//===--- MemoryBuffer.cpp - Memory Buffer implementation ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MemoryBuffer interface. // //===----------------------------------------------------------------------===// #include "llvm/Support/MemoryBuffer.h" #include "llvm/ADT/SmallString.h" #include "llvm/Config/config.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Errno.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include #include #include #include #include #include #include #if !defined(_MSC_VER) && !defined(__MINGW32__) #include #else #include #endif using namespace llvm; //===----------------------------------------------------------------------===// // MemoryBuffer implementation itself. //===----------------------------------------------------------------------===// MemoryBuffer::~MemoryBuffer() { } /// init - Initialize this MemoryBuffer as a reference to externally allocated /// memory, memory that we know is already null terminated. void MemoryBuffer::init(const char *BufStart, const char *BufEnd, bool RequiresNullTerminator) { assert((!RequiresNullTerminator || BufEnd[0] == 0) && "Buffer is not null terminated!"); BufferStart = BufStart; BufferEnd = BufEnd; } //===----------------------------------------------------------------------===// // MemoryBufferMem implementation. //===----------------------------------------------------------------------===// /// CopyStringRef - Copies contents of a StringRef into a block of memory and /// null-terminates it. static void CopyStringRef(char *Memory, StringRef Data) { memcpy(Memory, Data.data(), Data.size()); Memory[Data.size()] = 0; // Null terminate string. } namespace { struct NamedBufferAlloc { StringRef Name; NamedBufferAlloc(StringRef Name) : Name(Name) {} }; } void *operator new(size_t N, const NamedBufferAlloc &Alloc) { char *Mem = static_cast(operator new(N + Alloc.Name.size() + 1)); CopyStringRef(Mem + N, Alloc.Name); return Mem; } namespace { /// MemoryBufferMem - Named MemoryBuffer pointing to a block of memory. class MemoryBufferMem : public MemoryBuffer { public: MemoryBufferMem(StringRef InputData, bool RequiresNullTerminator) { init(InputData.begin(), InputData.end(), RequiresNullTerminator); } const char *getBufferIdentifier() const override { // The name is stored after the class itself. return reinterpret_cast(this + 1); } BufferKind getBufferKind() const override { return MemoryBuffer_Malloc; } }; } /// getMemBuffer - Open the specified memory range as a MemoryBuffer. Note /// that InputData must be a null terminated if RequiresNullTerminator is true! MemoryBuffer *MemoryBuffer::getMemBuffer(StringRef InputData, StringRef BufferName, bool RequiresNullTerminator) { return new (NamedBufferAlloc(BufferName)) MemoryBufferMem(InputData, RequiresNullTerminator); } /// getMemBufferCopy - Open the specified memory range as a MemoryBuffer, /// copying the contents and taking ownership of it. This has no requirements /// on EndPtr[0]. MemoryBuffer *MemoryBuffer::getMemBufferCopy(StringRef InputData, StringRef BufferName) { MemoryBuffer *Buf = getNewUninitMemBuffer(InputData.size(), BufferName); if (!Buf) return nullptr; memcpy(const_cast(Buf->getBufferStart()), InputData.data(), InputData.size()); return Buf; } /// getNewUninitMemBuffer - Allocate a new MemoryBuffer of the specified size /// that is not initialized. Note that the caller should initialize the /// memory allocated by this method. The memory is owned by the MemoryBuffer /// object. MemoryBuffer *MemoryBuffer::getNewUninitMemBuffer(size_t Size, StringRef BufferName) { // Allocate space for the MemoryBuffer, the data and the name. It is important // that MemoryBuffer and data are aligned so PointerIntPair works with them. // TODO: Is 16-byte alignment enough? We copy small object files with large // alignment expectations into this buffer. size_t AlignedStringLen = RoundUpToAlignment(sizeof(MemoryBufferMem) + BufferName.size() + 1, 16); size_t RealLen = AlignedStringLen + Size + 1; char *Mem = static_cast(operator new(RealLen, std::nothrow)); if (!Mem) return nullptr; // The name is stored after the class itself. CopyStringRef(Mem + sizeof(MemoryBufferMem), BufferName); // The buffer begins after the name and must be aligned. char *Buf = Mem + AlignedStringLen; Buf[Size] = 0; // Null terminate buffer. return new (Mem) MemoryBufferMem(StringRef(Buf, Size), true); } /// getNewMemBuffer - Allocate a new zero-initialized MemoryBuffer of the /// specified size. Note that the caller need not initialize the memory /// allocated by this method. The memory is owned by the MemoryBuffer object. MemoryBuffer *MemoryBuffer::getNewMemBuffer(size_t Size, StringRef BufferName) { MemoryBuffer *SB = getNewUninitMemBuffer(Size, BufferName); if (!SB) return nullptr; memset(const_cast(SB->getBufferStart()), 0, Size); return SB; } ErrorOr> MemoryBuffer::getFileOrSTDIN(StringRef Filename, int64_t FileSize) { if (Filename == "-") return getSTDIN(); return getFile(Filename, FileSize); } //===----------------------------------------------------------------------===// // MemoryBuffer::getFile implementation. //===----------------------------------------------------------------------===// namespace { /// \brief Memory maps a file descriptor using sys::fs::mapped_file_region. /// /// This handles converting the offset into a legal offset on the platform. class MemoryBufferMMapFile : public MemoryBuffer { sys::fs::mapped_file_region MFR; static uint64_t getLegalMapOffset(uint64_t Offset) { return Offset & ~(sys::fs::mapped_file_region::alignment() - 1); } static uint64_t getLegalMapSize(uint64_t Len, uint64_t Offset) { return Len + (Offset - getLegalMapOffset(Offset)); } const char *getStart(uint64_t Len, uint64_t Offset) { return MFR.const_data() + (Offset - getLegalMapOffset(Offset)); } public: MemoryBufferMMapFile(bool RequiresNullTerminator, int FD, uint64_t Len, uint64_t Offset, std::error_code EC) : MFR(FD, false, sys::fs::mapped_file_region::readonly, getLegalMapSize(Len, Offset), getLegalMapOffset(Offset), EC) { if (!EC) { const char *Start = getStart(Len, Offset); init(Start, Start + Len, RequiresNullTerminator); } } const char *getBufferIdentifier() const override { // The name is stored after the class itself. return reinterpret_cast(this + 1); } BufferKind getBufferKind() const override { return MemoryBuffer_MMap; } }; } static ErrorOr> getMemoryBufferForStream(int FD, StringRef BufferName) { const ssize_t ChunkSize = 4096*4; SmallString Buffer; ssize_t ReadBytes; // Read into Buffer until we hit EOF. do { Buffer.reserve(Buffer.size() + ChunkSize); ReadBytes = read(FD, Buffer.end(), ChunkSize); if (ReadBytes == -1) { if (errno == EINTR) continue; return std::error_code(errno, std::generic_category()); } Buffer.set_size(Buffer.size() + ReadBytes); } while (ReadBytes != 0); std::unique_ptr Ret( MemoryBuffer::getMemBufferCopy(Buffer, BufferName)); return std::move(Ret); } static ErrorOr> getFileAux(const char *Filename, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatileSize); ErrorOr> MemoryBuffer::getFile(Twine Filename, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatileSize) { // Ensure the path is null terminated. SmallString<256> PathBuf; StringRef NullTerminatedName = Filename.toNullTerminatedStringRef(PathBuf); return getFileAux(NullTerminatedName.data(), FileSize, RequiresNullTerminator, IsVolatileSize); } static ErrorOr> getOpenFileImpl(int FD, const char *Filename, uint64_t FileSize, uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator, bool IsVolatileSize); static ErrorOr> getFileAux(const char *Filename, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatileSize) { int FD; std::error_code EC = sys::fs::openFileForRead(Filename, FD); if (EC) return EC; ErrorOr> Ret = getOpenFileImpl(FD, Filename, FileSize, FileSize, 0, RequiresNullTerminator, IsVolatileSize); close(FD); return Ret; } static bool shouldUseMmap(int FD, size_t FileSize, size_t MapSize, off_t Offset, bool RequiresNullTerminator, int PageSize, bool IsVolatileSize) { // mmap may leave the buffer without null terminator if the file size changed // by the time the last page is mapped in, so avoid it if the file size is // likely to change. if (IsVolatileSize) return false; // We don't use mmap for small files because this can severely fragment our // address space. if (MapSize < 4 * 4096 || MapSize < (unsigned)PageSize) return false; if (!RequiresNullTerminator) return true; // If we don't know the file size, use fstat to find out. fstat on an open // file descriptor is cheaper than stat on a random path. // FIXME: this chunk of code is duplicated, but it avoids a fstat when // RequiresNullTerminator = false and MapSize != -1. if (FileSize == size_t(-1)) { sys::fs::file_status Status; if (sys::fs::status(FD, Status)) return false; FileSize = Status.getSize(); } // If we need a null terminator and the end of the map is inside the file, // we cannot use mmap. size_t End = Offset + MapSize; assert(End <= FileSize); if (End != FileSize) return false; // Don't try to map files that are exactly a multiple of the system page size // if we need a null terminator. if ((FileSize & (PageSize -1)) == 0) return false; #if defined(__CYGWIN__) // Don't try to map files that are exactly a multiple of the physical page size // if we need a null terminator. // FIXME: We should reorganize again getPageSize() on Win32. if ((FileSize & (4096 - 1)) == 0) return false; #endif return true; } static ErrorOr> getOpenFileImpl(int FD, const char *Filename, uint64_t FileSize, uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator, bool IsVolatileSize) { static int PageSize = sys::process::get_self()->page_size(); // Default is to map the full file. if (MapSize == uint64_t(-1)) { // If we don't know the file size, use fstat to find out. fstat on an open // file descriptor is cheaper than stat on a random path. if (FileSize == uint64_t(-1)) { sys::fs::file_status Status; std::error_code EC = sys::fs::status(FD, Status); if (EC) return EC; // If this not a file or a block device (e.g. it's a named pipe // or character device), we can't trust the size. Create the memory // buffer by copying off the stream. sys::fs::file_type Type = Status.type(); if (Type != sys::fs::file_type::regular_file && Type != sys::fs::file_type::block_file) return getMemoryBufferForStream(FD, Filename); FileSize = Status.getSize(); } MapSize = FileSize; } if (shouldUseMmap(FD, FileSize, MapSize, Offset, RequiresNullTerminator, PageSize, IsVolatileSize)) { std::error_code EC; std::unique_ptr Result( new (NamedBufferAlloc(Filename)) MemoryBufferMMapFile(RequiresNullTerminator, FD, MapSize, Offset, EC)); if (!EC) return std::move(Result); } MemoryBuffer *Buf = MemoryBuffer::getNewUninitMemBuffer(MapSize, Filename); if (!Buf) { // Failed to create a buffer. The only way it can fail is if // new(std::nothrow) returns 0. return make_error_code(errc::not_enough_memory); } std::unique_ptr SB(Buf); char *BufPtr = const_cast(SB->getBufferStart()); size_t BytesLeft = MapSize; #ifndef HAVE_PREAD if (lseek(FD, Offset, SEEK_SET) == -1) return std::error_code(errno, std::generic_category()); #endif while (BytesLeft) { #ifdef HAVE_PREAD ssize_t NumRead = ::pread(FD, BufPtr, BytesLeft, MapSize-BytesLeft+Offset); #else ssize_t NumRead = ::read(FD, BufPtr, BytesLeft); #endif if (NumRead == -1) { if (errno == EINTR) continue; // Error while reading. return std::error_code(errno, std::generic_category()); } if (NumRead == 0) { memset(BufPtr, 0, BytesLeft); // zero-initialize rest of the buffer. break; } BytesLeft -= NumRead; BufPtr += NumRead; } return std::move(SB); } ErrorOr> MemoryBuffer::getOpenFile(int FD, const char *Filename, uint64_t FileSize, bool RequiresNullTerminator, bool IsVolatileSize) { return getOpenFileImpl(FD, Filename, FileSize, FileSize, 0, RequiresNullTerminator, IsVolatileSize); } ErrorOr> MemoryBuffer::getOpenFileSlice(int FD, const char *Filename, uint64_t MapSize, int64_t Offset, bool IsVolatileSize) { return getOpenFileImpl(FD, Filename, -1, MapSize, Offset, false, IsVolatileSize); } ErrorOr> MemoryBuffer::getSTDIN() { // Read in all of the data from stdin, we cannot mmap stdin. // // FIXME: That isn't necessarily true, we should try to mmap stdin and // fallback if it fails. sys::ChangeStdinToBinary(); return getMemoryBufferForStream(0, ""); } MemoryBufferRef MemoryBuffer::getMemBufferRef() const { StringRef Data = getBuffer(); StringRef Identifier = getBufferIdentifier(); return MemoryBufferRef(Data, Identifier); }