//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements a TargetTransformInfo analysis pass specific to the /// X86 target machine. It uses the target's detailed information to provide /// more precise answers to certain TTI queries, while letting the target /// independent and default TTI implementations handle the rest. /// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86tti" #include "X86.h" #include "X86TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetLowering.h" #include "llvm/TargetTransformInfo.h" using namespace llvm; // Declare the pass initialization routine locally as target-specific passes // don't havve a target-wide initialization entry point, and so we rely on the // pass constructor initialization. namespace llvm { void initializeX86TTIPass(PassRegistry &); } namespace { class X86TTI : public ImmutablePass, public TargetTransformInfo { const X86TargetMachine *TM; const X86Subtarget *ST; const X86TargetLowering *TLI; /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the result needs to be inserted and/or extracted from vectors. unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; public: X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) { llvm_unreachable("This pass cannot be directly constructed"); } X86TTI(const X86TargetMachine *TM) : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), TLI(TM->getTargetLowering()) { initializeX86TTIPass(*PassRegistry::getPassRegistry()); } virtual void initializePass() { pushTTIStack(this); } virtual void finalizePass() { popTTIStack(); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { TargetTransformInfo::getAnalysisUsage(AU); } /// Pass identification. static char ID; /// Provide necessary pointer adjustments for the two base classes. virtual void *getAdjustedAnalysisPointer(const void *ID) { if (ID == &TargetTransformInfo::ID) return (TargetTransformInfo*)this; return this; } /// \name Scalar TTI Implementations /// @{ virtual PopcntHwSupport getPopcntHwSupport(unsigned TyWidth) const; /// @} /// \name Vector TTI Implementations /// @{ virtual unsigned getNumberOfRegisters(bool Vector) const; virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) const; virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const; virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const; virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const; virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const; /// @} }; } // end anonymous namespace INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti", "X86 Target Transform Info", true, true, false) char X86TTI::ID = 0; ImmutablePass * llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) { return new X86TTI(TM); } //===----------------------------------------------------------------------===// // // X86 cost model. // //===----------------------------------------------------------------------===// namespace { struct X86CostTblEntry { int ISD; MVT Type; unsigned Cost; }; } static int FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) { for (unsigned int i = 0; i < len; ++i) if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty) return i; // Could not find an entry. return -1; } namespace { struct X86TypeConversionCostTblEntry { int ISD; MVT Dst; MVT Src; unsigned Cost; }; } static int FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len, int ISD, MVT Dst, MVT Src) { for (unsigned int i = 0; i < len; ++i) if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst) return i; // Could not find an entry. return -1; } X86TTI::PopcntHwSupport X86TTI::getPopcntHwSupport(unsigned TyWidth) const { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); // TODO: Currently the __builtin_popcount() implementation using SSE3 // instructions is inefficient. Once the problem is fixed, we should // call ST->hasSSE3() instead of ST->hasSSE4(). return ST->hasSSE41() ? Fast : None; } unsigned X86TTI::getNumberOfRegisters(bool Vector) const { if (ST->is64Bit()) return 16; return 8; } unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); static const X86CostTblEntry AVX1CostTable[] = { // We don't have to scalarize unsupported ops. We can issue two half-sized // operations and we only need to extract the upper YMM half. // Two ops + 1 extract + 1 insert = 4. { ISD::MUL, MVT::v8i32, 4 }, { ISD::SUB, MVT::v8i32, 4 }, { ISD::ADD, MVT::v8i32, 4 }, { ISD::MUL, MVT::v4i64, 4 }, { ISD::SUB, MVT::v4i64, 4 }, { ISD::ADD, MVT::v4i64, 4 }, }; // Look for AVX1 lowering tricks. if (ST->hasAVX()) { int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD, LT.second); if (Idx != -1) return LT.first * AVX1CostTable[Idx].Cost; } // Fallback to the default implementation. return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty); } unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) const { // We only estimate the cost of reverse shuffles. if (Kind != Reverse) return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); std::pair LT = TLI->getTypeLegalizationCost(Tp); unsigned Cost = 1; if (LT.second.getSizeInBits() > 128) Cost = 3; // Extract + insert + copy. // Multiple by the number of parts. return Cost * LT.first; } unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); EVT SrcTy = TLI->getValueType(Src); EVT DstTy = TLI->getValueType(Dst); if (!SrcTy.isSimple() || !DstTy.isSimple()) return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); static const X86TypeConversionCostTblEntry AVXConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 }, { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 }, { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 }, { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, }; if (ST->hasAVX()) { int Idx = FindInConvertTable(AVXConversionTbl, array_lengthof(AVXConversionTbl), ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return AVXConversionTbl[Idx].Cost; } return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); } unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(ValTy); MVT MTy = LT.second; int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); static const X86CostTblEntry SSE42CostTbl[] = { { ISD::SETCC, MVT::v2f64, 1 }, { ISD::SETCC, MVT::v4f32, 1 }, { ISD::SETCC, MVT::v2i64, 1 }, { ISD::SETCC, MVT::v4i32, 1 }, { ISD::SETCC, MVT::v8i16, 1 }, { ISD::SETCC, MVT::v16i8, 1 }, }; static const X86CostTblEntry AVX1CostTbl[] = { { ISD::SETCC, MVT::v4f64, 1 }, { ISD::SETCC, MVT::v8f32, 1 }, // AVX1 does not support 8-wide integer compare. { ISD::SETCC, MVT::v4i64, 4 }, { ISD::SETCC, MVT::v8i32, 4 }, { ISD::SETCC, MVT::v16i16, 4 }, { ISD::SETCC, MVT::v32i8, 4 }, }; static const X86CostTblEntry AVX2CostTbl[] = { { ISD::SETCC, MVT::v4i64, 1 }, { ISD::SETCC, MVT::v8i32, 1 }, { ISD::SETCC, MVT::v16i16, 1 }, { ISD::SETCC, MVT::v32i8, 1 }, }; if (ST->hasAVX2()) { int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy); if (Idx != -1) return LT.first * AVX2CostTbl[Idx].Cost; } if (ST->hasAVX()) { int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy); if (Idx != -1) return LT.first * AVX1CostTbl[Idx].Cost; } if (ST->hasSSE42()) { int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy); if (Idx != -1) return LT.first * SSE42CostTbl[Idx].Cost; } return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); } unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const { assert(Val->isVectorTy() && "This must be a vector type"); if (Index != -1U) { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Val); // This type is legalized to a scalar type. if (!LT.second.isVector()) return 0; // The type may be split. Normalize the index to the new type. unsigned Width = LT.second.getVectorNumElements(); Index = Index % Width; // Floating point scalars are already located in index #0. if (Val->getScalarType()->isFloatingPointTy() && Index == 0) return 0; } return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); } unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Src); assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && "Invalid Opcode"); // Each load/store unit costs 1. unsigned Cost = LT.first * 1; // On Sandybridge 256bit load/stores are double pumped // (but not on Haswell). if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2()) Cost*=2; return Cost; }