//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // Details of the algorithm: // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asan" #include "BlackList.h" #include "llvm/Function.h" #include "llvm/IRBuilder.h" #include "llvm/InlineAsm.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include "llvm/DataLayout.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include using namespace llvm; static const uint64_t kDefaultShadowScale = 3; static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; static const uint64_t kDefaultShadowOffsetAndroid = 0; static const size_t kMaxStackMallocSize = 1 << 16; // 64K static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; static const char *kAsanModuleCtorName = "asan.module_ctor"; static const char *kAsanModuleDtorName = "asan.module_dtor"; static const int kAsanCtorAndCtorPriority = 1; static const char *kAsanReportErrorTemplate = "__asan_report_"; static const char *kAsanRegisterGlobalsName = "__asan_register_globals"; static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals"; static const char *kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; static const char *kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; static const char *kAsanInitName = "__asan_init"; static const char *kAsanHandleNoReturnName = "__asan_handle_no_return"; static const char *kAsanMappingOffsetName = "__asan_mapping_offset"; static const char *kAsanMappingScaleName = "__asan_mapping_scale"; static const char *kAsanStackMallocName = "__asan_stack_malloc"; static const char *kAsanStackFreeName = "__asan_stack_free"; static const int kAsanStackLeftRedzoneMagic = 0xf1; static const int kAsanStackMidRedzoneMagic = 0xf2; static const int kAsanStackRightRedzoneMagic = 0xf3; static const int kAsanStackPartialRedzoneMagic = 0xf4; // Accesses sizes are powers of two: 1, 2, 4, 8, 16. static const size_t kNumberOfAccessSizes = 5; // Command-line flags. // This flag may need to be replaced with -f[no-]asan-reads. static cl::opt ClInstrumentReads("asan-instrument-reads", cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); static cl::opt ClInstrumentWrites("asan-instrument-writes", cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); static cl::opt ClInstrumentAtomics("asan-instrument-atomics", cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, cl::init(true)); static cl::opt ClAlwaysSlowPath("asan-always-slow-path", cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, cl::init(false)); // This flag limits the number of instructions to be instrumented // in any given BB. Normally, this should be set to unlimited (INT_MAX), // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary // set it to 10000. static cl::opt ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", cl::init(10000), cl::desc("maximal number of instructions to instrument in any given BB"), cl::Hidden); // This flag may need to be replaced with -f[no]asan-stack. static cl::opt ClStack("asan-stack", cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -f[no]asan-use-after-return. static cl::opt ClUseAfterReturn("asan-use-after-return", cl::desc("Check return-after-free"), cl::Hidden, cl::init(false)); // This flag may need to be replaced with -f[no]asan-globals. static cl::opt ClGlobals("asan-globals", cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); static cl::opt ClInitializers("asan-initialization-order", cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false)); static cl::opt ClMemIntrin("asan-memintrin", cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -fasan-blacklist. static cl::opt ClBlackListFile("asan-blacklist", cl::desc("File containing the list of functions to ignore " "during instrumentation"), cl::Hidden); // These flags allow to change the shadow mapping. // The shadow mapping looks like // Shadow = (Mem >> scale) + (1 << offset_log) static cl::opt ClMappingScale("asan-mapping-scale", cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); static cl::opt ClMappingOffsetLog("asan-mapping-offset-log", cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1)); // Optimization flags. Not user visible, used mostly for testing // and benchmarking the tool. static cl::opt ClOpt("asan-opt", cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); static cl::opt ClOptSameTemp("asan-opt-same-temp", cl::desc("Instrument the same temp just once"), cl::Hidden, cl::init(true)); static cl::opt ClOptGlobals("asan-opt-globals", cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); // Debug flags. static cl::opt ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, cl::init(0)); static cl::opt ClDebugStack("asan-debug-stack", cl::desc("debug stack"), cl::Hidden, cl::init(0)); static cl::opt ClDebugFunc("asan-debug-func", cl::Hidden, cl::desc("Debug func")); static cl::opt ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), cl::Hidden, cl::init(-1)); static cl::opt ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), cl::Hidden, cl::init(-1)); namespace { /// AddressSanitizer: instrument the code in module to find memory bugs. struct AddressSanitizer : public FunctionPass { AddressSanitizer(); virtual const char *getPassName() const; void instrumentMop(Instruction *I); void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB, Value *Addr, uint32_t TypeSize, bool IsWrite); Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize); Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex); bool instrumentMemIntrinsic(MemIntrinsic *MI); void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite); Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); bool runOnFunction(Function &F); void createInitializerPoisonCalls(Module &M, Value *FirstAddr, Value *LastAddr); bool maybeInsertAsanInitAtFunctionEntry(Function &F); bool poisonStackInFunction(Function &F); virtual bool doInitialization(Module &M); virtual bool doFinalization(Module &M); bool insertGlobalRedzones(Module &M); static char ID; // Pass identification, replacement for typeid private: uint64_t getAllocaSizeInBytes(AllocaInst *AI) { Type *Ty = AI->getAllocatedType(); uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); return SizeInBytes; } uint64_t getAlignedSize(uint64_t SizeInBytes) { return ((SizeInBytes + RedzoneSize - 1) / RedzoneSize) * RedzoneSize; } uint64_t getAlignedAllocaSize(AllocaInst *AI) { uint64_t SizeInBytes = getAllocaSizeInBytes(AI); return getAlignedSize(SizeInBytes); } Function *checkInterfaceFunction(Constant *FuncOrBitcast); bool ShouldInstrumentGlobal(GlobalVariable *G); void PoisonStack(const ArrayRef &AllocaVec, IRBuilder<> IRB, Value *ShadowBase, bool DoPoison); bool LooksLikeCodeInBug11395(Instruction *I); void FindDynamicInitializers(Module &M); bool HasDynamicInitializer(GlobalVariable *G); LLVMContext *C; DataLayout *TD; uint64_t MappingOffset; int MappingScale; size_t RedzoneSize; int LongSize; Type *IntptrTy; Type *IntptrPtrTy; Function *AsanCtorFunction; Function *AsanInitFunction; Function *AsanStackMallocFunc, *AsanStackFreeFunc; Function *AsanHandleNoReturnFunc; Instruction *CtorInsertBefore; OwningPtr BL; // This array is indexed by AccessIsWrite and log2(AccessSize). Function *AsanErrorCallback[2][kNumberOfAccessSizes]; InlineAsm *EmptyAsm; SmallSet DynamicallyInitializedGlobals; SmallSet GlobalsCreatedByAsan; }; } // namespace char AddressSanitizer::ID = 0; INITIALIZE_PASS(AddressSanitizer, "asan", "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, false) AddressSanitizer::AddressSanitizer() : FunctionPass(ID) { } FunctionPass *llvm::createAddressSanitizerPass() { return new AddressSanitizer(); } const char *AddressSanitizer::getPassName() const { return "AddressSanitizer"; } static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { size_t Res = CountTrailingZeros_32(TypeSize / 8); assert(Res < kNumberOfAccessSizes); return Res; } // Create a constant for Str so that we can pass it to the run-time lib. static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) { Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); return new GlobalVariable(M, StrConst->getType(), true, GlobalValue::PrivateLinkage, StrConst, ""); } Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { // Shadow >> scale Shadow = IRB.CreateLShr(Shadow, MappingScale); if (MappingOffset == 0) return Shadow; // (Shadow >> scale) | offset return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, MappingOffset)); } void AddressSanitizer::instrumentMemIntrinsicParam( Instruction *OrigIns, Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) { // Check the first byte. { IRBuilder<> IRB(InsertBefore); instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite); } // Check the last byte. { IRBuilder<> IRB(InsertBefore); Value *SizeMinusOne = IRB.CreateSub( Size, ConstantInt::get(Size->getType(), 1)); SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false); Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne); instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite); } } // Instrument memset/memmove/memcpy bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { Value *Dst = MI->getDest(); MemTransferInst *MemTran = dyn_cast(MI); Value *Src = MemTran ? MemTran->getSource() : 0; Value *Length = MI->getLength(); Constant *ConstLength = dyn_cast(Length); Instruction *InsertBefore = MI; if (ConstLength) { if (ConstLength->isNullValue()) return false; } else { // The size is not a constant so it could be zero -- check at run-time. IRBuilder<> IRB(InsertBefore); Value *Cmp = IRB.CreateICmpNE(Length, Constant::getNullValue(Length->getType())); InsertBefore = SplitBlockAndInsertIfThen(cast(Cmp), false); } instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true); if (Src) instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false); return true; } // If I is an interesting memory access, return the PointerOperand // and set IsWrite. Otherwise return NULL. static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) { if (LoadInst *LI = dyn_cast(I)) { if (!ClInstrumentReads) return NULL; *IsWrite = false; return LI->getPointerOperand(); } if (StoreInst *SI = dyn_cast(I)) { if (!ClInstrumentWrites) return NULL; *IsWrite = true; return SI->getPointerOperand(); } if (AtomicRMWInst *RMW = dyn_cast(I)) { if (!ClInstrumentAtomics) return NULL; *IsWrite = true; return RMW->getPointerOperand(); } if (AtomicCmpXchgInst *XCHG = dyn_cast(I)) { if (!ClInstrumentAtomics) return NULL; *IsWrite = true; return XCHG->getPointerOperand(); } return NULL; } void AddressSanitizer::FindDynamicInitializers(Module& M) { // Clang generates metadata identifying all dynamically initialized globals. NamedMDNode *DynamicGlobals = M.getNamedMetadata("llvm.asan.dynamically_initialized_globals"); if (!DynamicGlobals) return; for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) { MDNode *MDN = DynamicGlobals->getOperand(i); assert(MDN->getNumOperands() == 1); Value *VG = MDN->getOperand(0); // The optimizer may optimize away a global entirely, in which case we // cannot instrument access to it. if (!VG) continue; GlobalVariable *G = cast(VG); DynamicallyInitializedGlobals.insert(G); } } // Returns true if a global variable is initialized dynamically in this TU. bool AddressSanitizer::HasDynamicInitializer(GlobalVariable *G) { return DynamicallyInitializedGlobals.count(G); } void AddressSanitizer::instrumentMop(Instruction *I) { bool IsWrite = false; Value *Addr = isInterestingMemoryAccess(I, &IsWrite); assert(Addr); if (ClOpt && ClOptGlobals) { if (GlobalVariable *G = dyn_cast(Addr)) { // If initialization order checking is disabled, a simple access to a // dynamically initialized global is always valid. if (!ClInitializers) return; // If a global variable does not have dynamic initialization we don't // have to instrument it. However, if a global has external linkage, we // assume it has dynamic initialization, as it may have an initializer // in a different TU. if (G->getLinkage() != GlobalVariable::ExternalLinkage && !HasDynamicInitializer(G)) return; } } Type *OrigPtrTy = Addr->getType(); Type *OrigTy = cast(OrigPtrTy)->getElementType(); assert(OrigTy->isSized()); uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); if (TypeSize != 8 && TypeSize != 16 && TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { // Ignore all unusual sizes. return; } IRBuilder<> IRB(I); instrumentAddress(I, IRB, Addr, TypeSize, IsWrite); } // Validate the result of Module::getOrInsertFunction called for an interface // function of AddressSanitizer. If the instrumented module defines a function // with the same name, their prototypes must match, otherwise // getOrInsertFunction returns a bitcast. Function *AddressSanitizer::checkInterfaceFunction(Constant *FuncOrBitcast) { if (isa(FuncOrBitcast)) return cast(FuncOrBitcast); FuncOrBitcast->dump(); report_fatal_error("trying to redefine an AddressSanitizer " "interface function"); } Instruction *AddressSanitizer::generateCrashCode( Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex) { IRBuilder<> IRB(InsertBefore); CallInst *Call = IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr); // We don't do Call->setDoesNotReturn() because the BB already has // UnreachableInst at the end. // This EmptyAsm is required to avoid callback merge. IRB.CreateCall(EmptyAsm); return Call; } Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize) { size_t Granularity = 1 << MappingScale; // Addr & (Granularity - 1) Value *LastAccessedByte = IRB.CreateAnd( AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); // (Addr & (Granularity - 1)) + size - 1 if (TypeSize / 8 > 1) LastAccessedByte = IRB.CreateAdd( LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); // (uint8_t) ((Addr & (Granularity-1)) + size - 1) LastAccessedByte = IRB.CreateIntCast( LastAccessedByte, ShadowValue->getType(), false); // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); } void AddressSanitizer::instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB, Value *Addr, uint32_t TypeSize, bool IsWrite) { Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); Type *ShadowTy = IntegerType::get( *C, std::max(8U, TypeSize >> MappingScale)); Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); Value *ShadowPtr = memToShadow(AddrLong, IRB); Value *CmpVal = Constant::getNullValue(ShadowTy); Value *ShadowValue = IRB.CreateLoad( IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); size_t Granularity = 1 << MappingScale; TerminatorInst *CrashTerm = 0; if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(cast(Cmp), false); assert(dyn_cast(CheckTerm)->isUnconditional()); BasicBlock *NextBB = CheckTerm->getSuccessor(0); IRB.SetInsertPoint(CheckTerm); Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); BasicBlock *CrashBlock = BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); CrashTerm = new UnreachableInst(*C, CrashBlock); BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); ReplaceInstWithInst(CheckTerm, NewTerm); } else { CrashTerm = SplitBlockAndInsertIfThen(cast(Cmp), true); } Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, AccessSizeIndex); Crash->setDebugLoc(OrigIns->getDebugLoc()); } void AddressSanitizer::createInitializerPoisonCalls(Module &M, Value *FirstAddr, Value *LastAddr) { // We do all of our poisoning and unpoisoning within _GLOBAL__I_a. Function *GlobalInit = M.getFunction("_GLOBAL__I_a"); // If that function is not present, this TU contains no globals, or they have // all been optimized away if (!GlobalInit) return; // Set up the arguments to our poison/unpoison functions. IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt()); // Declare our poisoning and unpoisoning functions. Function *AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); Function *AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL)); AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); // Add a call to poison all external globals before the given function starts. IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr); // Add calls to unpoison all globals before each return instruction. for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end(); I != E; ++I) { if (ReturnInst *RI = dyn_cast(I->getTerminator())) { CallInst::Create(AsanUnpoisonGlobals, "", RI); } } } bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { Type *Ty = cast(G->getType())->getElementType(); DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); if (BL->isIn(*G)) return false; if (!Ty->isSized()) return false; if (!G->hasInitializer()) return false; if (GlobalsCreatedByAsan.count(G)) return false; // Our own global. // Touch only those globals that will not be defined in other modules. // Don't handle ODR type linkages since other modules may be built w/o asan. if (G->getLinkage() != GlobalVariable::ExternalLinkage && G->getLinkage() != GlobalVariable::PrivateLinkage && G->getLinkage() != GlobalVariable::InternalLinkage) return false; // Two problems with thread-locals: // - The address of the main thread's copy can't be computed at link-time. // - Need to poison all copies, not just the main thread's one. if (G->isThreadLocal()) return false; // For now, just ignore this Alloca if the alignment is large. if (G->getAlignment() > RedzoneSize) return false; // Ignore all the globals with the names starting with "\01L_OBJC_". // Many of those are put into the .cstring section. The linker compresses // that section by removing the spare \0s after the string terminator, so // our redzones get broken. if ((G->getName().find("\01L_OBJC_") == 0) || (G->getName().find("\01l_OBJC_") == 0)) { DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G); return false; } if (G->hasSection()) { StringRef Section(G->getSection()); // Ignore the globals from the __OBJC section. The ObjC runtime assumes // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to // them. if ((Section.find("__OBJC,") == 0) || (Section.find("__DATA, __objc_") == 0)) { DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G); return false; } // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 // Constant CFString instances are compiled in the following way: // -- the string buffer is emitted into // __TEXT,__cstring,cstring_literals // -- the constant NSConstantString structure referencing that buffer // is placed into __DATA,__cfstring // Therefore there's no point in placing redzones into __DATA,__cfstring. // Moreover, it causes the linker to crash on OS X 10.7 if (Section.find("__DATA,__cfstring") == 0) { DEBUG(dbgs() << "Ignoring CFString: " << *G); return false; } } return true; } // This function replaces all global variables with new variables that have // trailing redzones. It also creates a function that poisons // redzones and inserts this function into llvm.global_ctors. bool AddressSanitizer::insertGlobalRedzones(Module &M) { SmallVector GlobalsToChange; for (Module::GlobalListType::iterator G = M.global_begin(), E = M.global_end(); G != E; ++G) { if (ShouldInstrumentGlobal(G)) GlobalsToChange.push_back(G); } size_t n = GlobalsToChange.size(); if (n == 0) return false; // A global is described by a structure // size_t beg; // size_t size; // size_t size_with_redzone; // const char *name; // size_t has_dynamic_init; // We initialize an array of such structures and pass it to a run-time call. StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, NULL); SmallVector Initializers(n), DynamicInit; IRBuilder<> IRB(CtorInsertBefore); if (ClInitializers) FindDynamicInitializers(M); // The addresses of the first and last dynamically initialized globals in // this TU. Used in initialization order checking. Value *FirstDynamic = 0, *LastDynamic = 0; for (size_t i = 0; i < n; i++) { GlobalVariable *G = GlobalsToChange[i]; PointerType *PtrTy = cast(G->getType()); Type *Ty = PtrTy->getElementType(); uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); uint64_t RightRedzoneSize = RedzoneSize + (RedzoneSize - (SizeInBytes % RedzoneSize)); Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); // Determine whether this global should be poisoned in initialization. bool GlobalHasDynamicInitializer = HasDynamicInitializer(G); // Don't check initialization order if this global is blacklisted. GlobalHasDynamicInitializer &= !BL->isInInit(*G); StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); Constant *NewInitializer = ConstantStruct::get( NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy), NULL); SmallString<2048> DescriptionOfGlobal = G->getName(); DescriptionOfGlobal += " ("; DescriptionOfGlobal += M.getModuleIdentifier(); DescriptionOfGlobal += ")"; GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal); // Create a new global variable with enough space for a redzone. GlobalVariable *NewGlobal = new GlobalVariable( M, NewTy, G->isConstant(), G->getLinkage(), NewInitializer, "", G, G->getThreadLocalMode()); NewGlobal->copyAttributesFrom(G); NewGlobal->setAlignment(RedzoneSize); Value *Indices2[2]; Indices2[0] = IRB.getInt32(0); Indices2[1] = IRB.getInt32(0); G->replaceAllUsesWith( ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); NewGlobal->takeName(G); G->eraseFromParent(); Initializers[i] = ConstantStruct::get( GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), ConstantInt::get(IntptrTy, SizeInBytes), ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), ConstantExpr::getPointerCast(Name, IntptrTy), ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer), NULL); // Populate the first and last globals declared in this TU. if (ClInitializers && GlobalHasDynamicInitializer) { LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy); if (FirstDynamic == 0) FirstDynamic = LastDynamic; } DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); } ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); GlobalVariable *AllGlobals = new GlobalVariable( M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage, ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); // Create calls for poisoning before initializers run and unpoisoning after. if (ClInitializers && FirstDynamic && LastDynamic) createInitializerPoisonCalls(M, FirstDynamic, LastDynamic); Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); IRB.CreateCall2(AsanRegisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); // We also need to unregister globals at the end, e.g. when a shared library // gets closed. Function *AsanDtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); Function *AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); IRB_Dtor.CreateCall2(AsanUnregisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); DEBUG(dbgs() << M); return true; } // virtual bool AddressSanitizer::doInitialization(Module &M) { // Initialize the private fields. No one has accessed them before. TD = getAnalysisIfAvailable(); if (!TD) return false; BL.reset(new BlackList(ClBlackListFile)); C = &(M.getContext()); LongSize = TD->getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); IntptrPtrTy = PointerType::get(IntptrTy, 0); AsanCtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB); // call __asan_init in the module ctor. IRBuilder<> IRB(CtorInsertBefore); AsanInitFunction = checkInterfaceFunction( M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL)); AsanInitFunction->setLinkage(Function::ExternalLinkage); IRB.CreateCall(AsanInitFunction); // Create __asan_report* callbacks. for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; AccessSizeIndex++) { // IsWrite and TypeSize are encoded in the function name. std::string FunctionName = std::string(kAsanReportErrorTemplate) + (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex); // If we are merging crash callbacks, they have two parameters. AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = cast( M.getOrInsertFunction(FunctionName, IRB.getVoidTy(), IntptrTy, NULL)); } } AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction( kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL)); AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction( kAsanStackFreeName, IRB.getVoidTy(), IntptrTy, IntptrTy, IntptrTy, NULL)); AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction( kAsanHandleNoReturnName, IRB.getVoidTy(), NULL)); // We insert an empty inline asm after __asan_report* to avoid callback merge. EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), StringRef(""), StringRef(""), /*hasSideEffects=*/true); llvm::Triple targetTriple(M.getTargetTriple()); bool isAndroid = targetTriple.getEnvironment() == llvm::Triple::Android; MappingOffset = isAndroid ? kDefaultShadowOffsetAndroid : (LongSize == 32 ? kDefaultShadowOffset32 : kDefaultShadowOffset64); if (ClMappingOffsetLog >= 0) { if (ClMappingOffsetLog == 0) { // special case MappingOffset = 0; } else { MappingOffset = 1ULL << ClMappingOffsetLog; } } MappingScale = kDefaultShadowScale; if (ClMappingScale) { MappingScale = ClMappingScale; } // Redzone used for stack and globals is at least 32 bytes. // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. RedzoneSize = std::max(32, (int)(1 << MappingScale)); if (ClMappingOffsetLog >= 0) { // Tell the run-time the current values of mapping offset and scale. GlobalValue *asan_mapping_offset = new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, ConstantInt::get(IntptrTy, MappingOffset), kAsanMappingOffsetName); // Read the global, otherwise it may be optimized away. IRB.CreateLoad(asan_mapping_offset, true); } if (ClMappingScale) { GlobalValue *asan_mapping_scale = new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, ConstantInt::get(IntptrTy, MappingScale), kAsanMappingScaleName); // Read the global, otherwise it may be optimized away. IRB.CreateLoad(asan_mapping_scale, true); } appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority); return true; } bool AddressSanitizer::doFinalization(Module &M) { // We transform the globals at the very end so that the optimization analysis // works on the original globals. if (ClGlobals) return insertGlobalRedzones(M); return false; } bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { // For each NSObject descendant having a +load method, this method is invoked // by the ObjC runtime before any of the static constructors is called. // Therefore we need to instrument such methods with a call to __asan_init // at the beginning in order to initialize our runtime before any access to // the shadow memory. // We cannot just ignore these methods, because they may call other // instrumented functions. if (F.getName().find(" load]") != std::string::npos) { IRBuilder<> IRB(F.begin()->begin()); IRB.CreateCall(AsanInitFunction); return true; } return false; } bool AddressSanitizer::runOnFunction(Function &F) { if (BL->isIn(F)) return false; if (&F == AsanCtorFunction) return false; DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); // If needed, insert __asan_init before checking for AddressSafety attr. maybeInsertAsanInitAtFunctionEntry(F); if (!F.getFnAttributes().hasAttribute(Attributes::AddressSafety)) return false; if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false; // We want to instrument every address only once per basic block (unless there // are calls between uses). SmallSet TempsToInstrument; SmallVector ToInstrument; SmallVector NoReturnCalls; bool IsWrite; // Fill the set of memory operations to instrument. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { TempsToInstrument.clear(); int NumInsnsPerBB = 0; for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { if (LooksLikeCodeInBug11395(BI)) return false; if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) { if (ClOpt && ClOptSameTemp) { if (!TempsToInstrument.insert(Addr)) continue; // We've seen this temp in the current BB. } } else if (isa(BI) && ClMemIntrin) { // ok, take it. } else { if (CallInst *CI = dyn_cast(BI)) { // A call inside BB. TempsToInstrument.clear(); if (CI->doesNotReturn()) { NoReturnCalls.push_back(CI); } } continue; } ToInstrument.push_back(BI); NumInsnsPerBB++; if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; } } // Instrument. int NumInstrumented = 0; for (size_t i = 0, n = ToInstrument.size(); i != n; i++) { Instruction *Inst = ToInstrument[i]; if (ClDebugMin < 0 || ClDebugMax < 0 || (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { if (isInterestingMemoryAccess(Inst, &IsWrite)) instrumentMop(Inst); else instrumentMemIntrinsic(cast(Inst)); } NumInstrumented++; } bool ChangedStack = poisonStackInFunction(F); // We must unpoison the stack before every NoReturn call (throw, _exit, etc). // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) { Instruction *CI = NoReturnCalls[i]; IRBuilder<> IRB(CI); IRB.CreateCall(AsanHandleNoReturnFunc); } DEBUG(dbgs() << "ASAN done instrumenting:\n" << F << "\n"); return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); } static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) { if (ShadowRedzoneSize == 1) return PoisonByte; if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte; if (ShadowRedzoneSize == 4) return (PoisonByte << 24) + (PoisonByte << 16) + (PoisonByte << 8) + (PoisonByte); llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4"); } static void PoisonShadowPartialRightRedzone(uint8_t *Shadow, size_t Size, size_t RedzoneSize, size_t ShadowGranularity, uint8_t Magic) { for (size_t i = 0; i < RedzoneSize; i+= ShadowGranularity, Shadow++) { if (i + ShadowGranularity <= Size) { *Shadow = 0; // fully addressable } else if (i >= Size) { *Shadow = Magic; // unaddressable } else { *Shadow = Size - i; // first Size-i bytes are addressable } } } void AddressSanitizer::PoisonStack(const ArrayRef &AllocaVec, IRBuilder<> IRB, Value *ShadowBase, bool DoPoison) { size_t ShadowRZSize = RedzoneSize >> MappingScale; assert(ShadowRZSize >= 1 && ShadowRZSize <= 4); Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8); Type *RZPtrTy = PointerType::get(RZTy, 0); Value *PoisonLeft = ConstantInt::get(RZTy, ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize)); Value *PoisonMid = ConstantInt::get(RZTy, ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize)); Value *PoisonRight = ConstantInt::get(RZTy, ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize)); // poison the first red zone. IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy)); // poison all other red zones. uint64_t Pos = RedzoneSize; for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { AllocaInst *AI = AllocaVec[i]; uint64_t SizeInBytes = getAllocaSizeInBytes(AI); uint64_t AlignedSize = getAlignedAllocaSize(AI); assert(AlignedSize - SizeInBytes < RedzoneSize); Value *Ptr = NULL; Pos += AlignedSize; assert(ShadowBase->getType() == IntptrTy); if (SizeInBytes < AlignedSize) { // Poison the partial redzone at right Ptr = IRB.CreateAdd( ShadowBase, ConstantInt::get(IntptrTy, (Pos >> MappingScale) - ShadowRZSize)); size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes); uint32_t Poison = 0; if (DoPoison) { PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes, RedzoneSize, 1ULL << MappingScale, kAsanStackPartialRedzoneMagic); } Value *PartialPoison = ConstantInt::get(RZTy, Poison); IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); } // Poison the full redzone at right. Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, Pos >> MappingScale)); Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid; IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); Pos += RedzoneSize; } } // Workaround for bug 11395: we don't want to instrument stack in functions // with large assembly blobs (32-bit only), otherwise reg alloc may crash. // FIXME: remove once the bug 11395 is fixed. bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { if (LongSize != 32) return false; CallInst *CI = dyn_cast(I); if (!CI || !CI->isInlineAsm()) return false; if (CI->getNumArgOperands() <= 5) return false; // We have inline assembly with quite a few arguments. return true; } // Find all static Alloca instructions and put // poisoned red zones around all of them. // Then unpoison everything back before the function returns. // // Stack poisoning does not play well with exception handling. // When an exception is thrown, we essentially bypass the code // that unpoisones the stack. This is why the run-time library has // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire // stack in the interceptor. This however does not work inside the // actual function which catches the exception. Most likely because the // compiler hoists the load of the shadow value somewhere too high. // This causes asan to report a non-existing bug on 453.povray. // It sounds like an LLVM bug. bool AddressSanitizer::poisonStackInFunction(Function &F) { if (!ClStack) return false; SmallVector AllocaVec; SmallVector RetVec; uint64_t TotalSize = 0; // Filter out Alloca instructions we want (and can) handle. // Collect Ret instructions. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { BasicBlock &BB = *FI; for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { if (isa(BI)) { RetVec.push_back(BI); continue; } AllocaInst *AI = dyn_cast(BI); if (!AI) continue; if (AI->isArrayAllocation()) continue; if (!AI->isStaticAlloca()) continue; if (!AI->getAllocatedType()->isSized()) continue; if (AI->getAlignment() > RedzoneSize) continue; AllocaVec.push_back(AI); uint64_t AlignedSize = getAlignedAllocaSize(AI); TotalSize += AlignedSize; } } if (AllocaVec.empty()) return false; uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize; bool DoStackMalloc = ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize; Instruction *InsBefore = AllocaVec[0]; IRBuilder<> IRB(InsBefore); Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize); AllocaInst *MyAlloca = new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore); MyAlloca->setAlignment(RedzoneSize); assert(MyAlloca->isStaticAlloca()); Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy); Value *LocalStackBase = OrigStackBase; if (DoStackMalloc) { LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc, ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); } // This string will be parsed by the run-time (DescribeStackAddress). SmallString<2048> StackDescriptionStorage; raw_svector_ostream StackDescription(StackDescriptionStorage); StackDescription << F.getName() << " " << AllocaVec.size() << " "; uint64_t Pos = RedzoneSize; // Replace Alloca instructions with base+offset. for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { AllocaInst *AI = AllocaVec[i]; uint64_t SizeInBytes = getAllocaSizeInBytes(AI); StringRef Name = AI->getName(); StackDescription << Pos << " " << SizeInBytes << " " << Name.size() << " " << Name << " "; uint64_t AlignedSize = getAlignedAllocaSize(AI); assert((AlignedSize % RedzoneSize) == 0); AI->replaceAllUsesWith( IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)), AI->getType())); Pos += AlignedSize + RedzoneSize; } assert(Pos == LocalStackSize); // Write the Magic value and the frame description constant to the redzone. Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), BasePlus0); Value *BasePlus1 = IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, LongSize/8)); BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy); GlobalVariable *StackDescriptionGlobal = createPrivateGlobalForString(*F.getParent(), StackDescription.str()); GlobalsCreatedByAsan.insert(StackDescriptionGlobal); Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); IRB.CreateStore(Description, BasePlus1); // Poison the stack redzones at the entry. Value *ShadowBase = memToShadow(LocalStackBase, IRB); PoisonStack(ArrayRef(AllocaVec), IRB, ShadowBase, true); // Unpoison the stack before all ret instructions. for (size_t i = 0, n = RetVec.size(); i < n; i++) { Instruction *Ret = RetVec[i]; IRBuilder<> IRBRet(Ret); // Mark the current frame as retired. IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), BasePlus0); // Unpoison the stack. PoisonStack(ArrayRef(AllocaVec), IRBRet, ShadowBase, false); if (DoStackMalloc) { IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase, ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); } } // We are done. Remove the old unused alloca instructions. for (size_t i = 0, n = AllocaVec.size(); i < n; i++) AllocaVec[i]->eraseFromParent(); if (ClDebugStack) { DEBUG(dbgs() << F); } return true; }