//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This family of functions perform manipulations on basic blocks, and // instructions contained within basic blocks. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Constant.h" #include "llvm/Type.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ValueHandle.h" #include using namespace llvm; /// DeleteDeadBlock - Delete the specified block, which must have no /// predecessors. void llvm::DeleteDeadBlock(BasicBlock *BB) { assert((pred_begin(BB) == pred_end(BB) || // Can delete self loop. BB->getSinglePredecessor() == BB) && "Block is not dead!"); TerminatorInst *BBTerm = BB->getTerminator(); // Loop through all of our successors and make sure they know that one // of their predecessors is going away. for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) BBTerm->getSuccessor(i)->removePredecessor(BB); // Zap all the instructions in the block. while (!BB->empty()) { Instruction &I = BB->back(); // If this instruction is used, replace uses with an arbitrary value. // Because control flow can't get here, we don't care what we replace the // value with. Note that since this block is unreachable, and all values // contained within it must dominate their uses, that all uses will // eventually be removed (they are themselves dead). if (!I.use_empty()) I.replaceAllUsesWith(UndefValue::get(I.getType())); BB->getInstList().pop_back(); } // Zap the block! BB->eraseFromParent(); } /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are /// any single-entry PHI nodes in it, fold them away. This handles the case /// when all entries to the PHI nodes in a block are guaranteed equal, such as /// when the block has exactly one predecessor. void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) { if (!isa(BB->begin())) return; while (PHINode *PN = dyn_cast(BB->begin())) { if (PN->getIncomingValue(0) != PN) PN->replaceAllUsesWith(PN->getIncomingValue(0)); else PN->replaceAllUsesWith(UndefValue::get(PN->getType())); PN->eraseFromParent(); } } /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it /// is dead. Also recursively delete any operands that become dead as /// a result. This includes tracing the def-use list from the PHI to see if /// it is ultimately unused or if it reaches an unused cycle. void llvm::DeleteDeadPHIs(BasicBlock *BB) { // Recursively deleting a PHI may cause multiple PHIs to be deleted // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. SmallVector PHIs; for (BasicBlock::iterator I = BB->begin(); PHINode *PN = dyn_cast(I); ++I) PHIs.push_back(PN); for (unsigned i = 0, e = PHIs.size(); i != e; ++i) if (PHINode *PN = dyn_cast_or_null(PHIs[i].operator Value*())) RecursivelyDeleteDeadPHINode(PN); } /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, /// if possible. The return value indicates success or failure. bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) { pred_iterator PI(pred_begin(BB)), PE(pred_end(BB)); // Can't merge the entry block. if (pred_begin(BB) == pred_end(BB)) return false; BasicBlock *PredBB = *PI++; for (; PI != PE; ++PI) // Search all predecessors, see if they are all same if (*PI != PredBB) { PredBB = 0; // There are multiple different predecessors... break; } // Can't merge if there are multiple predecessors. if (!PredBB) return false; // Don't break self-loops. if (PredBB == BB) return false; // Don't break invokes. if (isa(PredBB->getTerminator())) return false; succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); BasicBlock* OnlySucc = BB; for (; SI != SE; ++SI) if (*SI != OnlySucc) { OnlySucc = 0; // There are multiple distinct successors! break; } // Can't merge if there are multiple successors. if (!OnlySucc) return false; // Can't merge if there is PHI loop. for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == PN) return false; } else break; } // Begin by getting rid of unneeded PHIs. while (PHINode *PN = dyn_cast(&BB->front())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); BB->getInstList().pop_front(); // Delete the phi node... } // Delete the unconditional branch from the predecessor... PredBB->getInstList().pop_back(); // Move all definitions in the successor to the predecessor... PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(PredBB); // Inherit predecessors name if it exists. if (!PredBB->hasName()) PredBB->takeName(BB); // Finally, erase the old block and update dominator info. if (P) { if (DominatorTree* DT = P->getAnalysisIfAvailable()) { DomTreeNode* DTN = DT->getNode(BB); DomTreeNode* PredDTN = DT->getNode(PredBB); if (DTN) { SmallPtrSet Children(DTN->begin(), DTN->end()); for (SmallPtrSet::iterator DI = Children.begin(), DE = Children.end(); DI != DE; ++DI) DT->changeImmediateDominator(*DI, PredDTN); DT->eraseNode(BB); } } } BB->eraseFromParent(); return true; } /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) /// with a value, then remove and delete the original instruction. /// void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Value *V) { Instruction &I = *BI; // Replaces all of the uses of the instruction with uses of the value I.replaceAllUsesWith(V); // Make sure to propagate a name if there is one already. if (I.hasName() && !V->hasName()) V->takeName(&I); // Delete the unnecessary instruction now... BI = BIL.erase(BI); } /// ReplaceInstWithInst - Replace the instruction specified by BI with the /// instruction specified by I. The original instruction is deleted and BI is /// updated to point to the new instruction. /// void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Instruction *I) { assert(I->getParent() == 0 && "ReplaceInstWithInst: Instruction already inserted into basic block!"); // Insert the new instruction into the basic block... BasicBlock::iterator New = BIL.insert(BI, I); // Replace all uses of the old instruction, and delete it. ReplaceInstWithValue(BIL, BI, I); // Move BI back to point to the newly inserted instruction BI = New; } /// ReplaceInstWithInst - Replace the instruction specified by From with the /// instruction specified by To. /// void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { BasicBlock::iterator BI(From); ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); } /// RemoveSuccessor - Change the specified terminator instruction such that its /// successor SuccNum no longer exists. Because this reduces the outgoing /// degree of the current basic block, the actual terminator instruction itself /// may have to be changed. In the case where the last successor of the block /// is deleted, a return instruction is inserted in its place which can cause a /// surprising change in program behavior if it is not expected. /// void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) { assert(SuccNum < TI->getNumSuccessors() && "Trying to remove a nonexistant successor!"); // If our old successor block contains any PHI nodes, remove the entry in the // PHI nodes that comes from this branch... // BasicBlock *BB = TI->getParent(); TI->getSuccessor(SuccNum)->removePredecessor(BB); TerminatorInst *NewTI = 0; switch (TI->getOpcode()) { case Instruction::Br: // If this is a conditional branch... convert to unconditional branch. if (TI->getNumSuccessors() == 2) { cast(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum)); } else { // Otherwise convert to a return instruction... Value *RetVal = 0; // Create a value to return... if the function doesn't return null... if (BB->getParent()->getReturnType() != Type::getVoidTy(TI->getContext())) RetVal = Constant::getNullValue(BB->getParent()->getReturnType()); // Create the return... NewTI = ReturnInst::Create(TI->getContext(), RetVal); } break; case Instruction::Invoke: // Should convert to call case Instruction::Switch: // Should remove entry default: case Instruction::Ret: // Cannot happen, has no successors! llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!"); } if (NewTI) // If it's a different instruction, replace. ReplaceInstWithInst(TI, NewTI); } /// SplitEdge - Split the edge connecting specified block. Pass P must /// not be NULL. BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { TerminatorInst *LatchTerm = BB->getTerminator(); unsigned SuccNum = 0; #ifndef NDEBUG unsigned e = LatchTerm->getNumSuccessors(); #endif for (unsigned i = 0; ; ++i) { assert(i != e && "Didn't find edge?"); if (LatchTerm->getSuccessor(i) == Succ) { SuccNum = i; break; } } // If this is a critical edge, let SplitCriticalEdge do it. if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P)) return LatchTerm->getSuccessor(SuccNum); // If the edge isn't critical, then BB has a single successor or Succ has a // single pred. Split the block. BasicBlock::iterator SplitPoint; if (BasicBlock *SP = Succ->getSinglePredecessor()) { // If the successor only has a single pred, split the top of the successor // block. assert(SP == BB && "CFG broken"); SP = NULL; return SplitBlock(Succ, Succ->begin(), P); } else { // Otherwise, if BB has a single successor, split it at the bottom of the // block. assert(BB->getTerminator()->getNumSuccessors() == 1 && "Should have a single succ!"); return SplitBlock(BB, BB->getTerminator(), P); } } /// SplitBlock - Split the specified block at the specified instruction - every /// thing before SplitPt stays in Old and everything starting with SplitPt moves /// to a new block. The two blocks are joined by an unconditional branch and /// the loop info is updated. /// BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { BasicBlock::iterator SplitIt = SplitPt; while (isa(SplitIt)) ++SplitIt; BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); // The new block lives in whichever loop the old one did. This preserves // LCSSA as well, because we force the split point to be after any PHI nodes. if (LoopInfo* LI = P->getAnalysisIfAvailable()) if (Loop *L = LI->getLoopFor(Old)) L->addBasicBlockToLoop(New, LI->getBase()); if (DominatorTree *DT = P->getAnalysisIfAvailable()) { // Old dominates New. New node domiantes all other nodes dominated by Old. DomTreeNode *OldNode = DT->getNode(Old); std::vector Children; for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); I != E; ++I) Children.push_back(*I); DomTreeNode *NewNode = DT->addNewBlock(New,Old); for (std::vector::iterator I = Children.begin(), E = Children.end(); I != E; ++I) DT->changeImmediateDominator(*I, NewNode); } if (DominanceFrontier *DF = P->getAnalysisIfAvailable()) DF->splitBlock(Old); return New; } /// SplitBlockPredecessors - This method transforms BB by introducing a new /// basic block into the function, and moving some of the predecessors of BB to /// be predecessors of the new block. The new predecessors are indicated by the /// Preds array, which has NumPreds elements in it. The new block is given a /// suffix of 'Suffix'. /// /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. /// In particular, it does not preserve LoopSimplify (because it's /// complicated to handle the case where one of the edges being split /// is an exit of a loop with other exits). /// BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, BasicBlock *const *Preds, unsigned NumPreds, const char *Suffix, Pass *P) { // Create new basic block, insert right before the original block. BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, BB->getParent(), BB); // The new block unconditionally branches to the old block. BranchInst *BI = BranchInst::Create(BB, NewBB); LoopInfo *LI = P ? P->getAnalysisIfAvailable() : 0; Loop *L = LI ? LI->getLoopFor(BB) : 0; bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); // Move the edges from Preds to point to NewBB instead of BB. // While here, if we need to preserve loop analyses, collect // some information about how this split will affect loops. bool HasLoopExit = false; bool IsLoopEntry = !!L; bool SplitMakesNewLoopHeader = false; for (unsigned i = 0; i != NumPreds; ++i) { Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); if (LI) { // If we need to preserve LCSSA, determine if any of // the preds is a loop exit. if (PreserveLCSSA) if (Loop *PL = LI->getLoopFor(Preds[i])) if (!PL->contains(BB)) HasLoopExit = true; // If we need to preserve LoopInfo, note whether any of the // preds crosses an interesting loop boundary. if (L) { if (L->contains(Preds[i])) IsLoopEntry = false; else SplitMakesNewLoopHeader = true; } } } // Update dominator tree and dominator frontier if available. DominatorTree *DT = P ? P->getAnalysisIfAvailable() : 0; if (DT) DT->splitBlock(NewBB); if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable():0) DF->splitBlock(NewBB); // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI // node becomes an incoming value for BB's phi node. However, if the Preds // list is empty, we need to insert dummy entries into the PHI nodes in BB to // account for the newly created predecessor. if (NumPreds == 0) { // Insert dummy values as the incoming value. for (BasicBlock::iterator I = BB->begin(); isa(I); ++I) cast(I)->addIncoming(UndefValue::get(I->getType()), NewBB); return NewBB; } AliasAnalysis *AA = P ? P->getAnalysisIfAvailable() : 0; if (L) { if (IsLoopEntry) { // Add the new block to the nearest enclosing loop (and not an // adjacent loop). To find this, examine each of the predecessors and // determine which loops enclose them, and select the most-nested loop // which contains the loop containing the block being split. Loop *InnermostPredLoop = 0; for (unsigned i = 0; i != NumPreds; ++i) if (Loop *PredLoop = LI->getLoopFor(Preds[i])) { // Seek a loop which actually contains the block being split (to // avoid adjacent loops). while (PredLoop && !PredLoop->contains(BB)) PredLoop = PredLoop->getParentLoop(); // Select the most-nested of these loops which contains the block. if (PredLoop && PredLoop->contains(BB) && (!InnermostPredLoop || InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) InnermostPredLoop = PredLoop; } if (InnermostPredLoop) InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); } else { L->addBasicBlockToLoop(NewBB, LI->getBase()); if (SplitMakesNewLoopHeader) L->moveToHeader(NewBB); } } // Otherwise, create a new PHI node in NewBB for each PHI node in BB. for (BasicBlock::iterator I = BB->begin(); isa(I); ) { PHINode *PN = cast(I++); // Check to see if all of the values coming in are the same. If so, we // don't need to create a new PHI node, unless it's needed for LCSSA. Value *InVal = 0; if (!HasLoopExit) { InVal = PN->getIncomingValueForBlock(Preds[0]); for (unsigned i = 1; i != NumPreds; ++i) if (InVal != PN->getIncomingValueForBlock(Preds[i])) { InVal = 0; break; } } if (InVal) { // If all incoming values for the new PHI would be the same, just don't // make a new PHI. Instead, just remove the incoming values from the old // PHI. for (unsigned i = 0; i != NumPreds; ++i) PN->removeIncomingValue(Preds[i], false); } else { // If the values coming into the block are not the same, we need a PHI. // Create the new PHI node, insert it into NewBB at the end of the block PHINode *NewPHI = PHINode::Create(PN->getType(), PN->getName()+".ph", BI); if (AA) AA->copyValue(PN, NewPHI); // Move all of the PHI values for 'Preds' to the new PHI. for (unsigned i = 0; i != NumPreds; ++i) { Value *V = PN->removeIncomingValue(Preds[i], false); NewPHI->addIncoming(V, Preds[i]); } InVal = NewPHI; } // Add an incoming value to the PHI node in the loop for the preheader // edge. PN->addIncoming(InVal, NewBB); } return NewBB; } /// FindFunctionBackedges - Analyze the specified function to find all of the /// loop backedges in the function and return them. This is a relatively cheap /// (compared to computing dominators and loop info) analysis. /// /// The output is added to Result, as pairs of edge info. void llvm::FindFunctionBackedges(const Function &F, SmallVectorImpl > &Result) { const BasicBlock *BB = &F.getEntryBlock(); if (succ_begin(BB) == succ_end(BB)) return; SmallPtrSet Visited; SmallVector, 8> VisitStack; SmallPtrSet InStack; Visited.insert(BB); VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); InStack.insert(BB); do { std::pair &Top = VisitStack.back(); const BasicBlock *ParentBB = Top.first; succ_const_iterator &I = Top.second; bool FoundNew = false; while (I != succ_end(ParentBB)) { BB = *I++; if (Visited.insert(BB)) { FoundNew = true; break; } // Successor is in VisitStack, it's a back edge. if (InStack.count(BB)) Result.push_back(std::make_pair(ParentBB, BB)); } if (FoundNew) { // Go down one level if there is a unvisited successor. InStack.insert(BB); VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); } else { // Go up one level. InStack.erase(VisitStack.pop_back_val().first); } } while (!VisitStack.empty()); } /// AreEquivalentAddressValues - Test if A and B will obviously have the same /// value. This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// %t0 = getelementptr \@a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr \@a, 0, 3 /// %t2 = load i32* %t1 /// static bool AreEquivalentAddressValues(const Value *A, const Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come from identical arithmetic instructions. // Use isIdenticalToWhenDefined instead of isIdenticalTo because // this function is only used when one address use dominates the // other, which means that they'll always either have the same // value or one of them will have an undefined value. if (isa(A) || isa(A) || isa(A) || isa(A)) if (const Instruction *BI = dyn_cast(B)) if (cast(A)->isIdenticalToWhenDefined(BI)) return true; // Otherwise they may not be equivalent. return false; } /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the /// instruction before ScanFrom) checking to see if we have the value at the /// memory address *Ptr locally available within a small number of instructions. /// If the value is available, return it. /// /// If not, return the iterator for the last validated instruction that the /// value would be live through. If we scanned the entire block and didn't find /// something that invalidates *Ptr or provides it, ScanFrom would be left at /// begin() and this returns null. ScanFrom could also be left /// /// MaxInstsToScan specifies the maximum instructions to scan in the block. If /// it is set to 0, it will scan the whole block. You can also optionally /// specify an alias analysis implementation, which makes this more precise. Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AliasAnalysis *AA) { if (MaxInstsToScan == 0) MaxInstsToScan = ~0U; // If we're using alias analysis to disambiguate get the size of *Ptr. unsigned AccessSize = 0; if (AA) { const Type *AccessTy = cast(Ptr->getType())->getElementType(); AccessSize = AA->getTypeStoreSize(AccessTy); } while (ScanFrom != ScanBB->begin()) { // We must ignore debug info directives when counting (otherwise they // would affect codegen). Instruction *Inst = --ScanFrom; if (isa(Inst)) continue; // We skip pointer-to-pointer bitcasts, which are NOPs. // It is necessary for correctness to skip those that feed into a // llvm.dbg.declare, as these are not present when debugging is off. if (isa(Inst) && isa(Inst->getType())) continue; // Restore ScanFrom to expected value in case next test succeeds ScanFrom++; // Don't scan huge blocks. if (MaxInstsToScan-- == 0) return 0; --ScanFrom; // If this is a load of Ptr, the loaded value is available. if (LoadInst *LI = dyn_cast(Inst)) if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) return LI; if (StoreInst *SI = dyn_cast(Inst)) { // If this is a store through Ptr, the value is available! if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) return SI->getOperand(0); // If Ptr is an alloca and this is a store to a different alloca, ignore // the store. This is a trivial form of alias analysis that is important // for reg2mem'd code. if ((isa(Ptr) || isa(Ptr)) && (isa(SI->getOperand(1)) || isa(SI->getOperand(1)))) continue; // If we have alias analysis and it says the store won't modify the loaded // value, ignore the store. if (AA && (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) continue; // Otherwise the store that may or may not alias the pointer, bail out. ++ScanFrom; return 0; } // If this is some other instruction that may clobber Ptr, bail out. if (Inst->mayWriteToMemory()) { // If alias analysis claims that it really won't modify the load, // ignore it. if (AA && (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) continue; // May modify the pointer, bail out. ++ScanFrom; return 0; } } // Got to the start of the block, we didn't find it, but are done for this // block. return 0; } /// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint, /// make a copy of the stoppoint before InsertPos (presumably before copying /// or moving I). void llvm::CopyPrecedingStopPoint(Instruction *I, BasicBlock::iterator InsertPos) { if (I != I->getParent()->begin()) { BasicBlock::iterator BBI = I; --BBI; if (DbgStopPointInst *DSPI = dyn_cast(BBI)) { CallInst *newDSPI = cast(DSPI->clone()); newDSPI->insertBefore(InsertPos); } } }