//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The machine combiner pass uses machine trace metrics to ensure the combined // instructions does not lengthen the critical path or the resource depth. //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-combiner" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineTraceMetrics.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; STATISTIC(NumInstCombined, "Number of machineinst combined"); namespace { class MachineCombiner : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MCSchedModel SchedModel; MachineRegisterInfo *MRI; MachineTraceMetrics *Traces; MachineTraceMetrics::Ensemble *MinInstr; TargetSchedModel TSchedModel; /// True if optimizing for code size. bool OptSize; public: static char ID; MachineCombiner() : MachineFunctionPass(ID) { initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "Machine InstCombiner"; } private: bool doSubstitute(unsigned NewSize, unsigned OldSize); bool combineInstructions(MachineBasicBlock *); MachineInstr *getOperandDef(const MachineOperand &MO); unsigned getDepth(SmallVectorImpl &InsInstrs, DenseMap &InstrIdxForVirtReg, MachineTraceMetrics::Trace BlockTrace); unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, MachineTraceMetrics::Trace BlockTrace); bool preservesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, DenseMap &InstrIdxForVirtReg); bool preservesResourceLen(MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs); void instr2instrSC(SmallVectorImpl &Instrs, SmallVectorImpl &InstrsSC); }; } char MachineCombiner::ID = 0; char &llvm::MachineCombinerID = MachineCombiner::ID; INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner", "Machine InstCombiner", false, false) INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner", false, false) void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) { MachineInstr *DefInstr = nullptr; // We need a virtual register definition. if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) DefInstr = MRI->getUniqueVRegDef(MO.getReg()); // PHI's have no depth etc. if (DefInstr && DefInstr->isPHI()) DefInstr = nullptr; return DefInstr; } /// Computes depth of instructions in vector \InsInstr. /// /// \param InsInstrs is a vector of machine instructions /// \param InstrIdxForVirtReg is a dense map of virtual register to index /// of defining machine instruction in \p InsInstrs /// \param BlockTrace is a trace of machine instructions /// /// \returns Depth of last instruction in \InsInstrs ("NewRoot") unsigned MachineCombiner::getDepth(SmallVectorImpl &InsInstrs, DenseMap &InstrIdxForVirtReg, MachineTraceMetrics::Trace BlockTrace) { SmallVector InstrDepth; assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n"); // For each instruction in the new sequence compute the depth based on the // operands. Use the trace information when possible. For new operands which // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth for (auto *InstrPtr : InsInstrs) { // for each Use unsigned IDepth = 0; DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(); dbgs() << "\n";); for (const MachineOperand &MO : InstrPtr->operands()) { // Check for virtual register operand. if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))) continue; if (!MO.isUse()) continue; unsigned DepthOp = 0; unsigned LatencyOp = 0; DenseMap::iterator II = InstrIdxForVirtReg.find(MO.getReg()); if (II != InstrIdxForVirtReg.end()) { // Operand is new virtual register not in trace assert(II->second < InstrDepth.size() && "Bad Index"); MachineInstr *DefInstr = InsInstrs[II->second]; assert(DefInstr && "There must be a definition for a new virtual register"); DepthOp = InstrDepth[II->second]; LatencyOp = TSchedModel.computeOperandLatency( DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); } else { MachineInstr *DefInstr = getOperandDef(MO); if (DefInstr) { DepthOp = BlockTrace.getInstrCycles(DefInstr).Depth; LatencyOp = TSchedModel.computeOperandLatency( DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); } } IDepth = std::max(IDepth, DepthOp + LatencyOp); } InstrDepth.push_back(IDepth); } unsigned NewRootIdx = InsInstrs.size() - 1; return InstrDepth[NewRootIdx]; } /// Computes instruction latency as max of latency of defined operands. /// /// \param Root is a machine instruction that could be replaced by NewRoot. /// It is used to compute a more accurate latency information for NewRoot in /// case there is a dependent instruction in the same trace (\p BlockTrace) /// \param NewRoot is the instruction for which the latency is computed /// \param BlockTrace is a trace of machine instructions /// /// \returns Latency of \p NewRoot unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, MachineTraceMetrics::Trace BlockTrace) { assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n"); // Check each definition in NewRoot and compute the latency unsigned NewRootLatency = 0; for (const MachineOperand &MO : NewRoot->operands()) { // Check for virtual register operand. if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))) continue; if (!MO.isDef()) continue; // Get the first instruction that uses MO MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); RI++; MachineInstr *UseMO = RI->getParent(); unsigned LatencyOp = 0; if (UseMO && BlockTrace.isDepInTrace(Root, UseMO)) { LatencyOp = TSchedModel.computeOperandLatency( NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO, UseMO->findRegisterUseOperandIdx(MO.getReg())); } else { LatencyOp = TSchedModel.computeInstrLatency(NewRoot->getOpcode()); } NewRootLatency = std::max(NewRootLatency, LatencyOp); } return NewRootLatency; } /// True when the new instruction sequence does not /// lengthen the critical path. The DAGCombine code sequence ends in MI /// (Machine Instruction) Root. The new code sequence ends in MI NewRoot. A /// necessary condition for the new sequence to replace the old sequence is that /// it cannot lengthen the critical path. This is decided by the formula /// (NewRootDepth + NewRootLatency) <= (RootDepth + RootLatency + RootSlack)). /// The slack is the number of cycles Root can be delayed before the critical /// patch becomes longer. bool MachineCombiner::preservesCriticalPathLen( MachineBasicBlock *MBB, MachineInstr *Root, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, DenseMap &InstrIdxForVirtReg) { assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n"); // NewRoot is the last instruction in the \p InsInstrs vector // Get depth and latency of NewRoot unsigned NewRootIdx = InsInstrs.size() - 1; MachineInstr *NewRoot = InsInstrs[NewRootIdx]; unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace); unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace); // Get depth, latency and slack of Root unsigned RootDepth = BlockTrace.getInstrCycles(Root).Depth; unsigned RootLatency = TSchedModel.computeInstrLatency(Root); unsigned RootSlack = BlockTrace.getInstrSlack(Root); DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n"; dbgs() << " NewRootDepth: " << NewRootDepth << " NewRootLatency: " << NewRootLatency << "\n"; dbgs() << " RootDepth: " << RootDepth << " RootLatency: " << RootLatency << " RootSlack: " << RootSlack << "\n"; dbgs() << " NewRootDepth + NewRootLatency " << NewRootDepth + NewRootLatency << "\n"; dbgs() << " RootDepth + RootLatency + RootSlack " << RootDepth + RootLatency + RootSlack << "\n";); /// True when the new sequence does not lenghten the critical path. return ((NewRootDepth + NewRootLatency) <= (RootDepth + RootLatency + RootSlack)); } /// helper routine to convert instructions into SC void MachineCombiner::instr2instrSC( SmallVectorImpl &Instrs, SmallVectorImpl &InstrsSC) { for (auto *InstrPtr : Instrs) { unsigned Opc = InstrPtr->getOpcode(); unsigned Idx = TII->get(Opc).getSchedClass(); const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); InstrsSC.push_back(SC); } } /// True when the new instructions do not increase resource length bool MachineCombiner::preservesResourceLen( MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs) { // Compute current resource length //ArrayRef MBBarr(MBB); SmallVector MBBarr; MBBarr.push_back(MBB); unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); // Deal with SC rather than Instructions. SmallVector InsInstrsSC; SmallVector DelInstrsSC; instr2instrSC(InsInstrs, InsInstrsSC); instr2instrSC(DelInstrs, DelInstrsSC); ArrayRef MSCInsArr = makeArrayRef(InsInstrsSC); ArrayRef MSCDelArr = makeArrayRef(DelInstrsSC); // Compute new resource length unsigned ResLenAfterCombine = BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); DEBUG(dbgs() << "RESOURCE DATA: \n"; dbgs() << " resource len before: " << ResLenBeforeCombine << " after: " << ResLenAfterCombine << "\n";); return ResLenAfterCombine <= ResLenBeforeCombine; } /// \returns true when new instruction sequence should be generated /// independent if it lengthens critical path or not bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) { if (OptSize && (NewSize < OldSize)) return true; if (!TSchedModel.hasInstrSchedModel()) return true; return false; } /// Substitute a slow code sequence with a faster one by /// evaluating instruction combining pattern. /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction /// combining based on machine trace metrics. Only combine a sequence of /// instructions when this neither lengthens the critical path nor increases /// resource pressure. When optimizing for codesize always combine when the new /// sequence is shorter. bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { bool Changed = false; DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); auto BlockIter = MBB->begin(); while (BlockIter != MBB->end()) { auto &MI = *BlockIter++; DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";); SmallVector Pattern; // The motivating example is: // // MUL Other MUL_op1 MUL_op2 Other // \ / \ | / // ADD/SUB => MADD/MSUB // (=Root) (=NewRoot) // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is // usually beneficial for code size it unfortunately can hurt performance // when the ADD is on the critical path, but the MUL is not. With the // substitution the MUL becomes part of the critical path (in form of the // MADD) and can lengthen it on architectures where the MADD latency is // longer than the ADD latency. // // For each instruction we check if it can be the root of a combiner // pattern. Then for each pattern the new code sequence in form of MI is // generated and evaluated. When the efficiency criteria (don't lengthen // critical path, don't use more resources) is met the new sequence gets // hooked up into the basic block before the old sequence is removed. // // The algorithm does not try to evaluate all patterns and pick the best. // This is only an artificial restriction though. In practice there is // mostly one pattern and hasPattern() can order patterns based on an // internal cost heuristic. if (TII->hasPattern(MI, Pattern)) { for (auto P : Pattern) { SmallVector InsInstrs; SmallVector DelInstrs; DenseMap InstrIdxForVirtReg; if (!MinInstr) MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB); Traces->verifyAnalysis(); TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, InstrIdxForVirtReg); // Found pattern, but did not generate alternative sequence. // This can happen e.g. when an immediate could not be materialized // in a single instruction. if (!InsInstrs.size()) continue; // Substitute when we optimize for codesize and the new sequence has // fewer instructions OR // the new sequence neither lengthens the critical path nor increases // resource pressure. if (doSubstitute(InsInstrs.size(), DelInstrs.size()) || (preservesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, InstrIdxForVirtReg) && preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs))) { for (auto *InstrPtr : InsInstrs) MBB->insert((MachineBasicBlock::iterator) & MI, (MachineInstr *)InstrPtr); for (auto *InstrPtr : DelInstrs) InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval(); Changed = true; ++NumInstCombined; Traces->invalidate(MBB); Traces->verifyAnalysis(); // Eagerly stop after the first pattern fired break; } else { // Cleanup instructions of the alternative code sequence. There is no // use for them. for (auto *InstrPtr : InsInstrs) { MachineFunction *MF = MBB->getParent(); MF->DeleteMachineInstr((MachineInstr *)InstrPtr); } } InstrIdxForVirtReg.clear(); } } } return Changed; } bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { const TargetSubtargetInfo &STI = MF.getSubtarget(); TII = STI.getInstrInfo(); TRI = STI.getRegisterInfo(); SchedModel = STI.getSchedModel(); TSchedModel.init(SchedModel, &STI, TII); MRI = &MF.getRegInfo(); Traces = &getAnalysis(); MinInstr = 0; OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize); DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); if (!TII->useMachineCombiner()) { DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n"); return false; } bool Changed = false; // Try to combine instructions. for (auto &MBB : MF) Changed |= combineInstructions(&MBB); return Changed; }