//===-- Local.cpp - Functions to perform local transformations ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This family of functions perform various local transformations to the // program. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Local.h" #include "llvm/Constants.h" #include "llvm/GlobalAlias.h" #include "llvm/GlobalVariable.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" using namespace llvm; //===----------------------------------------------------------------------===// // Local analysis. // /// isSafeToLoadUnconditionally - Return true if we know that executing a load /// from this value cannot trap. If it is not obviously safe to load from the /// specified pointer, we do a quick local scan of the basic block containing /// ScanFrom, to determine if the address is already accessed. bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { // If it is an alloca it is always safe to load from. if (isa(V)) return true; // If it is a global variable it is mostly safe to load from. if (const GlobalValue *GV = dyn_cast(V)) // Don't try to evaluate aliases. External weak GV can be null. return !isa(GV) && !GV->hasExternalWeakLinkage(); // Otherwise, be a little bit agressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); while (BBI != E) { --BBI; // If we see a free or a call which may write to memory (i.e. which might do // a free) the pointer could be marked invalid. if (isFreeCall(BBI) || (isa(BBI) && BBI->mayWriteToMemory() && !isa(BBI))) return false; if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == V) return true; } else if (StoreInst *SI = dyn_cast(BBI)) { if (SI->getOperand(1) == V) return true; } } return false; } //===----------------------------------------------------------------------===// // Local constant propagation. // // ConstantFoldTerminator - If a terminator instruction is predicated on a // constant value, convert it into an unconditional branch to the constant // destination. // bool llvm::ConstantFoldTerminator(BasicBlock *BB) { TerminatorInst *T = BB->getTerminator(); // Branch - See if we are conditional jumping on constant if (BranchInst *BI = dyn_cast(T)) { if (BI->isUnconditional()) return false; // Can't optimize uncond branch BasicBlock *Dest1 = BI->getSuccessor(0); BasicBlock *Dest2 = BI->getSuccessor(1); if (ConstantInt *Cond = dyn_cast(BI->getCondition())) { // Are we branching on constant? // YES. Change to unconditional branch... BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; //cerr << "Function: " << T->getParent()->getParent() // << "\nRemoving branch from " << T->getParent() // << "\n\nTo: " << OldDest << endl; // Let the basic block know that we are letting go of it. Based on this, // it will adjust it's PHI nodes. assert(BI->getParent() && "Terminator not inserted in block!"); OldDest->removePredecessor(BI->getParent()); // Set the unconditional destination, and change the insn to be an // unconditional branch. BI->setUnconditionalDest(Destination); return true; } else if (Dest2 == Dest1) { // Conditional branch to same location? // This branch matches something like this: // br bool %cond, label %Dest, label %Dest // and changes it into: br label %Dest // Let the basic block know that we are letting go of one copy of it. assert(BI->getParent() && "Terminator not inserted in block!"); Dest1->removePredecessor(BI->getParent()); // Change a conditional branch to unconditional. BI->setUnconditionalDest(Dest1); return true; } } else if (SwitchInst *SI = dyn_cast(T)) { // If we are switching on a constant, we can convert the switch into a // single branch instruction! ConstantInt *CI = dyn_cast(SI->getCondition()); BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest BasicBlock *DefaultDest = TheOnlyDest; assert(TheOnlyDest == SI->getDefaultDest() && "Default destination is not successor #0?"); // Figure out which case it goes to... for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { // Found case matching a constant operand? if (SI->getSuccessorValue(i) == CI) { TheOnlyDest = SI->getSuccessor(i); break; } // Check to see if this branch is going to the same place as the default // dest. If so, eliminate it as an explicit compare. if (SI->getSuccessor(i) == DefaultDest) { // Remove this entry... DefaultDest->removePredecessor(SI->getParent()); SI->removeCase(i); --i; --e; // Don't skip an entry... continue; } // Otherwise, check to see if the switch only branches to one destination. // We do this by reseting "TheOnlyDest" to null when we find two non-equal // destinations. if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; } if (CI && !TheOnlyDest) { // Branching on a constant, but not any of the cases, go to the default // successor. TheOnlyDest = SI->getDefaultDest(); } // If we found a single destination that we can fold the switch into, do so // now. if (TheOnlyDest) { // Insert the new branch.. BranchInst::Create(TheOnlyDest, SI); BasicBlock *BB = SI->getParent(); // Remove entries from PHI nodes which we no longer branch to... for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { // Found case matching a constant operand? BasicBlock *Succ = SI->getSuccessor(i); if (Succ == TheOnlyDest) TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest else Succ->removePredecessor(BB); } // Delete the old switch... BB->getInstList().erase(SI); return true; } else if (SI->getNumSuccessors() == 2) { // Otherwise, we can fold this switch into a conditional branch // instruction if it has only one non-default destination. Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(), SI->getSuccessorValue(1), "cond"); // Insert the new branch... BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI); // Delete the old switch... SI->eraseFromParent(); return true; } } return false; } //===----------------------------------------------------------------------===// // Local dead code elimination... // /// isInstructionTriviallyDead - Return true if the result produced by the /// instruction is not used, and the instruction has no side effects. /// bool llvm::isInstructionTriviallyDead(Instruction *I) { if (!I->use_empty() || isa(I)) return false; // We don't want debug info removed by anything this general. if (isa(I)) return false; if (!I->mayHaveSideEffects()) return true; // Special case intrinsics that "may have side effects" but can be deleted // when dead. if (IntrinsicInst *II = dyn_cast(I)) // Safe to delete llvm.stacksave if dead. if (II->getIntrinsicID() == Intrinsic::stacksave) return true; return false; } /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a /// trivially dead instruction, delete it. If that makes any of its operands /// trivially dead, delete them too, recursively. void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { Instruction *I = dyn_cast(V); if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) return; SmallVector DeadInsts; DeadInsts.push_back(I); while (!DeadInsts.empty()) { I = DeadInsts.pop_back_val(); // Null out all of the instruction's operands to see if any operand becomes // dead as we go. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Value *OpV = I->getOperand(i); I->setOperand(i, 0); if (!OpV->use_empty()) continue; // If the operand is an instruction that became dead as we nulled out the // operand, and if it is 'trivially' dead, delete it in a future loop // iteration. if (Instruction *OpI = dyn_cast(OpV)) if (isInstructionTriviallyDead(OpI)) DeadInsts.push_back(OpI); } I->eraseFromParent(); } } /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively /// dead PHI node, due to being a def-use chain of single-use nodes that /// either forms a cycle or is terminated by a trivially dead instruction, /// delete it. If that makes any of its operands trivially dead, delete them /// too, recursively. void llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { // We can remove a PHI if it is on a cycle in the def-use graph // where each node in the cycle has degree one, i.e. only one use, // and is an instruction with no side effects. if (!PN->hasOneUse()) return; SmallPtrSet PHIs; PHIs.insert(PN); for (Instruction *J = cast(*PN->use_begin()); J->hasOneUse() && !J->mayHaveSideEffects(); J = cast(*J->use_begin())) // If we find a PHI more than once, we're on a cycle that // won't prove fruitful. if (PHINode *JP = dyn_cast(J)) if (!PHIs.insert(cast(JP))) { // Break the cycle and delete the PHI and its operands. JP->replaceAllUsesWith(UndefValue::get(JP->getType())); RecursivelyDeleteTriviallyDeadInstructions(JP); break; } } //===----------------------------------------------------------------------===// // Control Flow Graph Restructuring... // /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its /// predecessor is known to have one successor (DestBB!). Eliminate the edge /// between them, moving the instructions in the predecessor into DestBB and /// deleting the predecessor block. /// void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { // If BB has single-entry PHI nodes, fold them. while (PHINode *PN = dyn_cast(DestBB->begin())) { Value *NewVal = PN->getIncomingValue(0); // Replace self referencing PHI with undef, it must be dead. if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); PN->replaceAllUsesWith(NewVal); PN->eraseFromParent(); } BasicBlock *PredBB = DestBB->getSinglePredecessor(); assert(PredBB && "Block doesn't have a single predecessor!"); // Splice all the instructions from PredBB to DestBB. PredBB->getTerminator()->eraseFromParent(); DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); // Anything that branched to PredBB now branches to DestBB. PredBB->replaceAllUsesWith(DestBB); if (P) { ProfileInfo *PI = P->getAnalysisIfAvailable(); if (PI) { PI->replaceAllUses(PredBB, DestBB); PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); } } // Nuke BB. PredBB->eraseFromParent(); } /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled /// with the DbgInfoIntrinsic that use the instruction I. bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I, SmallVectorImpl *DbgInUses) { if (DbgInUses) DbgInUses->clear(); for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { if (DbgInfoIntrinsic *DI = dyn_cast(*UI)) { if (DbgInUses) DbgInUses->push_back(DI); } else { if (DbgInUses) DbgInUses->clear(); return false; } } return true; }