//===- InstructionCombining.cpp - Combine multiple instructions -------------=// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG, and has a tendancy to // make instructions dead, so a subsequent DIE pass is useful. This pass is // where algebraic simplification happens. // // This pass combines things like: // %Y = add int 1, %X // %Z = add int 1, %Y // into: // %Z = add int 2, %X // // This is a simple worklist driven algorithm. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/ConstantHandling.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/iPHINode.h" #include "llvm/iOperators.h" #include "llvm/Pass.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/InstVisitor.h" #include "Support/StatisticReporter.h" #include static Statistic<> NumCombined("instcombine\t- Number of insts combined"); namespace { class InstCombiner : public FunctionPass, public InstVisitor { // Worklist of all of the instructions that need to be simplified. std::vector WorkList; void AddUsesToWorkList(Instruction *I) { // The instruction was simplified, add all users of the instruction to // the work lists because they might get more simplified now... // for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) WorkList.push_back(cast(*UI)); } public: const char *getPassName() const { return "Instruction Combining"; } virtual bool runOnFunction(Function *F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); } // Visitation implementation - Implement instruction combining for different // instruction types. The semantics are as follows: // Return Value: // null - No change was made // I - Change was made, I is still valid // otherwise - Change was made, replace I with returned instruction // Instruction *visitNot(UnaryOperator *I); Instruction *visitAdd(BinaryOperator *I); Instruction *visitSub(BinaryOperator *I); Instruction *visitMul(BinaryOperator *I); Instruction *visitDiv(BinaryOperator *I); Instruction *visitRem(BinaryOperator *I); Instruction *visitAnd(BinaryOperator *I); Instruction *visitOr (BinaryOperator *I); Instruction *visitXor(BinaryOperator *I); Instruction *visitSetCondInst(BinaryOperator *I); Instruction *visitShiftInst(Instruction *I); Instruction *visitCastInst(CastInst *CI); Instruction *visitPHINode(PHINode *PN); Instruction *visitGetElementPtrInst(GetElementPtrInst *GEP); Instruction *visitMemAccessInst(MemAccessInst *MAI); // visitInstruction - Specify what to return for unhandled instructions... Instruction *visitInstruction(Instruction *I) { return 0; } }; } Instruction *InstCombiner::visitNot(UnaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... // not (not X) = X if (Instruction *Op = dyn_cast(I->getOperand(0))) if (Op->getOpcode() == Instruction::Not) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op->getOperand(0)); return I; } return 0; } // Make sure that this instruction has a constant on the right hand side if it // has any constant arguments. If not, fix it an return true. // static bool SimplifyBinOp(BinaryOperator *I) { if (isa(I->getOperand(0)) && !isa(I->getOperand(1))) return !I->swapOperands(); return false; } // dyn_castNegInst - Given a 'sub' instruction, return the RHS of the // instruction if the LHS is a constant zero (which is the 'negate' form). // static inline Value *dyn_castNegInst(Value *V) { Instruction *I = dyn_cast(V); if (!I || I->getOpcode() != Instruction::Sub) return 0; if (I->getOperand(0) == Constant::getNullValue(I->getType())) return I->getOperand(1); return 0; } Instruction *InstCombiner::visitAdd(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead add instructions... bool Changed = SimplifyBinOp(I); Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); // Eliminate 'add int %X, 0' if (I->getType()->isIntegral() && RHS == Constant::getNullValue(I->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(LHS); return I; } // -A + B --> B - A if (Value *V = dyn_castNegInst(LHS)) return BinaryOperator::create(Instruction::Sub, RHS, V); // A + -B --> A - B if (Value *V = dyn_castNegInst(RHS)) return BinaryOperator::create(Instruction::Sub, LHS, V); // Simplify add instructions with a constant RHS... if (Constant *Op2 = dyn_cast(RHS)) { if (BinaryOperator *ILHS = dyn_cast(LHS)) { if (ILHS->getOpcode() == Instruction::Add && isa(ILHS->getOperand(1))) { // Fold: // %Y = add int %X, 1 // %Z = add int %Y, 1 // into: // %Z = add int %X, 2 // if (Constant *Val = *Op2 + *cast(ILHS->getOperand(1))) { I->setOperand(0, ILHS->getOperand(0)); I->setOperand(1, Val); return I; } } } } return Changed ? I : 0; } Instruction *InstCombiner::visitSub(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead add instructions... Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); if (Op0 == Op1) { // sub X, X -> 0 AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Constant::getNullValue(I->getType())); return I; } // If this is a subtract instruction with a constant RHS, convert it to an add // instruction of a negative constant // if (Constant *Op2 = dyn_cast(Op1)) if (Constant *RHS = *Constant::getNullValue(I->getType()) - *Op2) // 0 - RHS return BinaryOperator::create(Instruction::Add, Op0, RHS, I->getName()); // If this is a 'C = x-B', check to see if 'B = -A', so that C = x+A... if (Value *V = dyn_castNegInst(Op1)) return BinaryOperator::create(Instruction::Add, Op0, V); // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression is // not used by anyone else... // if (BinaryOperator *Op1I = dyn_cast(Op1)) if (Op1I->use_size() == 1) { // Swap the two operands of the subexpr... Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); Op1I->setOperand(0, IIOp1); Op1I->setOperand(1, IIOp0); // Create the new top level add instruction... return BinaryOperator::create(Instruction::Add, Op0, Op1); } return 0; } Instruction *InstCombiner::visitMul(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); Value *Op1 = I->getOperand(0); // Simplify add instructions with a constant RHS... if (Constant *Op2 = dyn_cast(I->getOperand(1))) { if (I->getType()->isIntegral() && cast(Op2)->equalsInt(1)){ // Eliminate 'mul int %X, 1' AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op1); return I; } else if (I->getType()->isIntegral() && cast(Op2)->equalsInt(2)) { // Convert 'mul int %X, 2' to 'add int %X, %X' return BinaryOperator::create(Instruction::Add, Op1, Op1, I->getName()); } else if (Op2->isNullValue()) { // Eliminate 'mul int %X, 0' AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op2); // Set this value to zero directly return I; } } return Changed ? I : 0; } Instruction *InstCombiner::visitDiv(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... // div X, 1 == X if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) if (RHS->equalsInt(1)) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(I->getOperand(0)); return I; } return 0; } Instruction *InstCombiner::visitRem(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... // rem X, 1 == 0 if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) if (RHS->equalsInt(1)) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Constant::getNullValue(I->getType())); return I; } return 0; } static Constant *getMaxValue(const Type *Ty) { assert(Ty == Type::BoolTy || Ty->isIntegral()); if (Ty == Type::BoolTy) return ConstantBool::True; if (Ty->isSigned()) return ConstantSInt::get(Ty, -1); else if (Ty->isUnsigned()) { // Calculate -1 casted to the right type... unsigned TypeBits = Ty->getPrimitiveSize()*8; uint64_t Val = (uint64_t)-1LL; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return ConstantUInt::get(Ty, Val); } return 0; } Instruction *InstCombiner::visitAnd(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); // and X, X = X and X, 0 == 0 if (Op0 == Op1 || Op1 == Constant::getNullValue(I->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op1); return I; } // and X, -1 == X if (Constant *RHS = dyn_cast(Op1)) if (RHS == getMaxValue(I->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op0); return I; } return Changed ? I : 0; } Instruction *InstCombiner::visitOr(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); // or X, X = X or X, 0 == X if (Op0 == Op1 || Op1 == Constant::getNullValue(I->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op0); return I; } // or X, -1 == -1 if (Constant *RHS = dyn_cast(Op1)) if (RHS == getMaxValue(I->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op1); return I; } return Changed ? I : 0; } Instruction *InstCombiner::visitXor(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); // xor X, X = 0 if (Op0 == Op1) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Constant::getNullValue(I->getType())); return I; } // xor X, 0 == X if (Op1 == Constant::getNullValue(I->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op0); return I; } return Changed ? I : 0; } // isTrueWhenEqual - Return true if the specified setcondinst instruction is // true when both operands are equal... // static bool isTrueWhenEqual(Instruction *I) { return I->getOpcode() == Instruction::SetEQ || I->getOpcode() == Instruction::SetGE || I->getOpcode() == Instruction::SetLE; } Instruction *InstCombiner::visitSetCondInst(BinaryOperator *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); // setcc X, X if (I->getOperand(0) == I->getOperand(1)) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(ConstantBool::get(isTrueWhenEqual(I))); return I; } // setcc , 0 - Global value addresses are never null! if (isa(I->getOperand(0)) && isa(I->getOperand(1))) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(ConstantBool::get(!isTrueWhenEqual(I))); return I; } return Changed ? I : 0; } Instruction *InstCombiner::visitShiftInst(Instruction *I) { if (I->use_empty()) return 0; // Don't fix dead instructions... assert(I->getOperand(1)->getType() == Type::UByteTy); Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); // shl X, 0 == X and shr X, 0 == X // shl 0, X == 0 and shr 0, X == 0 if (Op1 == Constant::getNullValue(Type::UByteTy) || Op0 == Constant::getNullValue(Op0->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Op0); return I; } // shl int X, 32 = 0 and shr sbyte Y, 9 = 0, ... just don't eliminate shr of // a signed value. // if (ConstantUInt *CUI = dyn_cast(Op1)) { unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8; if (CUI->getValue() >= TypeBits && !(Op0->getType()->isSigned() && I->getOpcode() == Instruction::Shr)) { AddUsesToWorkList(I); // Add all modified instrs to worklist I->replaceAllUsesWith(Constant::getNullValue(Op0->getType())); return I; } } return 0; } // isEliminableCastOfCast - Return true if it is valid to eliminate the CI // instruction. // static inline bool isEliminableCastOfCast(const CastInst *CI, const CastInst *CSrc) { assert(CI->getOperand(0) == CSrc); const Type *SrcTy = CSrc->getOperand(0)->getType(); const Type *MidTy = CSrc->getType(); const Type *DstTy = CI->getType(); // It is legal to eliminate the instruction if casting A->B->A if (SrcTy == DstTy) return true; // Allow free casting and conversion of sizes as long as the sign doesn't // change... if (SrcTy->isSigned() == MidTy->isSigned() && MidTy->isSigned() == DstTy->isSigned()) return true; // Otherwise, we cannot succeed. Specifically we do not want to allow things // like: short -> ushort -> uint, because this can create wrong results if // the input short is negative! // return false; } // CastInst simplification // Instruction *InstCombiner::visitCastInst(CastInst *CI) { if (CI->use_empty()) return 0; // Don't fix dead instructions... // If the user is casting a value to the same type, eliminate this cast // instruction... if (CI->getType() == CI->getOperand(0)->getType() && !CI->use_empty()) { AddUsesToWorkList(CI); // Add all modified instrs to worklist CI->replaceAllUsesWith(CI->getOperand(0)); return CI; } // If casting the result of another cast instruction, try to eliminate this // one! // if (CastInst *CSrc = dyn_cast(CI->getOperand(0))) if (isEliminableCastOfCast(CI, CSrc)) { // This instruction now refers directly to the cast's src operand. This // has a good chance of making CSrc dead. CI->setOperand(0, CSrc->getOperand(0)); return CI; } return 0; } // PHINode simplification // Instruction *InstCombiner::visitPHINode(PHINode *PN) { if (PN->use_empty()) return 0; // Don't fix dead instructions... // If the PHI node only has one incoming value, eliminate the PHI node... if (PN->getNumIncomingValues() == 1) { AddUsesToWorkList(PN); // Add all modified instrs to worklist PN->replaceAllUsesWith(PN->getIncomingValue(0)); return PN; } return 0; } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst *GEP) { // Is it getelementptr %P, uint 0 // If so, elminate the noop. if (GEP->getNumOperands() == 2 && !GEP->use_empty() && GEP->getOperand(1) == Constant::getNullValue(Type::UIntTy)) { AddUsesToWorkList(GEP); // Add all modified instrs to worklist GEP->replaceAllUsesWith(GEP->getOperand(0)); return GEP; } return visitMemAccessInst(GEP); } // Combine Indices - If the source pointer to this mem access instruction is a // getelementptr instruction, combine the indices of the GEP into this // instruction // Instruction *InstCombiner::visitMemAccessInst(MemAccessInst *MAI) { GetElementPtrInst *Src = dyn_cast(MAI->getPointerOperand()); if (!Src) return 0; std::vector Indices; // Only special case we have to watch out for is pointer arithmetic on the // 0th index of MAI. unsigned FirstIdx = MAI->getFirstIndexOperandNumber(); if (FirstIdx == MAI->getNumOperands() || (FirstIdx == MAI->getNumOperands()-1 && MAI->getOperand(FirstIdx) == ConstantUInt::get(Type::UIntTy, 0))) { // Replace the index list on this MAI with the index on the getelementptr Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()); } else if (*MAI->idx_begin() == ConstantUInt::get(Type::UIntTy, 0)) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()); Indices.insert(Indices.end(), MAI->idx_begin()+1, MAI->idx_end()); } if (Indices.empty()) return 0; // Can't do the fold? switch (MAI->getOpcode()) { case Instruction::GetElementPtr: return new GetElementPtrInst(Src->getOperand(0), Indices, MAI->getName()); case Instruction::Load: return new LoadInst(Src->getOperand(0), Indices, MAI->getName()); case Instruction::Store: return new StoreInst(MAI->getOperand(0), Src->getOperand(0), Indices); default: assert(0 && "Unknown memaccessinst!"); break; } abort(); return 0; } bool InstCombiner::runOnFunction(Function *F) { bool Changed = false; WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F)); while (!WorkList.empty()) { Instruction *I = WorkList.back(); // Get an instruction from the worklist WorkList.pop_back(); // Now that we have an instruction, try combining it to simplify it... Instruction *Result = visit(I); if (Result) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { // Instructions can end up on the worklist more than once. Make sure // we do not process an instruction that has been deleted. std::vector::iterator It = std::find(WorkList.begin(), WorkList.end(), I); while (It != WorkList.end()) { It = WorkList.erase(It); It = std::find(It, WorkList.end(), I); } ReplaceInstWithInst(I, Result); } WorkList.push_back(Result); AddUsesToWorkList(Result); Changed = true; } } return Changed; } Pass *createInstructionCombiningPass() { return new InstCombiner(); }