//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the execution dependency fix pass. // // Some X86 SSE instructions like mov, and, or, xor are available in different // variants for different operand types. These variant instructions are // equivalent, but on Nehalem and newer cpus there is extra latency // transferring data between integer and floating point domains. ARM cores // have similar issues when they are configured with both VFP and NEON // pipelines. // // This pass changes the variant instructions to minimize domain crossings. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "execution-fix" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; /// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track /// of execution domains. /// /// An open DomainValue represents a set of instructions that can still switch /// execution domain. Multiple registers may refer to the same open /// DomainValue - they will eventually be collapsed to the same execution /// domain. /// /// A collapsed DomainValue represents a single register that has been forced /// into one of more execution domains. There is a separate collapsed /// DomainValue for each register, but it may contain multiple execution /// domains. A register value is initially created in a single execution /// domain, but if we were forced to pay the penalty of a domain crossing, we /// keep track of the fact the the register is now available in multiple /// domains. namespace { struct DomainValue { // Basic reference counting. unsigned Refs; // Bitmask of available domains. For an open DomainValue, it is the still // possible domains for collapsing. For a collapsed DomainValue it is the // domains where the register is available for free. unsigned AvailableDomains; // Position of the last defining instruction. unsigned Dist; // Twiddleable instructions using or defining these registers. SmallVector Instrs; // A collapsed DomainValue has no instructions to twiddle - it simply keeps // track of the domains where the registers are already available. bool isCollapsed() const { return Instrs.empty(); } // Is domain available? bool hasDomain(unsigned domain) const { return AvailableDomains & (1u << domain); } // Mark domain as available. void addDomain(unsigned domain) { AvailableDomains |= 1u << domain; } // Restrict to a single domain available. void setSingleDomain(unsigned domain) { AvailableDomains = 1u << domain; } // Return bitmask of domains that are available and in mask. unsigned getCommonDomains(unsigned mask) const { return AvailableDomains & mask; } // First domain available. unsigned getFirstDomain() const { return CountTrailingZeros_32(AvailableDomains); } DomainValue() { clear(); } void clear() { Refs = AvailableDomains = Dist = 0; Instrs.clear(); } }; } namespace { class ExeDepsFix : public MachineFunctionPass { static char ID; SpecificBumpPtrAllocator Allocator; SmallVector Avail; const TargetRegisterClass *const RC; MachineFunction *MF; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; std::vector AliasMap; const unsigned NumRegs; DomainValue **LiveRegs; typedef DenseMap LiveOutMap; LiveOutMap LiveOuts; unsigned Distance; public: ExeDepsFix(const TargetRegisterClass *rc) : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "Execution dependency fix"; } private: // Register mapping. int RegIndex(unsigned Reg); // DomainValue allocation. DomainValue *Alloc(int domain = -1); void Recycle(DomainValue*); // LiveRegs manipulations. void SetLiveReg(int rx, DomainValue *DV); void Kill(int rx); void Force(int rx, unsigned domain); void Collapse(DomainValue *dv, unsigned domain); bool Merge(DomainValue *A, DomainValue *B); void enterBasicBlock(MachineBasicBlock*); void leaveBasicBlock(MachineBasicBlock*); void visitInstr(MachineInstr*); void visitGenericInstr(MachineInstr*); void visitSoftInstr(MachineInstr*, unsigned mask); void visitHardInstr(MachineInstr*, unsigned domain); }; } char ExeDepsFix::ID = 0; /// Translate TRI register number to an index into our smaller tables of /// interesting registers. Return -1 for boring registers. int ExeDepsFix::RegIndex(unsigned Reg) { assert(Reg < AliasMap.size() && "Invalid register"); return AliasMap[Reg]; } DomainValue *ExeDepsFix::Alloc(int domain) { DomainValue *dv = Avail.empty() ? new(Allocator.Allocate()) DomainValue : Avail.pop_back_val(); dv->Dist = Distance; if (domain >= 0) dv->addDomain(domain); return dv; } void ExeDepsFix::Recycle(DomainValue *dv) { assert(dv && "Cannot recycle NULL"); dv->clear(); Avail.push_back(dv); } /// Set LiveRegs[rx] = dv, updating reference counts. void ExeDepsFix::SetLiveReg(int rx, DomainValue *dv) { assert(unsigned(rx) < NumRegs && "Invalid index"); if (!LiveRegs) { LiveRegs = new DomainValue*[NumRegs]; std::fill(LiveRegs, LiveRegs+NumRegs, (DomainValue*)0); } if (LiveRegs[rx] == dv) return; if (LiveRegs[rx]) { assert(LiveRegs[rx]->Refs && "Bad refcount"); if (--LiveRegs[rx]->Refs == 0) Recycle(LiveRegs[rx]); } LiveRegs[rx] = dv; if (dv) ++dv->Refs; } // Kill register rx, recycle or collapse any DomainValue. void ExeDepsFix::Kill(int rx) { assert(unsigned(rx) < NumRegs && "Invalid index"); if (!LiveRegs || !LiveRegs[rx]) return; // Before killing the last reference to an open DomainValue, collapse it to // the first available domain. if (LiveRegs[rx]->Refs == 1 && !LiveRegs[rx]->isCollapsed()) Collapse(LiveRegs[rx], LiveRegs[rx]->getFirstDomain()); else SetLiveReg(rx, 0); } /// Force register rx into domain. void ExeDepsFix::Force(int rx, unsigned domain) { assert(unsigned(rx) < NumRegs && "Invalid index"); DomainValue *dv; if (LiveRegs && (dv = LiveRegs[rx])) { if (dv->isCollapsed()) dv->addDomain(domain); else if (dv->hasDomain(domain)) Collapse(dv, domain); else { // This is an incompatible open DomainValue. Collapse it to whatever and // force the new value into domain. This costs a domain crossing. Collapse(dv, dv->getFirstDomain()); assert(LiveRegs[rx] && "Not live after collapse?"); LiveRegs[rx]->addDomain(domain); } } else { // Set up basic collapsed DomainValue. SetLiveReg(rx, Alloc(domain)); } } /// Collapse open DomainValue into given domain. If there are multiple /// registers using dv, they each get a unique collapsed DomainValue. void ExeDepsFix::Collapse(DomainValue *dv, unsigned domain) { assert(dv->hasDomain(domain) && "Cannot collapse"); // Collapse all the instructions. while (!dv->Instrs.empty()) TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain); dv->setSingleDomain(domain); // If there are multiple users, give them new, unique DomainValues. if (LiveRegs && dv->Refs > 1) for (unsigned rx = 0; rx != NumRegs; ++rx) if (LiveRegs[rx] == dv) SetLiveReg(rx, Alloc(domain)); } /// Merge - All instructions and registers in B are moved to A, and B is /// released. bool ExeDepsFix::Merge(DomainValue *A, DomainValue *B) { assert(!A->isCollapsed() && "Cannot merge into collapsed"); assert(!B->isCollapsed() && "Cannot merge from collapsed"); if (A == B) return true; // Restrict to the domains that A and B have in common. unsigned common = A->getCommonDomains(B->AvailableDomains); if (!common) return false; A->AvailableDomains = common; A->Dist = std::max(A->Dist, B->Dist); A->Instrs.append(B->Instrs.begin(), B->Instrs.end()); for (unsigned rx = 0; rx != NumRegs; ++rx) if (LiveRegs[rx] == B) SetLiveReg(rx, A); return true; } void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) { // Try to coalesce live-out registers from predecessors. for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(), e = MBB->livein_end(); i != e; ++i) { int rx = RegIndex(*i); if (rx < 0) continue; for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(), pe = MBB->pred_end(); pi != pe; ++pi) { LiveOutMap::const_iterator fi = LiveOuts.find(*pi); if (fi == LiveOuts.end()) continue; DomainValue *pdv = fi->second[rx]; if (!pdv) continue; if (!LiveRegs || !LiveRegs[rx]) { SetLiveReg(rx, pdv); continue; } // We have a live DomainValue from more than one predecessor. if (LiveRegs[rx]->isCollapsed()) { // We are already collapsed, but predecessor is not. Force him. unsigned domain = LiveRegs[rx]->getFirstDomain(); if (!pdv->isCollapsed() && pdv->hasDomain(domain)) Collapse(pdv, domain); continue; } // Currently open, merge in predecessor. if (!pdv->isCollapsed()) Merge(LiveRegs[rx], pdv); else Force(rx, pdv->getFirstDomain()); } } } void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) { // Save live registers at end of MBB - used by enterBasicBlock(). if (LiveRegs) LiveOuts.insert(std::make_pair(MBB, LiveRegs)); LiveRegs = 0; } void ExeDepsFix::visitInstr(MachineInstr *MI) { if (MI->isDebugValue()) return; ++Distance; std::pair domp = TII->getExecutionDomain(MI); if (domp.first) if (domp.second) visitSoftInstr(MI, domp.second); else visitHardInstr(MI, domp.first); else if (LiveRegs) visitGenericInstr(MI); } // A hard instruction only works in one domain. All input registers will be // forced into that domain. void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) { // Collapse all uses. for (unsigned i = mi->getDesc().getNumDefs(), e = mi->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; int rx = RegIndex(mo.getReg()); if (rx < 0) continue; Force(rx, domain); } // Kill all defs and force them. for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; int rx = RegIndex(mo.getReg()); if (rx < 0) continue; Kill(rx); Force(rx, domain); } } // A soft instruction can be changed to work in other domains given by mask. void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) { // Bitmask of available domains for this instruction after taking collapsed // operands into account. unsigned available = mask; // Scan the explicit use operands for incoming domains. SmallVector used; if (LiveRegs) for (unsigned i = mi->getDesc().getNumDefs(), e = mi->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; int rx = RegIndex(mo.getReg()); if (rx < 0) continue; if (DomainValue *dv = LiveRegs[rx]) { // Bitmask of domains that dv and available have in common. unsigned common = dv->getCommonDomains(available); // Is it possible to use this collapsed register for free? if (dv->isCollapsed()) { // Restrict available domains to the ones in common with the operand. // If there are no common domains, we must pay the cross-domain // penalty for this operand. if (common) available = common; } else if (common) // Open DomainValue is compatible, save it for merging. used.push_back(rx); else // Open DomainValue is not compatible with instruction. It is useless // now. Kill(rx); } } // If the collapsed operands force a single domain, propagate the collapse. if (isPowerOf2_32(available)) { unsigned domain = CountTrailingZeros_32(available); TII->setExecutionDomain(mi, domain); visitHardInstr(mi, domain); return; } // Kill off any remaining uses that don't match available, and build a list of // incoming DomainValues that we want to merge. SmallVector doms; for (SmallVector::iterator i=used.begin(), e=used.end(); i!=e; ++i) { int rx = *i; DomainValue *dv = LiveRegs[rx]; // This useless DomainValue could have been missed above. if (!dv->getCommonDomains(available)) { Kill(*i); continue; } // sorted, uniqued insert. bool inserted = false; for (SmallVector::iterator i = doms.begin(), e = doms.end(); i != e && !inserted; ++i) { if (dv == *i) inserted = true; else if (dv->Dist < (*i)->Dist) { inserted = true; doms.insert(i, dv); } } if (!inserted) doms.push_back(dv); } // doms are now sorted in order of appearance. Try to merge them all, giving // priority to the latest ones. DomainValue *dv = 0; while (!doms.empty()) { if (!dv) { dv = doms.pop_back_val(); continue; } DomainValue *latest = doms.pop_back_val(); if (Merge(dv, latest)) continue; // If latest didn't merge, it is useless now. Kill all registers using it. for (SmallVector::iterator i=used.begin(), e=used.end(); i != e; ++i) if (LiveRegs[*i] == latest) Kill(*i); } // dv is the DomainValue we are going to use for this instruction. if (!dv) dv = Alloc(); dv->Dist = Distance; dv->AvailableDomains = available; dv->Instrs.push_back(mi); // Finally set all defs and non-collapsed uses to dv. for (unsigned i = 0, e = mi->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; int rx = RegIndex(mo.getReg()); if (rx < 0) continue; if (!LiveRegs || !LiveRegs[rx] || (mo.isDef() && LiveRegs[rx]!=dv)) { Kill(rx); SetLiveReg(rx, dv); } } } void ExeDepsFix::visitGenericInstr(MachineInstr *mi) { // Process explicit defs, kill any relevant registers redefined. for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; int rx = RegIndex(mo.getReg()); if (rx < 0) continue; Kill(rx); } } bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) { MF = &mf; TII = MF->getTarget().getInstrInfo(); TRI = MF->getTarget().getRegisterInfo(); LiveRegs = 0; Distance = 0; assert(NumRegs == RC->getNumRegs() && "Bad regclass"); // If no relevant registers are used in the function, we can skip it // completely. bool anyregs = false; for (TargetRegisterClass::const_iterator I = RC->begin(), E = RC->end(); I != E; ++I) if (MF->getRegInfo().isPhysRegUsed(*I)) { anyregs = true; break; } if (!anyregs) return false; // Initialize the AliasMap on the first use. if (AliasMap.empty()) { // Given a PhysReg, AliasMap[PhysReg] is either the relevant index into RC, // or -1. AliasMap.resize(TRI->getNumRegs(), -1); for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i) for (const unsigned *AI = TRI->getOverlaps(RC->getRegister(i)); *AI; ++AI) AliasMap[*AI] = i; } MachineBasicBlock *Entry = MF->begin(); ReversePostOrderTraversal RPOT(Entry); for (ReversePostOrderTraversal::rpo_iterator MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) { MachineBasicBlock *MBB = *MBBI; enterBasicBlock(MBB); for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) visitInstr(I); leaveBasicBlock(MBB); } // Clear the LiveOuts vectors and collapse any remaining DomainValues. for (ReversePostOrderTraversal::rpo_iterator MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) { LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI); if (FI == LiveOuts.end()) continue; assert(FI->second && "Null entry"); // The DomainValue is collapsed when the last reference is killed. LiveRegs = FI->second; for (unsigned i = 0, e = NumRegs; i != e; ++i) if (LiveRegs[i]) Kill(i); delete[] LiveRegs; } LiveOuts.clear(); Avail.clear(); Allocator.DestroyAll(); return false; } FunctionPass * llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) { return new ExeDepsFix(RC); }