteValue(const APFloat &rhs) const { int compare; assert(semantics == rhs.semantics); assert(category == fcNormal); assert(rhs.category == fcNormal); compare = exponent - rhs.exponent; /* If exponents are equal, do an unsigned bignum comparison of the significands. */ if(compare == 0) compare = APInt::tcCompare(significandParts(), rhs.significandParts(), partCount()); if(compare > 0) return cmpGreaterThan; else if(compare < 0) return cmpLessThan; else return cmpEqual; } /* Handle overflow. Sign is preserved. We either become infinity or the largest finite number. */ APFloat::opStatus APFloat::handleOverflow(roundingMode rounding_mode) { /* Infinity? */ if(rounding_mode == rmNearestTiesToEven || rounding_mode == rmNearestTiesToAway || (rounding_mode == rmTowardPositive && !sign) || (rounding_mode == rmTowardNegative && sign)) { category = fcInfinity; return (opStatus) (opOverflow | opInexact); } /* Otherwise we become the largest finite number. */ category = fcNormal; exponent = semantics->maxExponent; APInt::tcSetLeastSignificantBits(significandParts(), partCount(), semantics->precision); return opInexact; } /* This routine must work for fcZero of both signs, and fcNormal numbers. */ bool APFloat::roundAwayFromZero(roundingMode rounding_mode, lostFraction lost_fraction) { /* QNaNs and infinities should not have lost fractions. */ assert(category == fcNormal || category == fcZero); /* Our caller has already handled this case. */ assert(lost_fraction != lfExactlyZero); switch(rounding_mode) { default: assert(0); case rmNearestTiesToAway: return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; case rmNearestTiesToEven: if(lost_fraction == lfMoreThanHalf) return true; /* Our zeroes don't have a significand to test. */ if(lost_fraction == lfExactlyHalf && category != fcZero) return significandParts()[0] & 1; return false; case rmTowardZero: return false; case rmTowardPositive: return sign == false; case rmTowardNegative: return sign == true; } } APFloat::opStatus APFloat::normalize(roundingMode rounding_mode, lostFraction lost_fraction) { unsigned int omsb; /* One, not zero, based MSB. */ int exponentChange; if(category != fcNormal) return opOK; /* Before rounding normalize the exponent of fcNormal numbers. */ omsb = significandMSB() + 1; if(omsb) { /* OMSB is numbered from 1. We want to place it in the integer bit numbered PRECISON if possible, with a compensating change in the exponent. */ exponentChange = omsb - semantics->precision; /* If the resulting exponent is too high, overflow according to the rounding mode. */ if(exponent + exponentChange > semantics->maxExponent) return handleOverflow(rounding_mode); /* Subnormal numbers have exponent minExponent, and their MSB is forced based on that. */ if(exponent + exponentChange < semantics->minExponent) exponentChange = semantics->minExponent - exponent; /* Shifting left is easy as we don't lose precision. */ if(exponentChange < 0) { assert(lost_fraction == lfExactlyZero); shiftSignificandLeft(-exponentChange); return opOK; } if(exponentChange > 0) { lostFraction lf; /* Shift right and capture any new lost fraction. */ lf = shiftSignificandRight(exponentChange); lost_fraction = combineLostFractions(lf, lost_fraction); /* Keep OMSB up-to-date. */ if(omsb > (unsigned) exponentChange) omsb -= (unsigned) exponentChange; else omsb = 0; } } /* Now round the number according to rounding_mode given the lost fraction. */ /* As specified in IEEE 754, since we do not trap we do not report underflow for exact results. */ if(lost_fraction == lfExactlyZero) { /* Canonicalize zeroes. */ if(omsb == 0) category = fcZero; return opOK; } /* Increment the significand if we're rounding away from zero. */ if(roundAwayFromZero(rounding_mode, lost_fraction)) { if(omsb == 0) exponent = semantics->minExponent; incrementSignificand(); omsb = significandMSB() + 1; /* Did the significand increment overflow? */ if(omsb == (unsigned) semantics->precision + 1) { /* Renormalize by incrementing the exponent and shifting our significand right one. However if we already have the maximum exponent we overflow to infinity. */ if(exponent == semantics->maxExponent) { category = fcInfinity; return (opStatus) (opOverflow | opInexact); } shiftSignificandRight(1); return opInexact; } } /* The normal case - we were and are not denormal, and any significand increment above didn't overflow. */ if(omsb == semantics->precision) return opInexact; /* We have a non-zero denormal. */ assert(omsb < semantics->precision); assert(exponent == semantics->minExponent); /* Canonicalize zeroes. */ if(omsb == 0) category = fcZero; /* The fcZero case is a denormal that underflowed to zero. */ return (opStatus) (opUnderflow | opInexact); } APFloat::opStatus APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) { switch(convolve(category, rhs.category)) { default: assert(0); case convolve(fcQNaN, fcZero): case convolve(fcQNaN, fcNormal): case convolve(fcQNaN, fcInfinity): case convolve(fcQNaN, fcQNaN): case convolve(fcNormal, fcZero): case convolve(fcInfinity, fcNormal): case convolve(fcInfinity, fcZero): return opOK; case convolve(fcZero, fcQNaN): case convolve(fcNormal, fcQNaN): case convolve(fcInfinity, fcQNaN): category = fcQNaN; return opOK; case convolve(fcNormal, fcInfinity): case convolve(fcZero, fcInfinity): category = fcInfinity; sign = rhs.sign ^ subtract; return opOK; case convolve(fcZero, fcNormal): assign(rhs); sign = rhs.sign ^ subtract; return opOK; case convolve(fcZero, fcZero): /* Sign depends on rounding mode; handled by caller. */ return opOK; case convolve(fcInfinity, fcInfinity): /* Differently signed infinities can only be validly subtracted. */ if(sign ^ rhs.sign != subtract) { category = fcQNaN; return opInvalidOp; } return opOK; case convolve(fcNormal, fcNormal): return opDivByZero; } } /* Add or subtract two normal numbers. */ lostFraction APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) { integerPart carry; lostFraction lost_fraction; int bits; /* Determine if the operation on the absolute values is effectively an addition or subtraction. */ subtract ^= (sign ^ rhs.sign); /* Are we bigger exponent-wise than the RHS? */ bits = exponent - rhs.exponent; /* Subtraction is more subtle than one might naively expect. */ if(subtract) { APFloat temp_rhs(rhs); bool reverse; if (bits == 0) { reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; lost_fraction = lfExactlyZero; } else if (bits > 0) { lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); shiftSignificandLeft(1); reverse = false; } else { lost_fraction = shiftSignificandRight(-bits - 1); temp_rhs.shiftSignificandLeft(1); reverse = true; } if (reverse) { carry = temp_rhs.subtractSignificand (*this, lost_fraction != lfExactlyZero); copySignificand(temp_rhs); sign = !sign; } else { carry = subtractSignificand (temp_rhs, lost_fraction != lfExactlyZero); } /* Invert the lost fraction - it was on the RHS and subtracted. */ if(lost_fraction == lfLessThanHalf) lost_fraction = lfMoreThanHalf; else if(lost_fraction == lfMoreThanHalf) lost_fraction = lfLessThanHalf; /* The code above is intended to ensure that no borrow is necessary. */ assert(!carry); } else { if(bits > 0) { APFloat temp_rhs(rhs); lost_fraction = temp_rhs.shiftSignificandRight(bits); carry = addSignificand(temp_rhs); } else { lost_fraction = shiftSignificandRight(-bits); carry = addSignificand(rhs); } /* We have a guard bit; generating a carry cannot happen. */ assert(!carry); } return lost_fraction; } APFloat::opStatus APFloat::multiplySpecials(const APFloat &rhs) { switch(convolve(category, rhs.category)) { default: assert(0); case convolve(fcQNaN, fcZero): case convolve(fcQNaN, fcNormal): case convolve(fcQNaN, fcInfinity): case convolve(fcQNaN, fcQNaN): case convolve(fcZero, fcQNaN): case convolve(fcNormal, fcQNaN): case convolve(fcInfinity, fcQNaN): category = fcQNaN; return opOK; case convolve(fcNormal, fcInfinity): case convolve(fcInfinity, fcNormal): case convolve(fcInfinity, fcInfinity): category = fcInfinity; return opOK; case convolve(fcZero, fcNormal): case convolve(fcNormal, fcZero): case convolve(fcZero, fcZero): category = fcZero; return opOK; case convolve(fcZero, fcInfinity): case convolve(fcInfinity, fcZero): category = fcQNaN; return opInvalidOp; case convolve(fcNormal, fcNormal): return opOK; } } APFloat::opStatus APFloat::divideSpecials(const APFloat &rhs) { switch(convolve(category, rhs.category)) { default: assert(0); case convolve(fcQNaN, fcZero): case convolve(fcQNaN, fcNormal): case convolve(fcQNaN, fcInfinity): case convolve(fcQNaN, fcQNaN): case convolve(fcInfinity, fcZero): case convolve(fcInfinity, fcNormal): case convolve(fcZero, fcInfinity): case convolve(fcZero, fcNormal): return opOK; case convolve(fcZero, fcQNaN): case convolve(fcNormal, fcQNaN): case convolve(fcInfinity, fcQNaN): category = fcQNaN; return opOK; case convolve(fcNormal, fcInfinity): category = fcZero; return opOK; case convolve(fcNormal, fcZero): category = fcInfinity; return opDivByZero; case convolve(fcInfinity, fcInfinity): case convolve(fcZero, fcZero): category = fcQNaN; return opInvalidOp; case convolve(fcNormal, fcNormal): return opOK; } } /* Change sign. */ void APFloat::changeSign() { /* Look mummy, this one's easy. */ sign = !sign; } /* Normalized addition or subtraction. */ APFloat::opStatus APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, bool subtract) { opStatus fs; fs = addOrSubtractSpecials(rhs, subtract); /* This return code means it was not a simple case. */ if(fs == opDivByZero) { lostFraction lost_fraction; lost_fraction = addOrSubtractSignificand(rhs, subtract); fs = normalize(rounding_mode, lost_fraction); /* Can only be zero if we lost no fraction. */ assert(category != fcZero || lost_fraction == lfExactlyZero); } /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a positive zero unless rounding to minus infinity, except that adding two like-signed zeroes gives that zero. */ if(category == fcZero) { if(rhs.category != fcZero || (sign == rhs.sign) == subtract) sign = (rounding_mode == rmTowardNegative); } return fs; } /* Normalized addition. */ APFloat::opStatus APFloat::add(const APFloat &rhs, roundingMode rounding_mode) { return addOrSubtract(rhs, rounding_mode, false); } /* Normalized subtraction. */ APFloat::opStatus APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) { return addOrSubtract(rhs, rounding_mode, true); } /* Normalized multiply. */ APFloat::opStatus APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) { opStatus fs; sign ^= rhs.sign; fs = multiplySpecials(rhs); if(category == fcNormal) { lostFraction lost_fraction = multiplySignificand(rhs, 0); fs = normalize(rounding_mode, lost_fraction); if(lost_fraction != lfExactlyZero) fs = (opStatus) (fs | opInexact); } return fs; } /* Normalized divide. */ APFloat::opStatus APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) { opStatus fs; sign ^= rhs.sign; fs = divideSpecials(rhs); if(category == fcNormal) { lostFraction lost_fraction = divideSignificand(rhs); fs = normalize(rounding_mode, lost_fraction); if(lost_fraction != lfExactlyZero) fs = (opStatus) (fs | opInexact); } return fs; } /* Normalized fused-multiply-add. */ APFloat::opStatus APFloat::fusedMultiplyAdd(const APFloat &multiplicand, const APFloat &addend, roundingMode rounding_mode) { opStatus fs; /* Post-multiplication sign, before addition. */ sign ^= multiplicand.sign; /* If and only if all arguments are normal do we need to do an extended-precision calculation. */ if(category == fcNormal && multiplicand.category == fcNormal && addend.category == fcNormal) { lostFraction lost_fraction; lost_fraction = multiplySignificand(multiplicand, &addend); fs = normalize(rounding_mode, lost_fraction); if(lost_fraction != lfExactlyZero) fs = (opStatus) (fs | opInexact); /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a positive zero unless rounding to minus infinity, except that adding two like-signed zeroes gives that zero. */ if(category == fcZero && sign != addend.sign) sign = (rounding_mode == rmTowardNegative); } else { fs = multiplySpecials(multiplicand); /* FS can only be opOK or opInvalidOp. There is no more work to do in the latter case. The IEEE-754R standard says it is implementation-defined in this case whether, if ADDEND is a quiet QNaN, we raise invalid op; this implementation does so. If we need to do the addition we can do so with normal precision. */ if(fs == opOK) fs = addOrSubtract(addend, rounding_mode, false); } return fs; } /* Comparison requires normalized numbers. */ APFloat::cmpResult APFloat::compare(const APFloat &rhs) const { cmpResult result; assert(semantics == rhs.semantics); switch(convolve(category, rhs.category)) { default: assert(0); case convolve(fcQNaN, fcZero): case convolve(fcQNaN, fcNormal): case convolve(fcQNaN, fcInfinity): case convolve(fcQNaN, fcQNaN): case convolve(fcZero, fcQNaN): case convolve(fcNormal, fcQNaN): case convolve(fcInfinity, fcQNaN): return cmpUnordered; case convolve(fcInfinity, fcNormal): case convolve(fcInfinity, fcZero): case convolve(fcNormal, fcZero): if(sign) return cmpLessThan; else return cmpGreaterThan; case convolve(fcNormal, fcInfinity): case convolve(fcZero, fcInfinity): case convolve(fcZero, fcNormal): if(rhs.sign) return cmpGreaterThan; else return cmpLessThan; case convolve(fcInfinity, fcInfinity): if(sign == rhs.sign) return cmpEqual; else if(sign) return cmpLessThan; else return cmpGreaterThan; case convolve(fcZero, fcZero): return cmpEqual; case convolve(fcNormal, fcNormal): break; } /* Two normal numbers. Do they have the same sign? */ if(sign != rhs.sign) { if(sign) result = cmpLessThan; else result = cmpGreaterThan; } else { /* Compare absolute values; invert result if negative. */ result = compareAbsoluteValue(rhs); if(sign) { if(result == cmpLessThan) result = cmpGreaterThan; else if(result == cmpGreaterThan) result = cmpLessThan; } } return result; } APFloat::opStatus APFloat::convert(const fltSemantics &toSemantics, roundingMode rounding_mode) { unsigned int newPartCount; opStatus fs; newPartCount = partCountForBits(toSemantics.precision + 1); /* If our new form is wider, re-allocate our bit pattern into wider storage. */ if(newPartCount > partCount()) { integerPart *newParts; newParts = new integerPart[newPartCount]; APInt::tcSet(newParts, 0, newPartCount); APInt::tcAssign(newParts, significandParts(), partCount()); freeSignificand(); significand.parts = newParts; } if(category == fcNormal) { /* Re-interpret our bit-pattern. */ exponent += toSemantics.precision - semantics->precision; semantics = &toSemantics; fs = normalize(rounding_mode, lfExactlyZero); } else { semantics = &toSemantics; fs = opOK; } return fs; } /* Convert a floating point number to an integer according to the rounding mode. If the rounded integer value is out of range this returns an invalid operation exception. If the rounded value is in range but the floating point number is not the exact integer, the C standard doesn't require an inexact exception to be raised. IEEE 854 does require it so we do that. Note that for conversions to integer type the C standard requires round-to-zero to always be used. */ APFloat::opStatus APFloat::convertToInteger(integerPart *parts, unsigned int width, bool isSigned, roundingMode rounding_mode) const { lostFraction lost_fraction; unsigned int msb, partsCount; int bits; /* Handle the three special cases first. */ if(category == fcInfinity || category == fcQNaN) return opInvalidOp; partsCount = partCountForBits(width); if(category == fcZero) { APInt::tcSet(parts, 0, partsCount); return opOK; } /* Shift the bit pattern so the fraction is lost. */ APFloat tmp(*this); bits = (int) semantics->precision - 1 - exponent; if(bits > 0) { lost_fraction = tmp.shiftSignificandRight(bits); } else { tmp.shiftSignificandLeft(-bits); lost_fraction = lfExactlyZero; } if(lost_fraction != lfExactlyZero && tmp.roundAwayFromZero(rounding_mode, lost_fraction)) tmp.incrementSignificand(); msb = tmp.significandMSB(); /* Negative numbers cannot be represented as unsigned. */ if(!isSigned && tmp.sign && msb != -1U) return opInvalidOp; /* It takes exponent + 1 bits to represent the truncated floating point number without its sign. We lose a bit for the sign, but the maximally negative integer is a special case. */ if(msb + 1 > width) /* !! Not same as msb >= width !! */ return opInvalidOp; if(isSigned && msb + 1 == width && (!tmp.sign || tmp.significandLSB() != msb)) return opInvalidOp; APInt::tcAssign(parts, tmp.significandParts(), partsCount); if(tmp.sign) APInt::tcNegate(parts, partsCount); if(lost_fraction == lfExactlyZero) return opOK; else return opInexact; } APFloat::opStatus APFloat::convertFromUnsignedInteger(integerPart *parts, unsigned int partCount, roundingMode rounding_mode) { unsigned int msb, precision; lostFraction lost_fraction; msb = APInt::tcMSB(parts, partCount) + 1; precision = semantics->precision; category = fcNormal; exponent = precision - 1; if(msb > precision) { exponent += (msb - precision); lost_fraction = shiftRight(parts, partCount, msb - precision); msb = precision; } else lost_fraction = lfExactlyZero; /* Copy the bit image. */ zeroSignificand(); APInt::tcAssign(significandParts(), parts, partCountForBits(msb)); return normalize(rounding_mode, lost_fraction); } APFloat::opStatus APFloat::convertFromInteger(const integerPart *parts, unsigned int partCount, bool isSigned, roundingMode rounding_mode) { unsigned int width; opStatus status; integerPart *copy; copy = new integerPart[partCount]; APInt::tcAssign(copy, parts, partCount); width = partCount * integerPartWidth; sign = false; if(isSigned && APInt::tcExtractBit(parts, width - 1)) { sign = true; APInt::tcNegate(copy, partCount); } status = convertFromUnsignedInteger(copy, partCount, rounding_mode); delete [] copy; return status; } APFloat::opStatus APFloat::convertFromHexadecimalString(const char *p, roundingMode rounding_mode) { lostFraction lost_fraction; integerPart *significand; unsigned int bitPos, partsCount; const char *dot, *firstSignificantDigit; zeroSignificand(); exponent = 0; category = fcNormal; significand = significandParts(); partsCount = partCount(); bitPos = partsCount * integerPartWidth; /* Skip leading zeroes and any(hexa)decimal point. */ p = skipLeadingZeroesAndAnyDot(p, &dot); firstSignificantDigit = p; for(;;) { integerPart hex_value; if(*p == '.') { assert(dot == 0); dot = p++; } hex_value = hexDigitValue(*p); if(hex_value == -1U) { lost_fraction = lfExactlyZero; break; } p++; /* Store the number whilst 4-bit nibbles remain. */ if(bitPos) { bitPos -= 4; hex_value <<= bitPos % integerPartWidth; significand[bitPos / integerPartWidth] |= hex_value; } else { lost_fraction = trailingHexadecimalFraction(p, hex_value); while(hexDigitValue(*p) != -1U) p++; break; } } /* Hex floats require an exponent but not a hexadecimal point. */ assert(*p == 'p' || *p == 'P'); /* Ignore the exponent if we are zero. */ if(p != firstSignificantDigit) { int expAdjustment; /* Implicit hexadecimal point? */ if(!dot) dot = p; /* Calculate the exponent adjustment implicit in the number of significant digits. */ expAdjustment = dot - firstSignificantDigit; if(expAdjustment < 0) expAdjustment++; expAdjustment = expAdjustment * 4 - 1; /* Adjust for writing the significand starting at the most significant nibble. */ expAdjustment += semantics->precision; expAdjustment -= partsCount * integerPartWidth; /* Adjust for the given exponent. */ exponent = totalExponent(p, expAdjustment); } return normalize(rounding_mode, lost_fraction); } APFloat::opStatus APFloat::convertFromString(const char *p, roundingMode rounding_mode) { /* Handle a leading minus sign. */ if(*p == '-') sign = 1, p++; else sign = 0; if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) return convertFromHexadecimalString(p + 2, rounding_mode); assert(0 && "Decimal to binary conversions not yet implemented"); abort(); } // For good performance it is desirable for different APFloats // to produce different integers. uint32_t APFloat::getHashValue() const { if (category==fcZero) return sign<<8 | semantics->precision ; else if (category==fcInfinity) return sign<<9 | semantics->precision; else if (category==fcQNaN) return 1<<10 | semantics->precision; else { uint32_t hash = sign<<11 | semantics->precision | exponent<<12; const integerPart* p = significandParts(); for (int i=partCount(); i>0; i--, p++) hash ^= ((uint32_t)*p) ^ (*p)>>32; return hash; } } // Conversion from APFloat to/from host float/double. It may eventually be // possible to eliminate these and have everybody deal with APFloats, but that // will take a while. This approach will not easily extend to long double. // Current implementation requires partCount()==1, which is correct at the // moment but could be made more general. double APFloat::convertToDouble() const { assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble); assert (partCount()==1); uint64_t myexponent, mysign, mysignificand; if (category==fcNormal) { mysign = sign; mysignificand = *significandParts(); myexponent = exponent+1023; //bias } else if (category==fcZero) { mysign = sign; myexponent = 0; mysignificand = 0; } else if (category==fcInfinity) { mysign = sign; myexponent = 0x7ff; mysignificand = 0; } else if (category==fcQNaN) { mysign = 0; myexponent = 0x7ff; mysignificand = 0xfffffffffffffLL; } else assert(0); return BitsToDouble(((mysign & 1) << 63) | ((myexponent & 0x7ff) << 52) | (mysignificand & 0xfffffffffffffLL)); } float APFloat::convertToFloat() const { assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle); assert (partCount()==1); uint32_t mysign, myexponent, mysignificand; if (category==fcNormal) { mysign = sign; myexponent = exponent+127; //bias mysignificand = *significandParts(); } else if (category==fcZero) { mysign = sign; myexponent = 0; mysignificand = 0; } else if (category==fcInfinity) { mysign = sign; myexponent = 0xff; mysignificand = 0; } else if (category==fcQNaN) { mysign = sign; myexponent = 0x7ff; mysignificand = 0x7fffff; } else assert(0); return BitsToFloat(((mysign&1) << 31) | ((myexponent&0xff) << 23) | (mysignificand & 0x7fffff)); } APFloat::APFloat(double d) { uint64_t i = DoubleToBits(d); uint64_t mysign = i >> 63; uint64_t myexponent = (i >> 52) & 0x7ff; uint64_t mysignificand = i & 0xfffffffffffffLL; initialize(&APFloat::IEEEdouble); assert(partCount()==1); if (myexponent==0 && mysignificand==0) { // exponent, significand meaningless category = fcZero; sign = mysign; } else if (myexponent==0x7ff && mysignificand==0) { // exponent, significand meaningless category = fcInfinity; sign = mysign; } else if (myexponent==0x7ff && (mysignificand & 0x8000000000000LL)) { // sign, exponent, significand meaningless category = fcQNaN; } else { sign = mysign; category = fcNormal; exponent = myexponent - 1023; *significandParts() = mysignificand | 0x10000000000000LL; } } APFloat::APFloat(float f) { uint32_t i = FloatToBits(f); uint32_t mysign = i >> 31; uint32_t myexponent = (i >> 23) & 0xff; uint32_t mysignificand = i & 0x7fffff; initialize(&APFloat::IEEEsingle); assert(partCount()==1); if (myexponent==0 && mysignificand==0) { // exponent, significand meaningless category = fcZero; sign = mysign; } else if (myexponent==0xff && mysignificand==0) { // exponent, significand meaningless category = fcInfinity; sign = mysign; } else if (myexponent==0xff && (mysignificand & 0x400000)) { // sign, exponent, significand meaningless category = fcQNaN; } else { category = fcNormal; sign = mysign; exponent = myexponent - 127; //bias *significandParts() = mysignificand | 0x800000; // integer bit } }