//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that PPC uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H #include "PPC.h" #include "PPCInstrInfo.h" #include "PPCRegisterInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" namespace llvm { namespace PPCISD { enum NodeType : unsigned { // Start the numbering where the builtin ops and target ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, /// FSEL - Traditional three-operand fsel node. /// FSEL, /// FCFID - The FCFID instruction, taking an f64 operand and producing /// and f64 value containing the FP representation of the integer that /// was temporarily in the f64 operand. FCFID, /// Newer FCFID[US] integer-to-floating-point conversion instructions for /// unsigned integers and single-precision outputs. FCFIDU, FCFIDS, FCFIDUS, /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 /// operand, producing an f64 value containing the integer representation /// of that FP value. FCTIDZ, FCTIWZ, /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for /// unsigned integers. FCTIDUZ, FCTIWUZ, /// Reciprocal estimate instructions (unary FP ops). FRE, FRSQRTE, // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking // three v4f32 operands and producing a v4f32 result. VMADDFP, VNMSUBFP, /// VPERM - The PPC VPERM Instruction. /// VPERM, /// The CMPB instruction (takes two operands of i32 or i64). CMPB, /// Hi/Lo - These represent the high and low 16-bit parts of a global /// address respectively. These nodes have two operands, the first of /// which must be a TargetGlobalAddress, and the second of which must be a /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', /// though these are usually folded into other nodes. Hi, Lo, /// The following two target-specific nodes are used for calls through /// function pointers in the 64-bit SVR4 ABI. /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to /// compute an allocation on the stack. DYNALLOC, /// GlobalBaseReg - On Darwin, this node represents the result of the mflr /// at function entry, used for PIC code. GlobalBaseReg, /// These nodes represent the 32-bit PPC shifts that operate on 6-bit /// shift amounts. These nodes are generated by the multi-precision shift /// code. SRL, SRA, SHL, /// The combination of sra[wd]i and addze used to implemented signed /// integer division by a power of 2. The first operand is the dividend, /// and the second is the constant shift amount (representing the /// divisor). SRA_ADDZE, /// CALL - A direct function call. /// CALL_NOP is a call with the special NOP which follows 64-bit /// SVR4 calls. CALL, CALL_NOP, /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a /// MTCTR instruction. MTCTR, /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a /// BCTRL instruction. BCTRL, /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl /// instruction and the TOC reload required on SVR4 PPC64. BCTRL_LOAD_TOC, /// Return with a flag operand, matched by 'blr' RET_FLAG, /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction. /// This copies the bits corresponding to the specified CRREG into the /// resultant GPR. Bits corresponding to other CR regs are undefined. MFOCRF, /// Direct move from a VSX register to a GPR MFVSR, /// Direct move from a GPR to a VSX register (algebraic) MTVSRA, /// Direct move from a GPR to a VSX register (zero) MTVSRZ, // FIXME: Remove these once the ANDI glue bug is fixed: /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the /// eq or gt bit of CR0 after executing andi. x, 1. This is used to /// implement truncation of i32 or i64 to i1. ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT, // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit // target (returns (Lo, Hi)). It takes a chain operand. READ_TIME_BASE, // EH_SJLJ_SETJMP - SjLj exception handling setjmp. EH_SJLJ_SETJMP, // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. EH_SJLJ_LONGJMP, /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* /// instructions. For lack of better number, we use the opcode number /// encoding for the OPC field to identify the compare. For example, 838 /// is VCMPGTSH. VCMP, /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the /// altivec VCMP*o instructions. For lack of better number, we use the /// opcode number encoding for the OPC field to identify the compare. For /// example, 838 is VCMPGTSH. VCMPo, /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the /// condition register to branch on, OPC is the branch opcode to use (e.g. /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is /// an optional input flag argument. COND_BRANCH, /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based /// loops. BDNZ, BDZ, /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding /// towards zero. Used only as part of the long double-to-int /// conversion sequence. FADDRTZ, /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register. MFFS, /// TC_RETURN - A tail call return. /// operand #0 chain /// operand #1 callee (register or absolute) /// operand #2 stack adjustment /// operand #3 optional in flag TC_RETURN, /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls CR6SET, CR6UNSET, /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS /// on PPC32. PPC32_GOT, /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and /// local dynamic TLS on PPC32. PPC32_PICGOT, /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec /// TLS model, produces an ADDIS8 instruction that adds the GOT /// base to sym\@got\@tprel\@ha. ADDIS_GOT_TPREL_HA, /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec /// TLS model, produces a LD instruction with base register G8RReg /// and offset sym\@got\@tprel\@l. This completes the addition that /// finds the offset of "sym" relative to the thread pointer. LD_GOT_TPREL_L, /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS /// model, produces an ADD instruction that adds the contents of /// G8RReg to the thread pointer. Symbol contains a relocation /// sym\@tls which is to be replaced by the thread pointer and /// identifies to the linker that the instruction is part of a /// TLS sequence. ADD_TLS, /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS /// model, produces an ADDIS8 instruction that adds the GOT base /// register to sym\@got\@tlsgd\@ha. ADDIS_TLSGD_HA, /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS /// model, produces an ADDI8 instruction that adds G8RReg to /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by /// ADDIS_TLSGD_L_ADDR until after register assignment. ADDI_TLSGD_L, /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by /// ADDIS_TLSGD_L_ADDR until after register assignment. GET_TLS_ADDR, /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following /// register assignment. ADDI_TLSGD_L_ADDR, /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS /// model, produces an ADDIS8 instruction that adds the GOT base /// register to sym\@got\@tlsld\@ha. ADDIS_TLSLD_HA, /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS /// model, produces an ADDI8 instruction that adds G8RReg to /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by /// ADDIS_TLSLD_L_ADDR until after register assignment. ADDI_TLSLD_L, /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by /// ADDIS_TLSLD_L_ADDR until after register assignment. GET_TLSLD_ADDR, /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion /// following register assignment. ADDI_TLSLD_L_ADDR, /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS /// model, produces an ADDIS8 instruction that adds X3 to /// sym\@dtprel\@ha. ADDIS_DTPREL_HA, /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS /// model, produces an ADDI8 instruction that adds G8RReg to /// sym\@got\@dtprel\@l. ADDI_DTPREL_L, /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded /// during instruction selection to optimize a BUILD_VECTOR into /// operations on splats. This is necessary to avoid losing these /// optimizations due to constant folding. VADD_SPLAT, /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned /// operand identifies the operating system entry point. SC, /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little /// endian. Maps to an xxswapd instruction that corrects an lxvd2x /// or stxvd2x instruction. The chain is necessary because the /// sequence replaces a load and needs to provide the same number /// of outputs. XXSWAPD, /// QVFPERM = This corresponds to the QPX qvfperm instruction. QVFPERM, /// QVGPCI = This corresponds to the QPX qvgpci instruction. QVGPCI, /// QVALIGNI = This corresponds to the QPX qvaligni instruction. QVALIGNI, /// QVESPLATI = This corresponds to the QPX qvesplati instruction. QVESPLATI, /// QBFLT = Access the underlying QPX floating-point boolean /// representation. QBFLT, /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a /// byte-swapping store instruction. It byte-swaps the low "Type" bits of /// the GPRC input, then stores it through Ptr. Type can be either i16 or /// i32. STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE, /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 /// or i32. LBRX, /// STFIWX - The STFIWX instruction. The first operand is an input token /// chain, then an f64 value to store, then an address to store it to. STFIWX, /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point /// load which sign-extends from a 32-bit integer value into the /// destination 64-bit register. LFIWAX, /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point /// load which zero-extends from a 32-bit integer value into the /// destination 64-bit register. LFIWZX, /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian. /// Maps directly to an lxvd2x instruction that will be followed by /// an xxswapd. LXVD2X, /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian. /// Maps directly to an stxvd2x instruction that will be preceded by /// an xxswapd. STXVD2X, /// QBRC, CHAIN = QVLFSb CHAIN, Ptr /// The 4xf32 load used for v4i1 constants. QVLFSb, /// GPRC = TOC_ENTRY GA, TOC /// Loads the entry for GA from the TOC, where the TOC base is given by /// the last operand. TOC_ENTRY }; } /// Define some predicates that are used for node matching. namespace PPC { /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUDUM instruction. bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG); /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG); /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the /// shift amount, otherwise return -1. int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// VSPLTB/VSPLTH/VSPLTW. bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG); /// get_VSPLTI_elt - If this is a build_vector of constants which can be /// formed by using a vspltis[bhw] instruction of the specified element /// size, return the constant being splatted. The ByteSize field indicates /// the number of bytes of each element [124] -> [bhw]. SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); /// If this is a qvaligni shuffle mask, return the shift /// amount, otherwise return -1. int isQVALIGNIShuffleMask(SDNode *N); } class PPCTargetLowering : public TargetLowering { const PPCSubtarget &Subtarget; public: explicit PPCTargetLowering(const PPCTargetMachine &TM, const PPCSubtarget &STI); /// getTargetNodeName() - This method returns the name of a target specific /// DAG node. const char *getTargetNodeName(unsigned Opcode) const override; MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; } bool isCheapToSpeculateCttz() const override { return true; } bool isCheapToSpeculateCtlz() const override { return true; } /// getSetCCResultType - Return the ISD::SETCC ValueType EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override; /// Return true if target always beneficiates from combining into FMA for a /// given value type. This must typically return false on targets where FMA /// takes more cycles to execute than FADD. bool enableAggressiveFMAFusion(EVT VT) const override; /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be represented as an indexed [r+r] operation. Returns false if it /// can be more efficiently represented with [r+imm]. bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const; /// SelectAddressRegImm - Returns true if the address N can be represented /// by a base register plus a signed 16-bit displacement [r+imm], and if it /// is not better represented as reg+reg. If Aligned is true, only accept /// displacements suitable for STD and friends, i.e. multiples of 4. bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, bool Aligned) const; /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const; Sched::Preference getSchedulingPreference(SDNode *N) const override; /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const override; SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, std::vector *Created) const override; unsigned getRegisterByName(const char* RegName, EVT VT) const override; void computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const override; unsigned getPrefLoopAlignment(MachineLoop *ML) const override; Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord, bool IsStore, bool IsLoad) const override; Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord, bool IsStore, bool IsLoad) const override; MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const override; MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *MBB, unsigned AtomicSize, unsigned BinOpcode) const; MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI, MachineBasicBlock *MBB, bool is8bit, unsigned Opcode) const; MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI, MachineBasicBlock *MBB) const; MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI, MachineBasicBlock *MBB) const; ConstraintType getConstraintType(const std::string &Constraint) const override; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const override; std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, const std::string &Constraint, MVT VT) const override; /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. unsigned getByValTypeAlignment(Type *Ty) const override; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const override; unsigned getInlineAsmMemConstraint( const std::string &ConstraintCode) const override { if (ConstraintCode == "es") return InlineAsm::Constraint_es; else if (ConstraintCode == "o") return InlineAsm::Constraint_o; else if (ConstraintCode == "Q") return InlineAsm::Constraint_Q; else if (ConstraintCode == "Z") return InlineAsm::Constraint_Z; else if (ConstraintCode == "Zy") return InlineAsm::Constraint_Zy; return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can /// compare a register against the immediate without having to materialize /// the immediate into a register. bool isLegalICmpImmediate(int64_t Imm) const override; /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can /// add a register and the immediate without having to materialize /// the immediate into a register. bool isLegalAddImmediate(int64_t Imm) const override; /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in /// register X1 to i32 by referencing its sub-register R1. bool isTruncateFree(Type *Ty1, Type *Ty2) const override; bool isTruncateFree(EVT VT1, EVT VT2) const override; bool isZExtFree(SDValue Val, EVT VT2) const override; bool isFPExtFree(EVT VT) const override; /// \brief Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override; bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const override; /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If 'IsMemset' is /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy /// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const override; /// Is unaligned memory access allowed for the given type, and is it fast /// relative to software emulation. bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, unsigned Align = 1, bool *Fast = nullptr) const override; /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be /// expanded to FMAs when this method returns true, otherwise fmuladd is /// expanded to fmul + fadd. bool isFMAFasterThanFMulAndFAdd(EVT VT) const override; const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; // Should we expand the build vector with shuffles? bool shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const override; /// createFastISel - This method returns a target-specific FastISel object, /// or null if the target does not support "fast" instruction selection. FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const override; /// \brief Returns true if an argument of type Ty needs to be passed in a /// contiguous block of registers in calling convention CallConv. bool functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override { // We support any array type as "consecutive" block in the parameter // save area. The element type defines the alignment requirement and // whether the argument should go in GPRs, FPRs, or VRs if available. // // Note that clang uses this capability both to implement the ELFv2 // homogeneous float/vector aggregate ABI, and to avoid having to use // "byval" when passing aggregates that might fully fit in registers. return Ty->isArrayTy(); } private: struct ReuseLoadInfo { SDValue Ptr; SDValue Chain; SDValue ResChain; MachinePointerInfo MPI; bool IsInvariant; unsigned Alignment; AAMDNodes AAInfo; const MDNode *Ranges; ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {} }; bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI, SelectionDAG &DAG, ISD::LoadExtType ET = ISD::NON_EXTLOAD) const; void spliceIntoChain(SDValue ResChain, SDValue NewResChain, SelectionDAG &DAG) const; void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, SelectionDAG &DAG, SDLoc dl) const; SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG, SDLoc dl) const; SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG, SDLoc dl) const; SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; bool IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl &Ins, SelectionDAG& DAG) const; SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, SDValue &FPOpOut, bool isDarwinABI, SDLoc dl) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const; SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const; SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall, bool isVarArg, bool IsPatchPoint, SelectionDAG &DAG, SmallVector, 8> &RegsToPass, SDValue InFlag, SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, unsigned NumBytes, const SmallVectorImpl &Ins, SmallVectorImpl &InVals, ImmutableCallSite *CS) const; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const override; SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG, SDValue ArgVal, SDLoc dl) const; SDValue LowerFormalArguments_Darwin(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerFormalArguments_64SVR4(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerFormalArguments_32SVR4(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl) const; SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, bool IsPatchPoint, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals, ImmutableCallSite *CS) const; SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, bool IsPatchPoint, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals, ImmutableCallSite *CS) const; SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, bool IsPatchPoint, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals, ImmutableCallSite *CS) const; SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const; SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const; SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI, unsigned &RefinementSteps, bool &UseOneConstNR) const override; SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI, unsigned &RefinementSteps) const override; bool combineRepeatedFPDivisors(unsigned NumUsers) const override; CCAssignFn *useFastISelCCs(unsigned Flag) const; }; namespace PPC { FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo); } bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); } #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H