//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs several transformations to transform natural loops into a // simpler form, which makes subsequent analyses and transformations simpler and // more effective. // // Loop pre-header insertion guarantees that there is a single, non-critical // entry edge from outside of the loop to the loop header. This simplifies a // number of analyses and transformations, such as LICM. // // Loop exit-block insertion guarantees that all exit blocks from the loop // (blocks which are outside of the loop that have predecessors inside of the // loop) only have predecessors from inside of the loop (and are thus dominated // by the loop header). This simplifies transformations such as store-sinking // that are built into LICM. // // This pass also guarantees that loops will have exactly one backedge. // // Note that the simplifycfg pass will clean up blocks which are split out but // end up being unnecessary, so usage of this pass should not pessimize // generated code. // // This pass obviously modifies the CFG, but updates loop information and // dominator information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loopsimplify" #include "llvm/Transforms/Scalar.h" #include "llvm/Constant.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/DepthFirstIterator.h" using namespace llvm; STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); STATISTIC(NumNested , "Number of nested loops split out"); namespace { struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass { static char ID; // Pass identification, replacement for typeid LoopSimplify() : FunctionPass((intptr_t)&ID) {} // AA - If we have an alias analysis object to update, this is it, otherwise // this is null. AliasAnalysis *AA; LoopInfo *LI; virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { // We need loop information to identify the loops... AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. } private: bool ProcessLoop(Loop *L); BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix, const std::vector &Preds); BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); void InsertPreheaderForLoop(Loop *L); Loop *SeparateNestedLoop(Loop *L); void InsertUniqueBackedgeBlock(Loop *L); void PlaceSplitBlockCarefully(BasicBlock *NewBB, std::vector &SplitPreds, Loop *L); void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB, std::vector &PredBlocks); }; char LoopSimplify::ID = 0; RegisterPass X("loopsimplify", "Canonicalize natural loops", true); } // Publically exposed interface to pass... const PassInfo *llvm::LoopSimplifyID = X.getPassInfo(); FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } /// runOnFunction - Run down all loops in the CFG (recursively, but we could do /// it in any convenient order) inserting preheaders... /// bool LoopSimplify::runOnFunction(Function &F) { bool Changed = false; LI = &getAnalysis(); AA = getAnalysisToUpdate(); // Check to see that no blocks (other than the header) in loops have // predecessors that are not in loops. This is not valid for natural loops, // but can occur if the blocks are unreachable. Since they are unreachable we // can just shamelessly destroy their terminators to make them not branch into // the loop! for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { // This case can only occur for unreachable blocks. Blocks that are // unreachable can't be in loops, so filter those blocks out. if (LI->getLoopFor(BB)) continue; bool BlockUnreachable = false; TerminatorInst *TI = BB->getTerminator(); // Check to see if any successors of this block are non-loop-header loops // that are not the header. for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { // If this successor is not in a loop, BB is clearly ok. Loop *L = LI->getLoopFor(TI->getSuccessor(i)); if (!L) continue; // If the succ is the loop header, and if L is a top-level loop, then this // is an entrance into a loop through the header, which is also ok. if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0) continue; // Otherwise, this is an entrance into a loop from some place invalid. // Either the loop structure is invalid and this is not a natural loop (in // which case the compiler is buggy somewhere else) or BB is unreachable. BlockUnreachable = true; break; } // If this block is ok, check the next one. if (!BlockUnreachable) continue; // Otherwise, this block is dead. To clean up the CFG and to allow later // loop transformations to ignore this case, we delete the edges into the // loop by replacing the terminator. // Remove PHI entries from the successors. for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) TI->getSuccessor(i)->removePredecessor(BB); // Add a new unreachable instruction. new UnreachableInst(TI); // Delete the dead terminator. if (AA) AA->deleteValue(&BB->back()); BB->getInstList().pop_back(); Changed |= true; } for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) Changed |= ProcessLoop(*I); return Changed; } /// ProcessLoop - Walk the loop structure in depth first order, ensuring that /// all loops have preheaders. /// bool LoopSimplify::ProcessLoop(Loop *L) { bool Changed = false; ReprocessLoop: // Canonicalize inner loops before outer loops. Inner loop canonicalization // can provide work for the outer loop to canonicalize. for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) Changed |= ProcessLoop(*I); assert(L->getBlocks()[0] == L->getHeader() && "Header isn't first block in loop?"); // Does the loop already have a preheader? If so, don't insert one. if (L->getLoopPreheader() == 0) { InsertPreheaderForLoop(L); NumInserted++; Changed = true; } // Next, check to make sure that all exit nodes of the loop only have // predecessors that are inside of the loop. This check guarantees that the // loop preheader/header will dominate the exit blocks. If the exit block has // predecessors from outside of the loop, split the edge now. std::vector ExitBlocks; L->getExitBlocks(ExitBlocks); SetVector ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); for (SetVector::iterator I = ExitBlockSet.begin(), E = ExitBlockSet.end(); I != E; ++I) { BasicBlock *ExitBlock = *I; for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); PI != PE; ++PI) // Must be exactly this loop: no subloops, parent loops, or non-loop preds // allowed. if (!L->contains(*PI)) { RewriteLoopExitBlock(L, ExitBlock); NumInserted++; Changed = true; break; } } // If the header has more than two predecessors at this point (from the // preheader and from multiple backedges), we must adjust the loop. unsigned NumBackedges = L->getNumBackEdges(); if (NumBackedges != 1) { // If this is really a nested loop, rip it out into a child loop. Don't do // this for loops with a giant number of backedges, just factor them into a // common backedge instead. if (NumBackedges < 8) { if (Loop *NL = SeparateNestedLoop(L)) { ++NumNested; // This is a big restructuring change, reprocess the whole loop. ProcessLoop(NL); Changed = true; // GCC doesn't tail recursion eliminate this. goto ReprocessLoop; } } // If we either couldn't, or didn't want to, identify nesting of the loops, // insert a new block that all backedges target, then make it jump to the // loop header. InsertUniqueBackedgeBlock(L); NumInserted++; Changed = true; } // Scan over the PHI nodes in the loop header. Since they now have only two // incoming values (the loop is canonicalized), we may have simplified the PHI // down to 'X = phi [X, Y]', which should be replaced with 'Y'. PHINode *PN; for (BasicBlock::iterator I = L->getHeader()->begin(); (PN = dyn_cast(I++)); ) if (Value *V = PN->hasConstantValue()) { PN->replaceAllUsesWith(V); PN->eraseFromParent(); } return Changed; } /// SplitBlockPredecessors - Split the specified block into two blocks. We want /// to move the predecessors specified in the Preds list to point to the new /// block, leaving the remaining predecessors pointing to BB. This method /// updates the SSA PHINode's, but no other analyses. /// BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB, const char *Suffix, const std::vector &Preds) { // Create new basic block, insert right before the original block... BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB); // The preheader first gets an unconditional branch to the loop header... BranchInst *BI = new BranchInst(BB, NewBB); // For every PHI node in the block, insert a PHI node into NewBB where the // incoming values from the out of loop edges are moved to NewBB. We have two // possible cases here. If the loop is dead, we just insert dummy entries // into the PHI nodes for the new edge. If the loop is not dead, we move the // incoming edges in BB into new PHI nodes in NewBB. // if (!Preds.empty()) { // Is the loop not obviously dead? // Check to see if the values being merged into the new block need PHI // nodes. If so, insert them. for (BasicBlock::iterator I = BB->begin(); isa(I); ) { PHINode *PN = cast(I); ++I; // Check to see if all of the values coming in are the same. If so, we // don't need to create a new PHI node. Value *InVal = PN->getIncomingValueForBlock(Preds[0]); for (unsigned i = 1, e = Preds.size(); i != e; ++i) if (InVal != PN->getIncomingValueForBlock(Preds[i])) { InVal = 0; break; } // If the values coming into the block are not the same, we need a PHI. if (InVal == 0) { // Create the new PHI node, insert it into NewBB at the end of the block PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI); if (AA) AA->copyValue(PN, NewPHI); // Move all of the edges from blocks outside the loop to the new PHI for (unsigned i = 0, e = Preds.size(); i != e; ++i) { Value *V = PN->removeIncomingValue(Preds[i], false); NewPHI->addIncoming(V, Preds[i]); } InVal = NewPHI; } else { // Remove all of the edges coming into the PHI nodes from outside of the // block. for (unsigned i = 0, e = Preds.size(); i != e; ++i) PN->removeIncomingValue(Preds[i], false); } // Add an incoming value to the PHI node in the loop for the preheader // edge. PN->addIncoming(InVal, NewBB); // Can we eliminate this phi node now? if (Value *V = PN->hasConstantValue(true)) { Instruction *I = dyn_cast(V); // If I is in NewBB, the Dominator call will fail, because NewBB isn't // registered in DominatorTree yet. Handle this case explicitly. if (!I || (I->getParent() != NewBB && getAnalysis().dominates(I, PN))) { PN->replaceAllUsesWith(V); if (AA) AA->deleteValue(PN); BB->getInstList().erase(PN); } } } // Now that the PHI nodes are updated, actually move the edges from // Preds to point to NewBB instead of BB. // for (unsigned i = 0, e = Preds.size(); i != e; ++i) { TerminatorInst *TI = Preds[i]->getTerminator(); for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) if (TI->getSuccessor(s) == BB) TI->setSuccessor(s, NewBB); } } else { // Otherwise the loop is dead... for (BasicBlock::iterator I = BB->begin(); isa(I); ++I) { PHINode *PN = cast(I); // Insert dummy values as the incoming value... PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB); } } return NewBB; } /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a /// preheader, this method is called to insert one. This method has two phases: /// preheader insertion and analysis updating. /// void LoopSimplify::InsertPreheaderForLoop(Loop *L) { BasicBlock *Header = L->getHeader(); // Compute the set of predecessors of the loop that are not in the loop. std::vector OutsideBlocks; for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); PI != PE; ++PI) if (!L->contains(*PI)) // Coming in from outside the loop? OutsideBlocks.push_back(*PI); // Keep track of it... // Split out the loop pre-header. BasicBlock *NewBB = SplitBlockPredecessors(Header, ".preheader", OutsideBlocks); //===--------------------------------------------------------------------===// // Update analysis results now that we have performed the transformation // // We know that we have loop information to update... update it now. if (Loop *Parent = L->getParentLoop()) Parent->addBasicBlockToLoop(NewBB, *LI); UpdateDomInfoForRevectoredPreds(NewBB, OutsideBlocks); // Make sure that NewBB is put someplace intelligent, which doesn't mess up // code layout too horribly. PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); } /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit /// blocks. This method is used to split exit blocks that have predecessors /// outside of the loop. BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { std::vector LoopBlocks; for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) if (L->contains(*I)) LoopBlocks.push_back(*I); assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks); // Update Loop Information - we know that the new block will be in whichever // loop the Exit block is in. Note that it may not be in that immediate loop, // if the successor is some other loop header. In that case, we continue // walking up the loop tree to find a loop that contains both the successor // block and the predecessor block. Loop *SuccLoop = LI->getLoopFor(Exit); while (SuccLoop && !SuccLoop->contains(L->getHeader())) SuccLoop = SuccLoop->getParentLoop(); if (SuccLoop) SuccLoop->addBasicBlockToLoop(NewBB, *LI); // Update dominator information (set, immdom, domtree, and domfrontier) UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks); return NewBB; } /// AddBlockAndPredsToSet - Add the specified block, and all of its /// predecessors, to the specified set, if it's not already in there. Stop /// predecessor traversal when we reach StopBlock. static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, std::set &Blocks) { std::vector WorkList; WorkList.push_back(InputBB); do { BasicBlock *BB = WorkList.back(); WorkList.pop_back(); if (Blocks.insert(BB).second && BB != StopBlock) // If BB is not already processed and it is not a stop block then // insert its predecessor in the work list for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { BasicBlock *WBB = *I; WorkList.push_back(WBB); } } while(!WorkList.empty()); } /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a /// PHI node that tells us how to partition the loops. static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, AliasAnalysis *AA) { for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ) { PHINode *PN = cast(I); ++I; if (Value *V = PN->hasConstantValue()) if (!isa(V) || DT->dominates(cast(V), PN)) { // This is a degenerate PHI already, don't modify it! PN->replaceAllUsesWith(V); if (AA) AA->deleteValue(PN); PN->eraseFromParent(); continue; } // Scan this PHI node looking for a use of the PHI node by itself. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == PN && L->contains(PN->getIncomingBlock(i))) // We found something tasty to remove. return PN; } return 0; } // PlaceSplitBlockCarefully - If the block isn't already, move the new block to // right after some 'outside block' block. This prevents the preheader from // being placed inside the loop body, e.g. when the loop hasn't been rotated. void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, std::vector&SplitPreds, Loop *L) { // Check to see if NewBB is already well placed. Function::iterator BBI = NewBB; --BBI; for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { if (&*BBI == SplitPreds[i]) return; } // If it isn't already after an outside block, move it after one. This is // always good as it makes the uncond branch from the outside block into a // fall-through. // Figure out *which* outside block to put this after. Prefer an outside // block that neighbors a BB actually in the loop. BasicBlock *FoundBB = 0; for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { Function::iterator BBI = SplitPreds[i]; if (++BBI != NewBB->getParent()->end() && L->contains(BBI)) { FoundBB = SplitPreds[i]; break; } } // If our heuristic for a *good* bb to place this after doesn't find // anything, just pick something. It's likely better than leaving it within // the loop. if (!FoundBB) FoundBB = SplitPreds[0]; NewBB->moveAfter(FoundBB); } /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of /// them out into a nested loop. This is important for code that looks like /// this: /// /// Loop: /// ... /// br cond, Loop, Next /// ... /// br cond2, Loop, Out /// /// To identify this common case, we look at the PHI nodes in the header of the /// loop. PHI nodes with unchanging values on one backedge correspond to values /// that change in the "outer" loop, but not in the "inner" loop. /// /// If we are able to separate out a loop, return the new outer loop that was /// created. /// Loop *LoopSimplify::SeparateNestedLoop(Loop *L) { DominatorTree *DT = getAnalysisToUpdate(); PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); if (PN == 0) return 0; // No known way to partition. // Pull out all predecessors that have varying values in the loop. This // handles the case when a PHI node has multiple instances of itself as // arguments. std::vector OuterLoopPreds; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) != PN || !L->contains(PN->getIncomingBlock(i))) OuterLoopPreds.push_back(PN->getIncomingBlock(i)); BasicBlock *Header = L->getHeader(); BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds); // Update dominator information (set, immdom, domtree, and domfrontier) UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds); // Make sure that NewBB is put someplace intelligent, which doesn't mess up // code layout too horribly. PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); // Create the new outer loop. Loop *NewOuter = new Loop(); // Change the parent loop to use the outer loop as its child now. if (Loop *Parent = L->getParentLoop()) Parent->replaceChildLoopWith(L, NewOuter); else LI->changeTopLevelLoop(L, NewOuter); // This block is going to be our new header block: add it to this loop and all // parent loops. NewOuter->addBasicBlockToLoop(NewBB, *LI); // L is now a subloop of our outer loop. NewOuter->addChildLoop(L); for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) NewOuter->addBlockEntry(L->getBlocks()[i]); // Determine which blocks should stay in L and which should be moved out to // the Outer loop now. std::set BlocksInL; for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) if (DT->dominates(Header, *PI)) AddBlockAndPredsToSet(*PI, Header, BlocksInL); // Scan all of the loop children of L, moving them to OuterLoop if they are // not part of the inner loop. for (Loop::iterator I = L->begin(); I != L->end(); ) if (BlocksInL.count((*I)->getHeader())) ++I; // Loop remains in L else NewOuter->addChildLoop(L->removeChildLoop(I)); // Now that we know which blocks are in L and which need to be moved to // OuterLoop, move any blocks that need it. for (unsigned i = 0; i != L->getBlocks().size(); ++i) { BasicBlock *BB = L->getBlocks()[i]; if (!BlocksInL.count(BB)) { // Move this block to the parent, updating the exit blocks sets L->removeBlockFromLoop(BB); if ((*LI)[BB] == L) LI->changeLoopFor(BB, NewOuter); --i; } } return NewOuter; } /// InsertUniqueBackedgeBlock - This method is called when the specified loop /// has more than one backedge in it. If this occurs, revector all of these /// backedges to target a new basic block and have that block branch to the loop /// header. This ensures that loops have exactly one backedge. /// void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) { assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); // Get information about the loop BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); Function *F = Header->getParent(); // Figure out which basic blocks contain back-edges to the loop header. std::vector BackedgeBlocks; for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I) if (*I != Preheader) BackedgeBlocks.push_back(*I); // Create and insert the new backedge block... BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F); BranchInst *BETerminator = new BranchInst(Header, BEBlock); // Move the new backedge block to right after the last backedge block. Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); // Now that the block has been inserted into the function, create PHI nodes in // the backedge block which correspond to any PHI nodes in the header block. for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be", BETerminator); NewPN->reserveOperandSpace(BackedgeBlocks.size()); if (AA) AA->copyValue(PN, NewPN); // Loop over the PHI node, moving all entries except the one for the // preheader over to the new PHI node. unsigned PreheaderIdx = ~0U; bool HasUniqueIncomingValue = true; Value *UniqueValue = 0; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *IBB = PN->getIncomingBlock(i); Value *IV = PN->getIncomingValue(i); if (IBB == Preheader) { PreheaderIdx = i; } else { NewPN->addIncoming(IV, IBB); if (HasUniqueIncomingValue) { if (UniqueValue == 0) UniqueValue = IV; else if (UniqueValue != IV) HasUniqueIncomingValue = false; } } } // Delete all of the incoming values from the old PN except the preheader's assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); if (PreheaderIdx != 0) { PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); } // Nuke all entries except the zero'th. for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) PN->removeIncomingValue(e-i, false); // Finally, add the newly constructed PHI node as the entry for the BEBlock. PN->addIncoming(NewPN, BEBlock); // As an optimization, if all incoming values in the new PhiNode (which is a // subset of the incoming values of the old PHI node) have the same value, // eliminate the PHI Node. if (HasUniqueIncomingValue) { NewPN->replaceAllUsesWith(UniqueValue); if (AA) AA->deleteValue(NewPN); BEBlock->getInstList().erase(NewPN); } } // Now that all of the PHI nodes have been inserted and adjusted, modify the // backedge blocks to just to the BEBlock instead of the header. for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) if (TI->getSuccessor(Op) == Header) TI->setSuccessor(Op, BEBlock); } //===--- Update all analyses which we must preserve now -----------------===// // Update Loop Information - we know that this block is now in the current // loop and all parent loops. L->addBasicBlockToLoop(BEBlock, *LI); // Update dominator information (set, immdom, domtree, and domfrontier) UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks); } // Returns true if BasicBlock A dominates at least one block in vector B // Helper function for UpdateDomInfoForRevectoredPreds static bool BlockDominatesAny(BasicBlock* A, const std::vector& B, DominatorTree &DT) { for (std::vector::const_iterator BI = B.begin(), BE = B.end(); BI != BE; ++BI) { if (DT.dominates(A, *BI)) return true; } return false; } /// UpdateDomInfoForRevectoredPreds - This method is used to update /// dominator trees and dominance frontiers after a new block has /// been added to the CFG. /// /// This only supports the case when an existing block (known as "NewBBSucc"), /// had some of its predecessors factored into a new basic block. This /// transformation inserts a new basic block ("NewBB"), with a single /// unconditional branch to NewBBSucc, and moves some predecessors of /// "NewBBSucc" to now branch to NewBB. These predecessors are listed in /// PredBlocks, even though they are the same as /// pred_begin(NewBB)/pred_end(NewBB). /// void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB, std::vector &PredBlocks) { assert(!PredBlocks.empty() && "No predblocks??"); assert(NewBB->getTerminator()->getNumSuccessors() == 1 && "NewBB should have a single successor!"); BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); DominatorTree &DT = getAnalysis(); // The newly inserted basic block will dominate existing basic blocks iff the // PredBlocks dominate all of the non-pred blocks. If all predblocks dominate // the non-pred blocks, then they all must be the same block! // bool NewBBDominatesNewBBSucc = true; { BasicBlock *OnePred = PredBlocks[0]; unsigned i = 1, e = PredBlocks.size(); for (i = 1; !DT.isReachableFromEntry(OnePred); ++i) { assert(i != e && "Didn't find reachable pred?"); OnePred = PredBlocks[i]; } for (; i != e; ++i) if (PredBlocks[i] != OnePred && DT.isReachableFromEntry(OnePred)){ NewBBDominatesNewBBSucc = false; break; } if (NewBBDominatesNewBBSucc) for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); PI != E; ++PI) if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) { NewBBDominatesNewBBSucc = false; break; } } // The other scenario where the new block can dominate its successors are when // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc // already. if (!NewBBDominatesNewBBSucc) { NewBBDominatesNewBBSucc = true; for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); PI != E; ++PI) if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) { NewBBDominatesNewBBSucc = false; break; } } // Update DominatorTree information if it is active. // Find NewBB's immediate dominator and create new dominator tree node for NewBB. BasicBlock *NewBBIDom = 0; unsigned i = 0; for (i = 0; i < PredBlocks.size(); ++i) if (DT.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) { NewBBIDom = PredBlocks[i]; break; } assert(i != PredBlocks.size() && "No reachable preds?"); for (i = i + 1; i < PredBlocks.size(); ++i) { if (DT.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) NewBBIDom = DT.nearestCommonDominator(NewBBIDom, PredBlocks[i]); } assert(NewBBIDom && "No immediate dominator found??"); // Create the new dominator tree node... and set the idom of NewBB. DomTreeNode *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom); // If NewBB strictly dominates other blocks, then it is now the immediate // dominator of NewBBSucc. Update the dominator tree as appropriate. if (NewBBDominatesNewBBSucc) { DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc); DT.changeImmediateDominator(NewBBSuccNode, NewBBNode); } // Update dominance frontier information... if (DominanceFrontier *DF = getAnalysisToUpdate()) { // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the // DF(PredBlocks[0]) without the stuff that the new block does not dominate // a predecessor of. if (NewBBDominatesNewBBSucc) { DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]); if (DFI != DF->end()) { DominanceFrontier::DomSetType Set = DFI->second; // Filter out stuff in Set that we do not dominate a predecessor of. for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), E = Set.end(); SetI != E;) { bool DominatesPred = false; for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI); PI != E; ++PI) if (DT.dominates(NewBB, *PI)) DominatesPred = true; if (!DominatesPred) Set.erase(SetI++); else ++SetI; } DF->addBasicBlock(NewBB, Set); } } else { // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate // NewBBSucc, but it does dominate itself (and there is an edge (NewBB -> // NewBBSucc)). NewBBSucc is the single successor of NewBB. DominanceFrontier::DomSetType NewDFSet; NewDFSet.insert(NewBBSucc); DF->addBasicBlock(NewBB, NewDFSet); } // Now we must loop over all of the dominance frontiers in the function, // replacing occurrences of NewBBSucc with NewBB in some cases. All // blocks that dominate a block in PredBlocks and contained NewBBSucc in // their dominance frontier must be updated to contain NewBB instead. // for (Function::iterator FI = NewBB->getParent()->begin(), FE = NewBB->getParent()->end(); FI != FE; ++FI) { DominanceFrontier::iterator DFI = DF->find(FI); if (DFI == DF->end()) continue; // unreachable block. // Only consider dominators of NewBBSucc if (!DFI->second.count(NewBBSucc)) continue; if (BlockDominatesAny(FI, PredBlocks, DT)) { // If NewBBSucc should not stay in our dominator frontier, remove it. // We remove it unless there is a predecessor of NewBBSucc that we // dominate, but we don't strictly dominate NewBBSucc. bool ShouldRemove = true; if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) { // Okay, we know that PredDom does not strictly dominate NewBBSucc. // Check to see if it dominates any predecessors of NewBBSucc. for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); PI != E; ++PI) if (DT.dominates(FI, *PI)) { ShouldRemove = false; break; } if (ShouldRemove) DF->removeFromFrontier(DFI, NewBBSucc); DF->addToFrontier(DFI, NewBB); break; } } } } }