//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===// // // This pass is used to promote memory references to be register references. A // simple example of the transformation performed by this pass is: // // FROM CODE TO CODE // %X = alloca int, uint 1 ret int 42 // store int 42, int *%X // %Y = load int* %X // ret int %Y // // To do this transformation, a simple analysis is done to ensure it is safe. // Currently this just loops over all alloca instructions, looking for // instructions that are only used in simple load and stores. // // After this, the code is transformed by...something magical :) // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/PromoteMemoryToRegister.h" #include "llvm/Analysis/Dominators.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/ConstantVals.h" using namespace std; using cfg::DominanceFrontier; namespace { //instance of the promoter -- to keep all the local function data. // gets re-created for each function processed class PromoteInstance { protected: vector Allocas; // the alloca instruction.. map AllocaLookup; //reverse mapping of above vector > WriteSets; // index corresponds to Allocas vector > PhiNodes; // index corresponds to Allocas vector > CurrentValue; //the current value stack //list of instructions to remove at end of pass :) vector killlist; set visited; //the basic blocks we've already visited map > new_phinodes; //the phinodes we're adding void traverse(BasicBlock *f, BasicBlock * predecessor); bool PromoteFunction(Function *F, DominanceFrontier &DF); bool queuePhiNode(BasicBlock *bb, int alloca_index); void findSafeAllocas(Function *M); bool didchange; public: // I do this so that I can force the deconstruction of the local variables PromoteInstance(Function *F, DominanceFrontier &DF) { didchange=PromoteFunction(F, DF); } //This returns whether the pass changes anything operator bool () { return didchange; } }; } // end of anonymous namespace // findSafeAllocas - Find allocas that are safe to promote // void PromoteInstance::findSafeAllocas(Function *F) { BasicBlock *BB = F->getEntryNode(); // Get the entry node for the function // Look at all instructions in the entry node for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(*I)) // Is it an alloca? if (!AI->isArrayAllocation()) { bool isSafe = true; for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) { // Loop over all of the uses of the alloca // Only allow nonindexed memory access instructions... if (MemAccessInst *MAI = dyn_cast(*UI)) { if (MAI->hasIndices()) { // indexed? // Allow the access if there is only one index and the index is zero. if (*MAI->idx_begin() != ConstantUInt::get(Type::UIntTy, 0) || MAI->idx_begin()+1 != MAI->idx_end()) { isSafe = false; break; } } } else { isSafe = false; break; // Not a load or store? } } if (isSafe) // If all checks pass, add alloca to safe list { AllocaLookup[AI]=Allocas.size(); Allocas.push_back(AI); } } } bool PromoteInstance::PromoteFunction(Function *F, DominanceFrontier & DF) { // Calculate the set of safe allocas findSafeAllocas(F); // Add each alloca to the killlist // note: killlist is destroyed MOST recently added to least recently. killlist.assign(Allocas.begin(), Allocas.end()); // Calculate the set of write-locations for each alloca. // this is analogous to counting the number of 'redefinitions' of each variable. for (unsigned i = 0; i()); //add a new set for (Value::use_iterator U = AI->use_begin();U!=AI->use_end();++U) { if (MemAccessInst *MAI = dyn_cast(*U)) { WriteSets[i].push_back(MAI->getParent()); // jot down the basic-block it came from } } } // Compute the locations where PhiNodes need to be inserted // look at the dominance frontier of EACH basic-block we have a write in PhiNodes.resize(Allocas.size()); for (unsigned i = 0; isecond; for (DominanceFrontier::DomSetType::iterator p = s.begin(); p!=s.end(); ++p) { if (queuePhiNode(*p,i)) PhiNodes[i].push_back(*p); } } } // Walks all basic blocks in the function // performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary BasicBlock * f = F->front(); //get root basic-block CurrentValue.push_back(vector(Allocas.size())); traverse(f, NULL); // there is no predecessor of the root node // ** REMOVE EVERYTHING IN THE KILL-LIST ** // we need to kill 'uses' before root values // so we should probably run through in reverse for (vector::reverse_iterator i = killlist.rbegin(); i!=killlist.rend(); ++i) { Instruction * r = *i; BasicBlock * o = r->getParent(); //now go find.. BasicBlock::InstListType & l = o->getInstList(); o->getInstList().remove(r); delete r; } return !Allocas.empty(); } void PromoteInstance::traverse(BasicBlock *f, BasicBlock * predecessor) { vector * tos = &CurrentValue.back(); //look at top- //if this is a BB needing a phi node, lookup/create the phinode for // each variable we need phinodes for. map >::iterator nd = new_phinodes.find(f); if (nd!=new_phinodes.end()) { for (unsigned k = 0; k!=nd->second.size(); ++k) if (nd->second[k]) { //at this point we can assume that the array has phi nodes.. let's // add the incoming data if ((*tos)[k]) nd->second[k]->addIncoming((*tos)[k],predecessor); //also note that the active variable IS designated by the phi node (*tos)[k] = nd->second[k]; } } //don't revisit nodes if (visited.find(f)!=visited.end()) return; //mark as visited visited.insert(f); BasicBlock::iterator i = f->begin(); //keep track of the value of each variable we're watching.. how? while(i!=f->end()) { Instruction * inst = *i; //get the instruction //is this a write/read? if (LoadInst * LI = dyn_cast(inst)) { // This is a bit weird... Value * ptr = LI->getPointerOperand(); //of type value if (AllocaInst * srcinstr = dyn_cast(ptr)) { map::iterator ai = AllocaLookup.find(srcinstr); if (ai!=AllocaLookup.end()) { if (Value *r = (*tos)[ai->second]) { //walk the use list of this load and replace // all uses with r LI->replaceAllUsesWith(r); //now delete the instruction.. somehow.. killlist.push_back((Instruction *)LI); } } } } else if (StoreInst * SI = dyn_cast(inst)) { // delete this instruction and mark the name as the // current holder of the value Value * ptr = SI->getPointerOperand(); //of type value if (Instruction * srcinstr = dyn_cast(ptr)) { map::iterator ai = AllocaLookup.find(srcinstr); if (ai!=AllocaLookup.end()) { //what value were we writing? Value * writeval = SI->getOperand(0); //write down... (*tos)[ai->second] = writeval; //now delete it.. somehow? killlist.push_back((Instruction *)SI); } } } else if (TerminatorInst * TI = dyn_cast(inst)) { // Recurse across our sucessors for (unsigned i = 0; i!=TI->getNumSuccessors(); i++) { CurrentValue.push_back(CurrentValue.back()); traverse(TI->getSuccessor(i),f); //this node IS the predecessor CurrentValue.pop_back(); } } i++; } } // queues a phi-node to be added to a basic-block for a specific Alloca // returns true if there wasn't already a phi-node for that variable bool PromoteInstance::queuePhiNode(BasicBlock *bb, int i /*the alloca*/) { map >::iterator nd; //look up the basic-block in question nd = new_phinodes.find(bb); //if the basic-block has no phi-nodes added, or at least none //for the i'th alloca. then add. if (nd==new_phinodes.end() || nd->second[i]==NULL) { //we're not added any phi nodes to this basicblock yet // create the phi-node array. if (nd==new_phinodes.end()) { new_phinodes[bb] = vector(Allocas.size()); nd = new_phinodes.find(bb); } //find the type the alloca returns const PointerType * pt = Allocas[i]->getType(); //create a phi-node using the DEREFERENCED type PHINode * ph = new PHINode(pt->getElementType(), Allocas[i]->getName()+".mem2reg"); nd->second[i] = ph; //add the phi-node to the basic-block bb->getInstList().push_front(ph); return true; } return false; } namespace { struct PromotePass : public FunctionPass { // runOnFunction - To run this pass, first we calculate the alloca // instructions that are safe for promotion, then we promote each one. // virtual bool runOnFunction(Function *F) { return (bool)PromoteInstance(F, getAnalysis()); } // getAnalysisUsage - We need dominance frontiers // virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(DominanceFrontier::ID); } }; } // createPromoteMemoryToRegister - Provide an entry point to create this pass. // Pass *createPromoteMemoryToRegister() { return new PromotePass(); }