//===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DebugMap.h" #include "BinaryHolder.h" #include "DebugMap.h" #include "dsymutil.h" #include "MachOUtils.h" #include "NonRelocatableStringpool.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DIE.h" #include "llvm/Config/config.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/MachO.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include namespace llvm { namespace dsymutil { namespace { template using HalfOpenIntervalMap = IntervalMap::LeafSize, IntervalMapHalfOpenInfo>; typedef HalfOpenIntervalMap FunctionIntervals; // FIXME: Delete this structure. struct PatchLocation { DIE::value_iterator I; PatchLocation() = default; PatchLocation(DIE::value_iterator I) : I(I) {} void set(uint64_t New) const { assert(I); const auto &Old = *I; assert(Old.getType() == DIEValue::isInteger); *I = DIEValue(Old.getAttribute(), Old.getForm(), DIEInteger(New)); } uint64_t get() const { assert(I); return I->getDIEInteger().getValue(); } }; class CompileUnit; struct DeclMapInfo; /// A DeclContext is a named program scope that is used for ODR /// uniquing of types. /// The set of DeclContext for the ODR-subject parts of a Dwarf link /// is expanded (and uniqued) with each new object file processed. We /// need to determine the context of each DIE in an linked object file /// to see if the corresponding type has already been emitted. /// /// The contexts are conceptually organised as a tree (eg. a function /// scope is contained in a namespace scope that contains other /// scopes), but storing/accessing them in an actual tree is too /// inefficient: we need to be able to very quickly query a context /// for a given child context by name. Storing a StringMap in each /// DeclContext would be too space inefficient. /// The solution here is to give each DeclContext a link to its parent /// (this allows to walk up the tree), but to query the existance of a /// specific DeclContext using a separate DenseMap keyed on the hash /// of the fully qualified name of the context. class DeclContext { unsigned QualifiedNameHash; uint32_t Line; uint32_t ByteSize; uint16_t Tag; StringRef Name; StringRef File; const DeclContext &Parent; const DWARFDebugInfoEntryMinimal *LastSeenDIE; uint32_t LastSeenCompileUnitID; uint32_t CanonicalDIEOffset; friend DeclMapInfo; public: typedef DenseSet Map; DeclContext() : QualifiedNameHash(0), Line(0), ByteSize(0), Tag(dwarf::DW_TAG_compile_unit), Name(), File(), Parent(*this), LastSeenDIE(nullptr), LastSeenCompileUnitID(0), CanonicalDIEOffset(0) {} DeclContext(unsigned Hash, uint32_t Line, uint32_t ByteSize, uint16_t Tag, StringRef Name, StringRef File, const DeclContext &Parent, const DWARFDebugInfoEntryMinimal *LastSeenDIE = nullptr, unsigned CUId = 0) : QualifiedNameHash(Hash), Line(Line), ByteSize(ByteSize), Tag(Tag), Name(Name), File(File), Parent(Parent), LastSeenDIE(LastSeenDIE), LastSeenCompileUnitID(CUId), CanonicalDIEOffset(0) {} uint32_t getQualifiedNameHash() const { return QualifiedNameHash; } bool setLastSeenDIE(CompileUnit &U, const DWARFDebugInfoEntryMinimal *Die); uint32_t getCanonicalDIEOffset() const { return CanonicalDIEOffset; } void setCanonicalDIEOffset(uint32_t Offset) { CanonicalDIEOffset = Offset; } uint16_t getTag() const { return Tag; } StringRef getName() const { return Name; } }; /// Info type for the DenseMap storing the DeclContext pointers. struct DeclMapInfo : private DenseMapInfo { using DenseMapInfo::getEmptyKey; using DenseMapInfo::getTombstoneKey; static unsigned getHashValue(const DeclContext *Ctxt) { return Ctxt->QualifiedNameHash; } static bool isEqual(const DeclContext *LHS, const DeclContext *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return RHS == LHS; return LHS->QualifiedNameHash == RHS->QualifiedNameHash && LHS->Line == RHS->Line && LHS->ByteSize == RHS->ByteSize && LHS->Name.data() == RHS->Name.data() && LHS->File.data() == RHS->File.data() && LHS->Parent.QualifiedNameHash == RHS->Parent.QualifiedNameHash; } }; /// This class gives a tree-like API to the DenseMap that stores the /// DeclContext objects. It also holds the BumpPtrAllocator where /// these objects will be allocated. class DeclContextTree { BumpPtrAllocator Allocator; DeclContext Root; DeclContext::Map Contexts; public: /// Get the child of \a Context described by \a DIE in \a Unit. The /// required strings will be interned in \a StringPool. /// \returns The child DeclContext along with one bit that is set if /// this context is invalid. /// FIXME: the invalid bit along the return value is to emulate some /// dsymutil-classic functionality. See the fucntion definition for /// a more thorough discussion of its use. PointerIntPair getChildDeclContext(DeclContext &Context, const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &Unit, NonRelocatableStringpool &StringPool); DeclContext &getRoot() { return Root; } }; /// \brief Stores all information relating to a compile unit, be it in /// its original instance in the object file to its brand new cloned /// and linked DIE tree. class CompileUnit { public: /// \brief Information gathered about a DIE in the object file. struct DIEInfo { int64_t AddrAdjust; ///< Address offset to apply to the described entity. DeclContext *Ctxt; ///< ODR Declaration context. DIE *Clone; ///< Cloned version of that DIE. uint32_t ParentIdx; ///< The index of this DIE's parent. bool Keep; ///< Is the DIE part of the linked output? bool InDebugMap; ///< Was this DIE's entity found in the map? }; CompileUnit(DWARFUnit &OrigUnit, unsigned ID, bool CanUseODR) : OrigUnit(OrigUnit), ID(ID), LowPc(UINT64_MAX), HighPc(0), RangeAlloc(), Ranges(RangeAlloc) { Info.resize(OrigUnit.getNumDIEs()); const auto *CUDie = OrigUnit.getUnitDIE(false); unsigned Lang = CUDie->getAttributeValueAsUnsignedConstant( &OrigUnit, dwarf::DW_AT_language, 0); HasODR = CanUseODR && (Lang == dwarf::DW_LANG_C_plus_plus || Lang == dwarf::DW_LANG_C_plus_plus_03 || Lang == dwarf::DW_LANG_C_plus_plus_11 || Lang == dwarf::DW_LANG_C_plus_plus_14 || Lang == dwarf::DW_LANG_ObjC_plus_plus); } CompileUnit(CompileUnit &&RHS) : OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)), CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset), NextUnitOffset(RHS.NextUnitOffset), RangeAlloc(), Ranges(RangeAlloc) { // The CompileUnit container has been 'reserve()'d with the right // size. We cannot move the IntervalMap anyway. llvm_unreachable("CompileUnits should not be moved."); } DWARFUnit &getOrigUnit() const { return OrigUnit; } unsigned getUniqueID() const { return ID; } DIE *getOutputUnitDIE() const { return CUDie; } void setOutputUnitDIE(DIE *Die) { CUDie = Die; } bool hasODR() const { return HasODR; } DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; } const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; } uint64_t getStartOffset() const { return StartOffset; } uint64_t getNextUnitOffset() const { return NextUnitOffset; } void setStartOffset(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; } uint64_t getLowPc() const { return LowPc; } uint64_t getHighPc() const { return HighPc; } Optional getUnitRangesAttribute() const { return UnitRangeAttribute; } const FunctionIntervals &getFunctionRanges() const { return Ranges; } const std::vector &getRangesAttributes() const { return RangeAttributes; } const std::vector> & getLocationAttributes() const { return LocationAttributes; } /// \brief Compute the end offset for this unit. Must be /// called after the CU's DIEs have been cloned. /// \returns the next unit offset (which is also the current /// debug_info section size). uint64_t computeNextUnitOffset(); /// \brief Keep track of a forward reference to DIE \p Die in \p /// RefUnit by \p Attr. The attribute should be fixed up later to /// point to the absolute offset of \p Die in the debug_info section /// or to the canonical offset of \p Ctxt if it is non-null. void noteForwardReference(DIE *Die, const CompileUnit *RefUnit, DeclContext *Ctxt, PatchLocation Attr); /// \brief Apply all fixups recored by noteForwardReference(). void fixupForwardReferences(); /// \brief Add a function range [\p LowPC, \p HighPC) that is /// relocatad by applying offset \p PCOffset. void addFunctionRange(uint64_t LowPC, uint64_t HighPC, int64_t PCOffset); /// \brief Keep track of a DW_AT_range attribute that we will need to /// patch up later. void noteRangeAttribute(const DIE &Die, PatchLocation Attr); /// \brief Keep track of a location attribute pointing to a location /// list in the debug_loc section. void noteLocationAttribute(PatchLocation Attr, int64_t PcOffset); /// \brief Add a name accelerator entry for \p Die with \p Name /// which is stored in the string table at \p Offset. void addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset, bool SkipPubnamesSection = false); /// \brief Add a type accelerator entry for \p Die with \p Name /// which is stored in the string table at \p Offset. void addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset); struct AccelInfo { StringRef Name; ///< Name of the entry. const DIE *Die; ///< DIE this entry describes. uint32_t NameOffset; ///< Offset of Name in the string pool. bool SkipPubSection; ///< Emit this entry only in the apple_* sections. AccelInfo(StringRef Name, const DIE *Die, uint32_t NameOffset, bool SkipPubSection = false) : Name(Name), Die(Die), NameOffset(NameOffset), SkipPubSection(SkipPubSection) {} }; const std::vector &getPubnames() const { return Pubnames; } const std::vector &getPubtypes() const { return Pubtypes; } /// Get the full path for file \a FileNum in the line table const char *getResolvedPath(unsigned FileNum) { if (FileNum >= ResolvedPaths.size()) return nullptr; return ResolvedPaths[FileNum].size() ? ResolvedPaths[FileNum].c_str() : nullptr; } /// Set the fully resolved path for the line-table's file \a FileNum /// to \a Path. void setResolvedPath(unsigned FileNum, const std::string &Path) { if (ResolvedPaths.size() <= FileNum) ResolvedPaths.resize(FileNum + 1); ResolvedPaths[FileNum] = Path; } private: DWARFUnit &OrigUnit; unsigned ID; std::vector Info; ///< DIE info indexed by DIE index. DIE *CUDie; ///< Root of the linked DIE tree. uint64_t StartOffset; uint64_t NextUnitOffset; uint64_t LowPc; uint64_t HighPc; /// \brief A list of attributes to fixup with the absolute offset of /// a DIE in the debug_info section. /// /// The offsets for the attributes in this array couldn't be set while /// cloning because for cross-cu forward refences the target DIE's /// offset isn't known you emit the reference attribute. std::vector> ForwardDIEReferences; FunctionIntervals::Allocator RangeAlloc; /// \brief The ranges in that interval map are the PC ranges for /// functions in this unit, associated with the PC offset to apply /// to the addresses to get the linked address. FunctionIntervals Ranges; /// \brief DW_AT_ranges attributes to patch after we have gathered /// all the unit's function addresses. /// @{ std::vector RangeAttributes; Optional UnitRangeAttribute; /// @} /// \brief Location attributes that need to be transfered from th /// original debug_loc section to the liked one. They are stored /// along with the PC offset that is to be applied to their /// function's address. std::vector> LocationAttributes; /// \brief Accelerator entries for the unit, both for the pub* /// sections and the apple* ones. /// @{ std::vector Pubnames; std::vector Pubtypes; /// @} /// Cached resolved paths from the line table. std::vector ResolvedPaths; /// Is this unit subject to the ODR rule? bool HasODR; }; uint64_t CompileUnit::computeNextUnitOffset() { NextUnitOffset = StartOffset + 11 /* Header size */; // The root DIE might be null, meaning that the Unit had nothing to // contribute to the linked output. In that case, we will emit the // unit header without any actual DIE. if (CUDie) NextUnitOffset += CUDie->getSize(); return NextUnitOffset; } /// \brief Keep track of a forward cross-cu reference from this unit /// to \p Die that lives in \p RefUnit. void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit, DeclContext *Ctxt, PatchLocation Attr) { ForwardDIEReferences.emplace_back(Die, RefUnit, Ctxt, Attr); } /// \brief Apply all fixups recorded by noteForwardReference(). void CompileUnit::fixupForwardReferences() { for (const auto &Ref : ForwardDIEReferences) { DIE *RefDie; const CompileUnit *RefUnit; PatchLocation Attr; DeclContext *Ctxt; std::tie(RefDie, RefUnit, Ctxt, Attr) = Ref; if (Ctxt && Ctxt->getCanonicalDIEOffset()) Attr.set(Ctxt->getCanonicalDIEOffset()); else Attr.set(RefDie->getOffset() + RefUnit->getStartOffset()); } } void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc, int64_t PcOffset) { Ranges.insert(FuncLowPc, FuncHighPc, PcOffset); this->LowPc = std::min(LowPc, FuncLowPc + PcOffset); this->HighPc = std::max(HighPc, FuncHighPc + PcOffset); } void CompileUnit::noteRangeAttribute(const DIE &Die, PatchLocation Attr) { if (Die.getTag() != dwarf::DW_TAG_compile_unit) RangeAttributes.push_back(Attr); else UnitRangeAttribute = Attr; } void CompileUnit::noteLocationAttribute(PatchLocation Attr, int64_t PcOffset) { LocationAttributes.emplace_back(Attr, PcOffset); } /// \brief Add a name accelerator entry for \p Die with \p Name /// which is stored in the string table at \p Offset. void CompileUnit::addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset, bool SkipPubSection) { Pubnames.emplace_back(Name, Die, Offset, SkipPubSection); } /// \brief Add a type accelerator entry for \p Die with \p Name /// which is stored in the string table at \p Offset. void CompileUnit::addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset) { Pubtypes.emplace_back(Name, Die, Offset, false); } /// \brief The Dwarf streaming logic /// /// All interactions with the MC layer that is used to build the debug /// information binary representation are handled in this class. class DwarfStreamer { /// \defgroup MCObjects MC layer objects constructed by the streamer /// @{ std::unique_ptr MRI; std::unique_ptr MAI; std::unique_ptr MOFI; std::unique_ptr MC; MCAsmBackend *MAB; // Owned by MCStreamer std::unique_ptr MII; std::unique_ptr MSTI; MCCodeEmitter *MCE; // Owned by MCStreamer MCStreamer *MS; // Owned by AsmPrinter std::unique_ptr TM; std::unique_ptr Asm; /// @} /// \brief the file we stream the linked Dwarf to. std::unique_ptr OutFile; uint32_t RangesSectionSize; uint32_t LocSectionSize; uint32_t LineSectionSize; uint32_t FrameSectionSize; /// \brief Emit the pubnames or pubtypes section contribution for \p /// Unit into \p Sec. The data is provided in \p Names. void emitPubSectionForUnit(MCSection *Sec, StringRef Name, const CompileUnit &Unit, const std::vector &Names); public: /// \brief Actually create the streamer and the ouptut file. /// /// This could be done directly in the constructor, but it feels /// more natural to handle errors through return value. bool init(Triple TheTriple, StringRef OutputFilename); /// \brief Dump the file to the disk. bool finish(const DebugMap &); AsmPrinter &getAsmPrinter() const { return *Asm; } /// \brief Set the current output section to debug_info and change /// the MC Dwarf version to \p DwarfVersion. void switchToDebugInfoSection(unsigned DwarfVersion); /// \brief Emit the compilation unit header for \p Unit in the /// debug_info section. /// /// As a side effect, this also switches the current Dwarf version /// of the MC layer to the one of U.getOrigUnit(). void emitCompileUnitHeader(CompileUnit &Unit); /// \brief Recursively emit the DIE tree rooted at \p Die. void emitDIE(DIE &Die); /// \brief Emit the abbreviation table \p Abbrevs to the /// debug_abbrev section. void emitAbbrevs(const std::vector &Abbrevs); /// \brief Emit the string table described by \p Pool. void emitStrings(const NonRelocatableStringpool &Pool); /// \brief Emit debug_ranges for \p FuncRange by translating the /// original \p Entries. void emitRangesEntries( int64_t UnitPcOffset, uint64_t OrigLowPc, FunctionIntervals::const_iterator FuncRange, const std::vector &Entries, unsigned AddressSize); /// \brief Emit debug_aranges entries for \p Unit and if \p /// DoRangesSection is true, also emit the debug_ranges entries for /// the DW_TAG_compile_unit's DW_AT_ranges attribute. void emitUnitRangesEntries(CompileUnit &Unit, bool DoRangesSection); uint32_t getRangesSectionSize() const { return RangesSectionSize; } /// \brief Emit the debug_loc contribution for \p Unit by copying /// the entries from \p Dwarf and offseting them. Update the /// location attributes to point to the new entries. void emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf); /// \brief Emit the line table described in \p Rows into the /// debug_line section. void emitLineTableForUnit(MCDwarfLineTableParams Params, StringRef PrologueBytes, unsigned MinInstLength, std::vector &Rows, unsigned AdddressSize); uint32_t getLineSectionSize() const { return LineSectionSize; } /// \brief Emit the .debug_pubnames contribution for \p Unit. void emitPubNamesForUnit(const CompileUnit &Unit); /// \brief Emit the .debug_pubtypes contribution for \p Unit. void emitPubTypesForUnit(const CompileUnit &Unit); /// \brief Emit a CIE. void emitCIE(StringRef CIEBytes); /// \brief Emit an FDE with data \p Bytes. void emitFDE(uint32_t CIEOffset, uint32_t AddreSize, uint32_t Address, StringRef Bytes); uint32_t getFrameSectionSize() const { return FrameSectionSize; } }; bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) { std::string ErrorStr; std::string TripleName; StringRef Context = "dwarf streamer init"; // Get the target. const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr); if (!TheTarget) return error(ErrorStr, Context); TripleName = TheTriple.getTriple(); // Create all the MC Objects. MRI.reset(TheTarget->createMCRegInfo(TripleName)); if (!MRI) return error(Twine("no register info for target ") + TripleName, Context); MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName)); if (!MAI) return error("no asm info for target " + TripleName, Context); MOFI.reset(new MCObjectFileInfo); MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get())); MOFI->InitMCObjectFileInfo(TheTriple, Reloc::Default, CodeModel::Default, *MC); MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, ""); if (!MAB) return error("no asm backend for target " + TripleName, Context); MII.reset(TheTarget->createMCInstrInfo()); if (!MII) return error("no instr info info for target " + TripleName, Context); MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", "")); if (!MSTI) return error("no subtarget info for target " + TripleName, Context); MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MC); if (!MCE) return error("no code emitter for target " + TripleName, Context); // Create the output file. std::error_code EC; OutFile = llvm::make_unique(OutputFilename, EC, sys::fs::F_None); if (EC) return error(Twine(OutputFilename) + ": " + EC.message(), Context); MS = TheTarget->createMCObjectStreamer(TheTriple, *MC, *MAB, *OutFile, MCE, *MSTI, false, /*DWARFMustBeAtTheEnd*/ false); if (!MS) return error("no object streamer for target " + TripleName, Context); // Finally create the AsmPrinter we'll use to emit the DIEs. TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions())); if (!TM) return error("no target machine for target " + TripleName, Context); Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr(MS))); if (!Asm) return error("no asm printer for target " + TripleName, Context); RangesSectionSize = 0; LocSectionSize = 0; LineSectionSize = 0; FrameSectionSize = 0; return true; } bool DwarfStreamer::finish(const DebugMap &DM) { if (DM.getTriple().isOSDarwin() && !DM.getBinaryPath().empty()) return MachOUtils::generateDsymCompanion(DM, *MS, *OutFile); MS->Finish(); return true; } /// \brief Set the current output section to debug_info and change /// the MC Dwarf version to \p DwarfVersion. void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) { MS->SwitchSection(MOFI->getDwarfInfoSection()); MC->setDwarfVersion(DwarfVersion); } /// \brief Emit the compilation unit header for \p Unit in the /// debug_info section. /// /// A Dwarf scetion header is encoded as: /// uint32_t Unit length (omiting this field) /// uint16_t Version /// uint32_t Abbreviation table offset /// uint8_t Address size /// /// Leading to a total of 11 bytes. void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) { unsigned Version = Unit.getOrigUnit().getVersion(); switchToDebugInfoSection(Version); // Emit size of content not including length itself. The size has // already been computed in CompileUnit::computeOffsets(). Substract // 4 to that size to account for the length field. Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4); Asm->EmitInt16(Version); // We share one abbreviations table across all units so it's always at the // start of the section. Asm->EmitInt32(0); Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize()); } /// \brief Emit the \p Abbrevs array as the shared abbreviation table /// for the linked Dwarf file. void DwarfStreamer::emitAbbrevs(const std::vector &Abbrevs) { MS->SwitchSection(MOFI->getDwarfAbbrevSection()); Asm->emitDwarfAbbrevs(Abbrevs); } /// \brief Recursively emit the DIE tree rooted at \p Die. void DwarfStreamer::emitDIE(DIE &Die) { MS->SwitchSection(MOFI->getDwarfInfoSection()); Asm->emitDwarfDIE(Die); } /// \brief Emit the debug_str section stored in \p Pool. void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) { Asm->OutStreamer->SwitchSection(MOFI->getDwarfStrSection()); for (auto *Entry = Pool.getFirstEntry(); Entry; Entry = Pool.getNextEntry(Entry)) Asm->OutStreamer->EmitBytes( StringRef(Entry->getKey().data(), Entry->getKey().size() + 1)); } /// \brief Emit the debug_range section contents for \p FuncRange by /// translating the original \p Entries. The debug_range section /// format is totally trivial, consisting just of pairs of address /// sized addresses describing the ranges. void DwarfStreamer::emitRangesEntries( int64_t UnitPcOffset, uint64_t OrigLowPc, FunctionIntervals::const_iterator FuncRange, const std::vector &Entries, unsigned AddressSize) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection()); // Offset each range by the right amount. int64_t PcOffset = Entries.empty() ? 0 : FuncRange.value() + UnitPcOffset; for (const auto &Range : Entries) { if (Range.isBaseAddressSelectionEntry(AddressSize)) { warn("unsupported base address selection operation", "emitting debug_ranges"); break; } // Do not emit empty ranges. if (Range.StartAddress == Range.EndAddress) continue; // All range entries should lie in the function range. if (!(Range.StartAddress + OrigLowPc >= FuncRange.start() && Range.EndAddress + OrigLowPc <= FuncRange.stop())) warn("inconsistent range data.", "emitting debug_ranges"); MS->EmitIntValue(Range.StartAddress + PcOffset, AddressSize); MS->EmitIntValue(Range.EndAddress + PcOffset, AddressSize); RangesSectionSize += 2 * AddressSize; } // Add the terminator entry. MS->EmitIntValue(0, AddressSize); MS->EmitIntValue(0, AddressSize); RangesSectionSize += 2 * AddressSize; } /// \brief Emit the debug_aranges contribution of a unit and /// if \p DoDebugRanges is true the debug_range contents for a /// compile_unit level DW_AT_ranges attribute (Which are basically the /// same thing with a different base address). /// Just aggregate all the ranges gathered inside that unit. void DwarfStreamer::emitUnitRangesEntries(CompileUnit &Unit, bool DoDebugRanges) { unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); // Gather the ranges in a vector, so that we can simplify them. The // IntervalMap will have coalesced the non-linked ranges, but here // we want to coalesce the linked addresses. std::vector> Ranges; const auto &FunctionRanges = Unit.getFunctionRanges(); for (auto Range = FunctionRanges.begin(), End = FunctionRanges.end(); Range != End; ++Range) Ranges.push_back(std::make_pair(Range.start() + Range.value(), Range.stop() + Range.value())); // The object addresses where sorted, but again, the linked // addresses might end up in a different order. std::sort(Ranges.begin(), Ranges.end()); if (!Ranges.empty()) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfARangesSection()); MCSymbol *BeginLabel = Asm->createTempSymbol("Barange"); MCSymbol *EndLabel = Asm->createTempSymbol("Earange"); unsigned HeaderSize = sizeof(int32_t) + // Size of contents (w/o this field sizeof(int16_t) + // DWARF ARange version number sizeof(int32_t) + // Offset of CU in the .debug_info section sizeof(int8_t) + // Pointer Size (in bytes) sizeof(int8_t); // Segment Size (in bytes) unsigned TupleSize = AddressSize * 2; unsigned Padding = OffsetToAlignment(HeaderSize, TupleSize); Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Arange length Asm->OutStreamer->EmitLabel(BeginLabel); Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); // Version number Asm->EmitInt32(Unit.getStartOffset()); // Corresponding unit's offset Asm->EmitInt8(AddressSize); // Address size Asm->EmitInt8(0); // Segment size Asm->OutStreamer->EmitFill(Padding, 0x0); for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) { uint64_t RangeStart = Range->first; MS->EmitIntValue(RangeStart, AddressSize); while ((Range + 1) != End && Range->second == (Range + 1)->first) ++Range; MS->EmitIntValue(Range->second - RangeStart, AddressSize); } // Emit terminator Asm->OutStreamer->EmitIntValue(0, AddressSize); Asm->OutStreamer->EmitIntValue(0, AddressSize); Asm->OutStreamer->EmitLabel(EndLabel); } if (!DoDebugRanges) return; MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection()); // Offset each range by the right amount. int64_t PcOffset = -Unit.getLowPc(); // Emit coalesced ranges. for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) { MS->EmitIntValue(Range->first + PcOffset, AddressSize); while (Range + 1 != End && Range->second == (Range + 1)->first) ++Range; MS->EmitIntValue(Range->second + PcOffset, AddressSize); RangesSectionSize += 2 * AddressSize; } // Add the terminator entry. MS->EmitIntValue(0, AddressSize); MS->EmitIntValue(0, AddressSize); RangesSectionSize += 2 * AddressSize; } /// \brief Emit location lists for \p Unit and update attribtues to /// point to the new entries. void DwarfStreamer::emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) { const auto &Attributes = Unit.getLocationAttributes(); if (Attributes.empty()) return; MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLocSection()); unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); const DWARFSection &InputSec = Dwarf.getLocSection(); DataExtractor Data(InputSec.Data, Dwarf.isLittleEndian(), AddressSize); DWARFUnit &OrigUnit = Unit.getOrigUnit(); const auto *OrigUnitDie = OrigUnit.getUnitDIE(false); int64_t UnitPcOffset = 0; uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress( &OrigUnit, dwarf::DW_AT_low_pc, -1ULL); if (OrigLowPc != -1ULL) UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc(); for (const auto &Attr : Attributes) { uint32_t Offset = Attr.first.get(); Attr.first.set(LocSectionSize); // This is the quantity to add to the old location address to get // the correct address for the new one. int64_t LocPcOffset = Attr.second + UnitPcOffset; while (Data.isValidOffset(Offset)) { uint64_t Low = Data.getUnsigned(&Offset, AddressSize); uint64_t High = Data.getUnsigned(&Offset, AddressSize); LocSectionSize += 2 * AddressSize; if (Low == 0 && High == 0) { Asm->OutStreamer->EmitIntValue(0, AddressSize); Asm->OutStreamer->EmitIntValue(0, AddressSize); break; } Asm->OutStreamer->EmitIntValue(Low + LocPcOffset, AddressSize); Asm->OutStreamer->EmitIntValue(High + LocPcOffset, AddressSize); uint64_t Length = Data.getU16(&Offset); Asm->OutStreamer->EmitIntValue(Length, 2); // Just copy the bytes over. Asm->OutStreamer->EmitBytes( StringRef(InputSec.Data.substr(Offset, Length))); Offset += Length; LocSectionSize += Length + 2; } } } void DwarfStreamer::emitLineTableForUnit(MCDwarfLineTableParams Params, StringRef PrologueBytes, unsigned MinInstLength, std::vector &Rows, unsigned PointerSize) { // Switch to the section where the table will be emitted into. MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLineSection()); MCSymbol *LineStartSym = MC->createTempSymbol(); MCSymbol *LineEndSym = MC->createTempSymbol(); // The first 4 bytes is the total length of the information for this // compilation unit (not including these 4 bytes for the length). Asm->EmitLabelDifference(LineEndSym, LineStartSym, 4); Asm->OutStreamer->EmitLabel(LineStartSym); // Copy Prologue. MS->EmitBytes(PrologueBytes); LineSectionSize += PrologueBytes.size() + 4; SmallString<128> EncodingBuffer; raw_svector_ostream EncodingOS(EncodingBuffer); if (Rows.empty()) { // We only have the dummy entry, dsymutil emits an entry with a 0 // address in that case. MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); MS->EmitLabel(LineEndSym); return; } // Line table state machine fields unsigned FileNum = 1; unsigned LastLine = 1; unsigned Column = 0; unsigned IsStatement = 1; unsigned Isa = 0; uint64_t Address = -1ULL; unsigned RowsSinceLastSequence = 0; for (unsigned Idx = 0; Idx < Rows.size(); ++Idx) { auto &Row = Rows[Idx]; int64_t AddressDelta; if (Address == -1ULL) { MS->EmitIntValue(dwarf::DW_LNS_extended_op, 1); MS->EmitULEB128IntValue(PointerSize + 1); MS->EmitIntValue(dwarf::DW_LNE_set_address, 1); MS->EmitIntValue(Row.Address, PointerSize); LineSectionSize += 2 + PointerSize + getULEB128Size(PointerSize + 1); AddressDelta = 0; } else { AddressDelta = (Row.Address - Address) / MinInstLength; } // FIXME: code copied and transfromed from // MCDwarf.cpp::EmitDwarfLineTable. We should find a way to share // this code, but the current compatibility requirement with // classic dsymutil makes it hard. Revisit that once this // requirement is dropped. if (FileNum != Row.File) { FileNum = Row.File; MS->EmitIntValue(dwarf::DW_LNS_set_file, 1); MS->EmitULEB128IntValue(FileNum); LineSectionSize += 1 + getULEB128Size(FileNum); } if (Column != Row.Column) { Column = Row.Column; MS->EmitIntValue(dwarf::DW_LNS_set_column, 1); MS->EmitULEB128IntValue(Column); LineSectionSize += 1 + getULEB128Size(Column); } // FIXME: We should handle the discriminator here, but dsymutil // doesn' consider it, thus ignore it for now. if (Isa != Row.Isa) { Isa = Row.Isa; MS->EmitIntValue(dwarf::DW_LNS_set_isa, 1); MS->EmitULEB128IntValue(Isa); LineSectionSize += 1 + getULEB128Size(Isa); } if (IsStatement != Row.IsStmt) { IsStatement = Row.IsStmt; MS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1); LineSectionSize += 1; } if (Row.BasicBlock) { MS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1); LineSectionSize += 1; } if (Row.PrologueEnd) { MS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1); LineSectionSize += 1; } if (Row.EpilogueBegin) { MS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1); LineSectionSize += 1; } int64_t LineDelta = int64_t(Row.Line) - LastLine; if (!Row.EndSequence) { MCDwarfLineAddr::Encode(*MC, Params, LineDelta, AddressDelta, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); EncodingBuffer.resize(0); Address = Row.Address; LastLine = Row.Line; RowsSinceLastSequence++; } else { if (LineDelta) { MS->EmitIntValue(dwarf::DW_LNS_advance_line, 1); MS->EmitSLEB128IntValue(LineDelta); LineSectionSize += 1 + getSLEB128Size(LineDelta); } if (AddressDelta) { MS->EmitIntValue(dwarf::DW_LNS_advance_pc, 1); MS->EmitULEB128IntValue(AddressDelta); LineSectionSize += 1 + getULEB128Size(AddressDelta); } MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); EncodingBuffer.resize(0); Address = -1ULL; LastLine = FileNum = IsStatement = 1; RowsSinceLastSequence = Column = Isa = 0; } } if (RowsSinceLastSequence) { MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); EncodingBuffer.resize(0); } MS->EmitLabel(LineEndSym); } /// \brief Emit the pubnames or pubtypes section contribution for \p /// Unit into \p Sec. The data is provided in \p Names. void DwarfStreamer::emitPubSectionForUnit( MCSection *Sec, StringRef SecName, const CompileUnit &Unit, const std::vector &Names) { if (Names.empty()) return; // Start the dwarf pubnames section. Asm->OutStreamer->SwitchSection(Sec); MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + SecName + "_begin"); MCSymbol *EndLabel = Asm->createTempSymbol("pub" + SecName + "_end"); bool HeaderEmitted = false; // Emit the pubnames for this compilation unit. for (const auto &Name : Names) { if (Name.SkipPubSection) continue; if (!HeaderEmitted) { // Emit the header. Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Length Asm->OutStreamer->EmitLabel(BeginLabel); Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); // Version Asm->EmitInt32(Unit.getStartOffset()); // Unit offset Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset()); // Size HeaderEmitted = true; } Asm->EmitInt32(Name.Die->getOffset()); Asm->OutStreamer->EmitBytes( StringRef(Name.Name.data(), Name.Name.size() + 1)); } if (!HeaderEmitted) return; Asm->EmitInt32(0); // End marker. Asm->OutStreamer->EmitLabel(EndLabel); } /// \brief Emit .debug_pubnames for \p Unit. void DwarfStreamer::emitPubNamesForUnit(const CompileUnit &Unit) { emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubNamesSection(), "names", Unit, Unit.getPubnames()); } /// \brief Emit .debug_pubtypes for \p Unit. void DwarfStreamer::emitPubTypesForUnit(const CompileUnit &Unit) { emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubTypesSection(), "types", Unit, Unit.getPubtypes()); } /// \brief Emit a CIE into the debug_frame section. void DwarfStreamer::emitCIE(StringRef CIEBytes) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection()); MS->EmitBytes(CIEBytes); FrameSectionSize += CIEBytes.size(); } /// \brief Emit a FDE into the debug_frame section. \p FDEBytes /// contains the FDE data without the length, CIE offset and address /// which will be replaced with the paramter values. void DwarfStreamer::emitFDE(uint32_t CIEOffset, uint32_t AddrSize, uint32_t Address, StringRef FDEBytes) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection()); MS->EmitIntValue(FDEBytes.size() + 4 + AddrSize, 4); MS->EmitIntValue(CIEOffset, 4); MS->EmitIntValue(Address, AddrSize); MS->EmitBytes(FDEBytes); FrameSectionSize += FDEBytes.size() + 8 + AddrSize; } /// \brief The core of the Dwarf linking logic. /// /// The link of the dwarf information from the object files will be /// driven by the selection of 'root DIEs', which are DIEs that /// describe variables or functions that are present in the linked /// binary (and thus have entries in the debug map). All the debug /// information that will be linked (the DIEs, but also the line /// tables, ranges, ...) is derived from that set of root DIEs. /// /// The root DIEs are identified because they contain relocations that /// correspond to a debug map entry at specific places (the low_pc for /// a function, the location for a variable). These relocations are /// called ValidRelocs in the DwarfLinker and are gathered as a very /// first step when we start processing a DebugMapObject. class DwarfLinker { public: DwarfLinker(StringRef OutputFilename, const LinkOptions &Options) : OutputFilename(OutputFilename), Options(Options), BinHolder(Options.Verbose), LastCIEOffset(0) {} ~DwarfLinker() { for (auto *Abbrev : Abbreviations) delete Abbrev; } /// \brief Link the contents of the DebugMap. bool link(const DebugMap &); private: /// \brief Called at the start of a debug object link. void startDebugObject(DWARFContext &, DebugMapObject &); /// \brief Called at the end of a debug object link. void endDebugObject(); /// \defgroup FindValidRelocations Translate debug map into a list /// of relevant relocations /// /// @{ struct ValidReloc { uint32_t Offset; uint32_t Size; uint64_t Addend; const DebugMapObject::DebugMapEntry *Mapping; ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend, const DebugMapObject::DebugMapEntry *Mapping) : Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {} bool operator<(const ValidReloc &RHS) const { return Offset < RHS.Offset; } }; /// \brief The valid relocations for the current DebugMapObject. /// This vector is sorted by relocation offset. std::vector ValidRelocs; /// \brief Index into ValidRelocs of the next relocation to /// consider. As we walk the DIEs in acsending file offset and as /// ValidRelocs is sorted by file offset, keeping this index /// uptodate is all we have to do to have a cheap lookup during the /// root DIE selection and during DIE cloning. unsigned NextValidReloc; bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj, const DebugMapObject &DMO); bool findValidRelocs(const object::SectionRef &Section, const object::ObjectFile &Obj, const DebugMapObject &DMO); void findValidRelocsMachO(const object::SectionRef &Section, const object::MachOObjectFile &Obj, const DebugMapObject &DMO); /// @} /// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries. /// /// @{ /// \brief Recursively walk the \p DIE tree and look for DIEs to /// keep. Store that information in \p CU's DIEInfo. void lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags); /// \brief Flags passed to DwarfLinker::lookForDIEsToKeep enum TravesalFlags { TF_Keep = 1 << 0, ///< Mark the traversed DIEs as kept. TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope. TF_DependencyWalk = 1 << 2, ///< Walking the dependencies of a kept DIE. TF_ParentWalk = 1 << 3, ///< Walking up the parents of a kept DIE. TF_ODR = 1 << 4, ///< Use the ODR whhile keeping dependants. TF_SkipPC = 1 << 5, ///< Skip all location attributes. }; /// \brief Mark the passed DIE as well as all the ones it depends on /// as kept. void keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit::DIEInfo &MyInfo, const DebugMapObject &DMO, CompileUnit &CU, bool UseODR); unsigned shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); unsigned shouldKeepVariableDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); unsigned shouldKeepSubprogramDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info); /// @} /// \defgroup Linking Methods used to link the debug information /// /// @{ /// \brief Recursively clone \p InputDIE into an tree of DIE objects /// where useless (as decided by lookForDIEsToKeep()) bits have been /// stripped out and addresses have been rewritten according to the /// debug map. /// /// \param OutOffset is the offset the cloned DIE in the output /// compile unit. /// \param PCOffset (while cloning a function scope) is the offset /// applied to the entry point of the function to get the linked address. /// /// \returns the root of the cloned tree. DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U, int64_t PCOffset, uint32_t OutOffset, unsigned Flags); typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec; /// \brief Information gathered and exchanged between the various /// clone*Attributes helpers about the attributes of a particular DIE. struct AttributesInfo { const char *Name, *MangledName; ///< Names. uint32_t NameOffset, MangledNameOffset; ///< Offsets in the string pool. uint64_t OrigLowPc; ///< Value of AT_low_pc in the input DIE uint64_t OrigHighPc; ///< Value of AT_high_pc in the input DIE int64_t PCOffset; ///< Offset to apply to PC addresses inside a function. bool HasLowPc; ///< Does the DIE have a low_pc attribute? bool IsDeclaration; ///< Is this DIE only a declaration? AttributesInfo() : Name(nullptr), MangledName(nullptr), NameOffset(0), MangledNameOffset(0), OrigLowPc(UINT64_MAX), OrigHighPc(0), PCOffset(0), HasLowPc(false), IsDeclaration(false) {} }; /// \brief Helper for cloneDIE. unsigned cloneAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U, const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &AttrInfo); /// \brief Helper for cloneDIE. unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const DWARFUnit &U); /// \brief Helper for cloneDIE. unsigned cloneDieReferenceAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val, CompileUnit &Unit); /// \brief Helper for cloneDIE. unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize); /// \brief Helper for cloneDIE. unsigned cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const CompileUnit &Unit, AttributesInfo &Info); /// \brief Helper for cloneDIE. unsigned cloneScalarAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize, AttributesInfo &Info); /// \brief Helper for cloneDIE. bool applyValidRelocs(MutableArrayRef Data, uint32_t BaseOffset, bool isLittleEndian); /// \brief Assign an abbreviation number to \p Abbrev void AssignAbbrev(DIEAbbrev &Abbrev); /// Create a copy of abbreviation Abbrev. void copyAbbrev(const DWARFAbbreviationDeclaration &Abbrev, bool hasODR); /// \brief FoldingSet that uniques the abbreviations. FoldingSet AbbreviationsSet; /// \brief Storage for the unique Abbreviations. /// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot /// be changed to a vecot of unique_ptrs. std::vector Abbreviations; /// \brief Compute and emit debug_ranges section for \p Unit, and /// patch the attributes referencing it. void patchRangesForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) const; /// \brief Generate and emit the DW_AT_ranges attribute for a /// compile_unit if it had one. void generateUnitRanges(CompileUnit &Unit) const; /// \brief Extract the line tables fromt he original dwarf, extract /// the relevant parts according to the linked function ranges and /// emit the result in the debug_line section. void patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf); /// \brief Emit the accelerator entries for \p Unit. void emitAcceleratorEntriesForUnit(CompileUnit &Unit); /// \brief Patch the frame info for an object file and emit it. void patchFrameInfoForObject(const DebugMapObject &, DWARFContext &, unsigned AddressSize); /// \brief DIELoc objects that need to be destructed (but not freed!). std::vector DIELocs; /// \brief DIEBlock objects that need to be destructed (but not freed!). std::vector DIEBlocks; /// \brief Allocator used for all the DIEValue objects. BumpPtrAllocator DIEAlloc; /// @} /// ODR Contexts for that link. DeclContextTree ODRContexts; /// \defgroup Helpers Various helper methods. /// /// @{ const DWARFDebugInfoEntryMinimal * resolveDIEReference(const DWARFFormValue &RefValue, const DWARFUnit &Unit, const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&ReferencedCU); CompileUnit *getUnitForOffset(unsigned Offset); bool getDIENames(const DWARFDebugInfoEntryMinimal &Die, DWARFUnit &U, AttributesInfo &Info); void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr, const DWARFDebugInfoEntryMinimal *DIE = nullptr) const; bool createStreamer(Triple TheTriple, StringRef OutputFilename); /// \brief Attempt to load a debug object from disk. ErrorOr loadObject(BinaryHolder &BinaryHolder, DebugMapObject &Obj, const DebugMap &Map); /// @} private: std::string OutputFilename; LinkOptions Options; BinaryHolder BinHolder; std::unique_ptr Streamer; /// The units of the current debug map object. std::vector Units; /// The debug map object curently under consideration. DebugMapObject *CurrentDebugObject; /// \brief The Dwarf string pool NonRelocatableStringpool StringPool; /// \brief This map is keyed by the entry PC of functions in that /// debug object and the associated value is a pair storing the /// corresponding end PC and the offset to apply to get the linked /// address. /// /// See startDebugObject() for a more complete description of its use. std::map> Ranges; /// \brief The CIEs that have been emitted in the output /// section. The actual CIE data serves a the key to this StringMap, /// this takes care of comparing the semantics of CIEs defined in /// different object files. StringMap EmittedCIEs; /// Offset of the last CIE that has been emitted in the output /// debug_frame section. uint32_t LastCIEOffset; }; /// \brief Similar to DWARFUnitSection::getUnitForOffset(), but /// returning our CompileUnit object instead. CompileUnit *DwarfLinker::getUnitForOffset(unsigned Offset) { auto CU = std::upper_bound(Units.begin(), Units.end(), Offset, [](uint32_t LHS, const CompileUnit &RHS) { return LHS < RHS.getOrigUnit().getNextUnitOffset(); }); return CU != Units.end() ? &*CU : nullptr; } /// \brief Resolve the DIE attribute reference that has been /// extracted in \p RefValue. The resulting DIE migh be in another /// CompileUnit which is stored into \p ReferencedCU. /// \returns null if resolving fails for any reason. const DWARFDebugInfoEntryMinimal *DwarfLinker::resolveDIEReference( const DWARFFormValue &RefValue, const DWARFUnit &Unit, const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) { assert(RefValue.isFormClass(DWARFFormValue::FC_Reference)); uint64_t RefOffset = *RefValue.getAsReference(&Unit); if ((RefCU = getUnitForOffset(RefOffset))) if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) return RefDie; reportWarning("could not find referenced DIE", &Unit, &DIE); return nullptr; } /// \returns whether the passed \a Attr type might contain a DIE /// reference suitable for ODR uniquing. static bool isODRAttribute(uint16_t Attr) { switch (Attr) { default: return false; case dwarf::DW_AT_type: case dwarf::DW_AT_containing_type: case dwarf::DW_AT_specification: case dwarf::DW_AT_abstract_origin: case dwarf::DW_AT_import: return true; } llvm_unreachable("Improper attribute."); } /// Set the last DIE/CU a context was seen in and, possibly invalidate /// the context if it is ambiguous. /// /// In the current implementation, we don't handle overloaded /// functions well, because the argument types are not taken into /// account when computing the DeclContext tree. /// /// Some of this is mitigated byt using mangled names that do contain /// the arguments types, but sometimes (eg. with function templates) /// we don't have that. In that case, just do not unique anything that /// refers to the contexts we are not able to distinguish. /// /// If a context that is not a namespace appears twice in the same CU, /// we know it is ambiguous. Make it invalid. bool DeclContext::setLastSeenDIE(CompileUnit &U, const DWARFDebugInfoEntryMinimal *Die) { if (LastSeenCompileUnitID == U.getUniqueID()) { DWARFUnit &OrigUnit = U.getOrigUnit(); uint32_t FirstIdx = OrigUnit.getDIEIndex(LastSeenDIE); U.getInfo(FirstIdx).Ctxt = nullptr; return false; } LastSeenCompileUnitID = U.getUniqueID(); LastSeenDIE = Die; return true; } /// Get the child context of \a Context corresponding to \a DIE. /// /// \returns the child context or null if we shouldn't track children /// contexts. It also returns an additional bit meaning 'invalid'. An /// invalid context means it shouldn't be considered for uniquing, but /// its not returning null, because some children of that context /// might be uniquing candidates. /// FIXME: this is for dsymutil-classic compatibility, I don't think /// it buys us much. PointerIntPair DeclContextTree::getChildDeclContext( DeclContext &Context, const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &U, NonRelocatableStringpool &StringPool) { unsigned Tag = DIE->getTag(); // FIXME: dsymutil-classic compat: We should bail out here if we // have a specification or an abstract_origin. We will get the // parent context wrong here. switch (Tag) { default: // By default stop gathering child contexts. return PointerIntPair(nullptr); case dwarf::DW_TAG_compile_unit: // FIXME: Add support for DW_TAG_module. return PointerIntPair(&Context); case dwarf::DW_TAG_subprogram: // Do not unique anything inside CU local functions. if ((Context.getTag() == dwarf::DW_TAG_namespace || Context.getTag() == dwarf::DW_TAG_compile_unit) && !DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(), dwarf::DW_AT_external, 0)) return PointerIntPair(nullptr); // Fallthrough case dwarf::DW_TAG_member: case dwarf::DW_TAG_namespace: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_enumeration_type: case dwarf::DW_TAG_typedef: // Artificial things might be ambiguous, because they might be // created on demand. For example implicitely defined constructors // are ambiguous because of the way we identify contexts, and they // won't be generated everytime everywhere. if (DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(), dwarf::DW_AT_artificial, 0)) return PointerIntPair(nullptr); break; } const char *Name = DIE->getName(&U.getOrigUnit(), DINameKind::LinkageName); const char *ShortName = DIE->getName(&U.getOrigUnit(), DINameKind::ShortName); StringRef NameRef; StringRef ShortNameRef; StringRef FileRef; if (Name) NameRef = StringPool.internString(Name); else if (Tag == dwarf::DW_TAG_namespace) // FIXME: For dsymutil-classic compatibility. I think uniquing // within anonymous namespaces is wrong. There is no ODR guarantee // there. NameRef = StringPool.internString("(anonymous namespace)"); if (ShortName && ShortName != Name) ShortNameRef = StringPool.internString(ShortName); else ShortNameRef = NameRef; if (Tag != dwarf::DW_TAG_class_type && Tag != dwarf::DW_TAG_structure_type && Tag != dwarf::DW_TAG_union_type && Tag != dwarf::DW_TAG_enumeration_type && NameRef.empty()) return PointerIntPair(nullptr); std::string File; unsigned Line = 0; unsigned ByteSize = 0; // Gather some discriminating data about the DeclContext we will be // creating: File, line number and byte size. This shouldn't be // necessary, because the ODR is just about names, but given that we // do some approximations with overloaded functions and anonymous // namespaces, use these additional data points to make the process safer. ByteSize = DIE->getAttributeValueAsUnsignedConstant( &U.getOrigUnit(), dwarf::DW_AT_byte_size, UINT64_MAX); if (Tag != dwarf::DW_TAG_namespace || !Name) { if (unsigned FileNum = DIE->getAttributeValueAsUnsignedConstant( &U.getOrigUnit(), dwarf::DW_AT_decl_file, 0)) { if (const auto *LT = U.getOrigUnit().getContext().getLineTableForUnit( &U.getOrigUnit())) { // FIXME: dsymutil-classic compatibility. I'd rather not // unique anything in anonymous namespaces, but if we do, then // verify that the file and line correspond. if (!Name && Tag == dwarf::DW_TAG_namespace) FileNum = 1; // FIXME: Passing U.getOrigUnit().getCompilationDir() // instead of "" would allow more uniquing, but for now, do // it this way to match dsymutil-classic. if (LT->getFileNameByIndex( FileNum, "", DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File)) { Line = DIE->getAttributeValueAsUnsignedConstant( &U.getOrigUnit(), dwarf::DW_AT_decl_line, 0); #ifdef HAVE_REALPATH // Cache the resolved paths, because calling realpath is expansive. if (const char *ResolvedPath = U.getResolvedPath(FileNum)) { File = ResolvedPath; } else { char RealPath[PATH_MAX + 1]; RealPath[PATH_MAX] = 0; if (::realpath(File.c_str(), RealPath)) File = RealPath; U.setResolvedPath(FileNum, File); } #endif FileRef = StringPool.internString(File); } } } } if (!Line && NameRef.empty()) return PointerIntPair(nullptr); // FIXME: dsymutil-classic compat won't unique the same type // presented once as a struct and once as a class. Use the Tag in // the fully qualified name hash to get the same effect. // We hash NameRef, which is the mangled name, in order to get most // overloaded functions resolvec correctly. unsigned Hash = hash_combine(Context.getQualifiedNameHash(), Tag, NameRef); // FIXME: dsymutil-classic compatibility: when we don't have a name, // use the filename. if (Tag == dwarf::DW_TAG_namespace && NameRef == "(anonymous namespace)") Hash = hash_combine(Hash, FileRef); // Now look if this context already exists. DeclContext Key(Hash, Line, ByteSize, Tag, NameRef, FileRef, Context); auto ContextIter = Contexts.find(&Key); if (ContextIter == Contexts.end()) { // The context wasn't found. bool Inserted; DeclContext *NewContext = new (Allocator) DeclContext(Hash, Line, ByteSize, Tag, NameRef, FileRef, Context, DIE, U.getUniqueID()); std::tie(ContextIter, Inserted) = Contexts.insert(NewContext); assert(Inserted && "Failed to insert DeclContext"); (void)Inserted; } else if (Tag != dwarf::DW_TAG_namespace && !(*ContextIter)->setLastSeenDIE(U, DIE)) { // The context was found, but it is ambiguous with another context // in the same file. Mark it invalid. return PointerIntPair(*ContextIter, /* Invalid= */ 1); } assert(ContextIter != Contexts.end()); // FIXME: dsymutil-classic compatibility. Union types aren't // uniques, but their children might be. if ((Tag == dwarf::DW_TAG_subprogram && Context.getTag() != dwarf::DW_TAG_structure_type && Context.getTag() != dwarf::DW_TAG_class_type) || (Tag == dwarf::DW_TAG_union_type)) return PointerIntPair(*ContextIter, /* Invalid= */ 1); return PointerIntPair(*ContextIter); } /// \brief Get the potential name and mangled name for the entity /// described by \p Die and store them in \Info if they are not /// already there. /// \returns is a name was found. bool DwarfLinker::getDIENames(const DWARFDebugInfoEntryMinimal &Die, DWARFUnit &U, AttributesInfo &Info) { // FIXME: a bit wastefull as the first getName might return the // short name. if (!Info.MangledName && (Info.MangledName = Die.getName(&U, DINameKind::LinkageName))) Info.MangledNameOffset = StringPool.getStringOffset(Info.MangledName); if (!Info.Name && (Info.Name = Die.getName(&U, DINameKind::ShortName))) Info.NameOffset = StringPool.getStringOffset(Info.Name); return Info.Name || Info.MangledName; } /// \brief Report a warning to the user, optionaly including /// information about a specific \p DIE related to the warning. void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit, const DWARFDebugInfoEntryMinimal *DIE) const { StringRef Context = ""; if (CurrentDebugObject) Context = CurrentDebugObject->getObjectFilename(); warn(Warning, Context); if (!Options.Verbose || !DIE) return; errs() << " in DIE:\n"; DIE->dump(errs(), const_cast(Unit), 0 /* RecurseDepth */, 6 /* Indent */); } bool DwarfLinker::createStreamer(Triple TheTriple, StringRef OutputFilename) { if (Options.NoOutput) return true; Streamer = llvm::make_unique(); return Streamer->init(TheTriple, OutputFilename); } /// \brief Recursive helper to gather the child->parent relationships in the /// original compile unit. static void gatherDIEParents(const DWARFDebugInfoEntryMinimal *DIE, unsigned ParentIdx, CompileUnit &CU, DeclContext *CurrentDeclContext, NonRelocatableStringpool &StringPool, DeclContextTree &Contexts) { unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE); CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx); Info.ParentIdx = ParentIdx; if (CU.hasODR()) { if (CurrentDeclContext) { auto PtrInvalidPair = Contexts.getChildDeclContext(*CurrentDeclContext, DIE, CU, StringPool); CurrentDeclContext = PtrInvalidPair.getPointer(); Info.Ctxt = PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer(); } else Info.Ctxt = CurrentDeclContext = nullptr; } if (DIE->hasChildren()) for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL(); Child = Child->getSibling()) gatherDIEParents(Child, MyIdx, CU, CurrentDeclContext, StringPool, Contexts); } static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) { switch (Tag) { default: return false; case dwarf::DW_TAG_subprogram: case dwarf::DW_TAG_lexical_block: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_union_type: return true; } llvm_unreachable("Invalid Tag"); } static unsigned getRefAddrSize(const DWARFUnit &U) { if (U.getVersion() == 2) return U.getAddressByteSize(); return 4; } void DwarfLinker::startDebugObject(DWARFContext &Dwarf, DebugMapObject &Obj) { Units.reserve(Dwarf.getNumCompileUnits()); NextValidReloc = 0; // Iterate over the debug map entries and put all the ones that are // functions (because they have a size) into the Ranges map. This // map is very similar to the FunctionRanges that are stored in each // unit, with 2 notable differences: // - obviously this one is global, while the other ones are per-unit. // - this one contains not only the functions described in the DIE // tree, but also the ones that are only in the debug map. // The latter information is required to reproduce dsymutil's logic // while linking line tables. The cases where this information // matters look like bugs that need to be investigated, but for now // we need to reproduce dsymutil's behavior. // FIXME: Once we understood exactly if that information is needed, // maybe totally remove this (or try to use it to do a real // -gline-tables-only on Darwin. for (const auto &Entry : Obj.symbols()) { const auto &Mapping = Entry.getValue(); if (Mapping.Size) Ranges[Mapping.ObjectAddress] = std::make_pair( Mapping.ObjectAddress + Mapping.Size, int64_t(Mapping.BinaryAddress) - Mapping.ObjectAddress); } } void DwarfLinker::endDebugObject() { Units.clear(); ValidRelocs.clear(); Ranges.clear(); for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I) (*I)->~DIEBlock(); for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I) (*I)->~DIELoc(); DIEBlocks.clear(); DIELocs.clear(); DIEAlloc.Reset(); } /// \brief Iterate over the relocations of the given \p Section and /// store the ones that correspond to debug map entries into the /// ValidRelocs array. void DwarfLinker::findValidRelocsMachO(const object::SectionRef &Section, const object::MachOObjectFile &Obj, const DebugMapObject &DMO) { StringRef Contents; Section.getContents(Contents); DataExtractor Data(Contents, Obj.isLittleEndian(), 0); for (const object::RelocationRef &Reloc : Section.relocations()) { object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl(); MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef); unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc); uint64_t Offset64 = Reloc.getOffset(); if ((RelocSize != 4 && RelocSize != 8)) { reportWarning(" unsupported relocation in debug_info section."); continue; } uint32_t Offset = Offset64; // Mach-o uses REL relocations, the addend is at the relocation offset. uint64_t Addend = Data.getUnsigned(&Offset, RelocSize); auto Sym = Reloc.getSymbol(); if (Sym != Obj.symbol_end()) { ErrorOr SymbolName = Sym->getName(); if (!SymbolName) { reportWarning("error getting relocation symbol name."); continue; } if (const auto *Mapping = DMO.lookupSymbol(*SymbolName)) ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping); } else if (const auto *Mapping = DMO.lookupObjectAddress(Addend)) { // Do not store the addend. The addend was the address of the // symbol in the object file, the address in the binary that is // stored in the debug map doesn't need to be offseted. ValidRelocs.emplace_back(Offset64, RelocSize, 0, Mapping); } } } /// \brief Dispatch the valid relocation finding logic to the /// appropriate handler depending on the object file format. bool DwarfLinker::findValidRelocs(const object::SectionRef &Section, const object::ObjectFile &Obj, const DebugMapObject &DMO) { // Dispatch to the right handler depending on the file type. if (auto *MachOObj = dyn_cast(&Obj)) findValidRelocsMachO(Section, *MachOObj, DMO); else reportWarning(Twine("unsupported object file type: ") + Obj.getFileName()); if (ValidRelocs.empty()) return false; // Sort the relocations by offset. We will walk the DIEs linearly in // the file, this allows us to just keep an index in the relocation // array that we advance during our walk, rather than resorting to // some associative container. See DwarfLinker::NextValidReloc. std::sort(ValidRelocs.begin(), ValidRelocs.end()); return true; } /// \brief Look for relocations in the debug_info section that match /// entries in the debug map. These relocations will drive the Dwarf /// link by indicating which DIEs refer to symbols present in the /// linked binary. /// \returns wether there are any valid relocations in the debug info. bool DwarfLinker::findValidRelocsInDebugInfo(const object::ObjectFile &Obj, const DebugMapObject &DMO) { // Find the debug_info section. for (const object::SectionRef &Section : Obj.sections()) { StringRef SectionName; Section.getName(SectionName); SectionName = SectionName.substr(SectionName.find_first_not_of("._")); if (SectionName != "debug_info") continue; return findValidRelocs(Section, Obj, DMO); } return false; } /// \brief Checks that there is a relocation against an actual debug /// map entry between \p StartOffset and \p NextOffset. /// /// This function must be called with offsets in strictly ascending /// order because it never looks back at relocations it already 'went past'. /// \returns true and sets Info.InDebugMap if it is the case. bool DwarfLinker::hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info) { assert(NextValidReloc == 0 || StartOffset > ValidRelocs[NextValidReloc - 1].Offset); if (NextValidReloc >= ValidRelocs.size()) return false; uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset; // We might need to skip some relocs that we didn't consider. For // example the high_pc of a discarded DIE might contain a reloc that // is in the list because it actually corresponds to the start of a // function that is in the debug map. while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1) RelocOffset = ValidRelocs[++NextValidReloc].Offset; if (RelocOffset < StartOffset || RelocOffset >= EndOffset) return false; const auto &ValidReloc = ValidRelocs[NextValidReloc++]; const auto &Mapping = ValidReloc.Mapping->getValue(); if (Options.Verbose) outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey() << " " << format("\t%016" PRIx64 " => %016" PRIx64, uint64_t(Mapping.ObjectAddress), uint64_t(Mapping.BinaryAddress)); Info.AddrAdjust = int64_t(Mapping.BinaryAddress) + ValidReloc.Addend - Mapping.ObjectAddress; Info.InDebugMap = true; return true; } /// \brief Get the starting and ending (exclusive) offset for the /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is /// supposed to point to the position of the first attribute described /// by \p Abbrev. /// \return [StartOffset, EndOffset) as a pair. static std::pair getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx, unsigned Offset, const DWARFUnit &Unit) { DataExtractor Data = Unit.getDebugInfoExtractor(); for (unsigned i = 0; i < Idx; ++i) DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit); uint32_t End = Offset; DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit); return std::make_pair(Offset, End); } /// \brief Check if a variable describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepVariableDIE( const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); // Global variables with constant value can always be kept. if (!(Flags & TF_InFunctionScope) && Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) { MyInfo.InDebugMap = true; return Flags | TF_Keep; } uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location); if (LocationIdx == -1U) return Flags; uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); const DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint32_t LocationOffset, LocationEndOffset; std::tie(LocationOffset, LocationEndOffset) = getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit); // See if there is a relocation to a valid debug map entry inside // this variable's location. The order is important here. We want to // always check in the variable has a valid relocation, so that the // DIEInfo is filled. However, we don't want a static variable in a // function to force us to keep the enclosing function. if (!hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) || (Flags & TF_InFunctionScope)) return Flags; if (Options.Verbose) DIE.dump(outs(), const_cast(&OrigUnit), 0, 8 /* Indent */); return Flags | TF_Keep; } /// \brief Check if a function describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepSubprogramDIE( const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); Flags |= TF_InFunctionScope; uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc); if (LowPcIdx == -1U) return Flags; uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); const DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint32_t LowPcOffset, LowPcEndOffset; std::tie(LowPcOffset, LowPcEndOffset) = getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit); uint64_t LowPc = DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL); assert(LowPc != -1ULL && "low_pc attribute is not an address."); if (LowPc == -1ULL || !hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo)) return Flags; if (Options.Verbose) DIE.dump(outs(), const_cast(&OrigUnit), 0, 8 /* Indent */); Flags |= TF_Keep; DWARFFormValue HighPcValue; if (!DIE.getAttributeValue(&OrigUnit, dwarf::DW_AT_high_pc, HighPcValue)) { reportWarning("Function without high_pc. Range will be discarded.\n", &OrigUnit, &DIE); return Flags; } uint64_t HighPc; if (HighPcValue.isFormClass(DWARFFormValue::FC_Address)) { HighPc = *HighPcValue.getAsAddress(&OrigUnit); } else { assert(HighPcValue.isFormClass(DWARFFormValue::FC_Constant)); HighPc = LowPc + *HighPcValue.getAsUnsignedConstant(); } // Replace the debug map range with a more accurate one. Ranges[LowPc] = std::make_pair(HighPc, MyInfo.AddrAdjust); Unit.addFunctionRange(LowPc, HighPc, MyInfo.AddrAdjust); return Flags; } /// \brief Check if a DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { switch (DIE.getTag()) { case dwarf::DW_TAG_constant: case dwarf::DW_TAG_variable: return shouldKeepVariableDIE(DIE, Unit, MyInfo, Flags); case dwarf::DW_TAG_subprogram: return shouldKeepSubprogramDIE(DIE, Unit, MyInfo, Flags); case dwarf::DW_TAG_module: case dwarf::DW_TAG_imported_module: case dwarf::DW_TAG_imported_declaration: case dwarf::DW_TAG_imported_unit: // We always want to keep these. return Flags | TF_Keep; } return Flags; } /// \brief Mark the passed DIE as well as all the ones it depends on /// as kept. /// /// This function is called by lookForDIEsToKeep on DIEs that are /// newly discovered to be needed in the link. It recursively calls /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the /// TraversalFlags to inform it that it's not doing the primary DIE /// tree walk. void DwarfLinker::keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &Die, CompileUnit::DIEInfo &MyInfo, const DebugMapObject &DMO, CompileUnit &CU, bool UseODR) { const DWARFUnit &Unit = CU.getOrigUnit(); MyInfo.Keep = true; // First mark all the parent chain as kept. unsigned AncestorIdx = MyInfo.ParentIdx; while (!CU.getInfo(AncestorIdx).Keep) { unsigned ODRFlag = UseODR ? TF_ODR : 0; lookForDIEsToKeep(*Unit.getDIEAtIndex(AncestorIdx), DMO, CU, TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag); AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx; } // Then we need to mark all the DIEs referenced by this DIE's // attributes as kept. DataExtractor Data = Unit.getDebugInfoExtractor(); const auto *Abbrev = Die.getAbbreviationDeclarationPtr(); uint32_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode()); // Mark all DIEs referenced through atttributes as kept. for (const auto &AttrSpec : Abbrev->attributes()) { DWARFFormValue Val(AttrSpec.Form); if (!Val.isFormClass(DWARFFormValue::FC_Reference)) { DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit); continue; } Val.extractValue(Data, &Offset, &Unit); CompileUnit *ReferencedCU; if (const auto *RefDIE = resolveDIEReference(Val, Unit, Die, ReferencedCU)) { uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDIE); CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx); // If the referenced DIE has a DeclContext that has already been // emitted, then do not keep the one in this CU. We'll link to // the canonical DIE in cloneDieReferenceAttribute. // FIXME: compatibility with dsymutil-classic. UseODR shouldn't // be necessary and could be advantageously replaced by // ReferencedCU->hasODR() && CU.hasODR(). // FIXME: compatibility with dsymutil-classic. There is no // reason not to unique ref_addr references. if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && UseODR && Info.Ctxt && Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt && Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr)) continue; unsigned ODRFlag = UseODR ? TF_ODR : 0; lookForDIEsToKeep(*RefDIE, DMO, *ReferencedCU, TF_Keep | TF_DependencyWalk | ODRFlag); } } } /// \brief Recursively walk the \p DIE tree and look for DIEs to /// keep. Store that information in \p CU's DIEInfo. /// /// This function is the entry point of the DIE selection /// algorithm. It is expected to walk the DIE tree in file order and /// (though the mediation of its helper) call hasValidRelocation() on /// each DIE that might be a 'root DIE' (See DwarfLinker class /// comment). /// While walking the dependencies of root DIEs, this function is /// also called, but during these dependency walks the file order is /// not respected. The TF_DependencyWalk flag tells us which kind of /// traversal we are currently doing. void DwarfLinker::lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &Die, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags) { unsigned Idx = CU.getOrigUnit().getDIEIndex(&Die); CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx); bool AlreadyKept = MyInfo.Keep; // If the Keep flag is set, we are marking a required DIE's // dependencies. If our target is already marked as kept, we're all // set. if ((Flags & TF_DependencyWalk) && AlreadyKept) return; // We must not call shouldKeepDIE while called from keepDIEAndDenpendencies, // because it would screw up the relocation finding logic. if (!(Flags & TF_DependencyWalk)) Flags = shouldKeepDIE(Die, CU, MyInfo, Flags); // If it is a newly kept DIE mark it as well as all its dependencies as kept. if (!AlreadyKept && (Flags & TF_Keep)) { bool UseOdr = (Flags & TF_DependencyWalk) ? (Flags & TF_ODR) : CU.hasODR(); keepDIEAndDenpendencies(Die, MyInfo, DMO, CU, UseOdr); } // The TF_ParentWalk flag tells us that we are currently walking up // the parent chain of a required DIE, and we don't want to mark all // the children of the parents as kept (consider for example a // DW_TAG_namespace node in the parent chain). There are however a // set of DIE types for which we want to ignore that directive and still // walk their children. if (dieNeedsChildrenToBeMeaningful(Die.getTag())) Flags &= ~TF_ParentWalk; if (!Die.hasChildren() || (Flags & TF_ParentWalk)) return; for (auto *Child = Die.getFirstChild(); Child && !Child->isNULL(); Child = Child->getSibling()) lookForDIEsToKeep(*Child, DMO, CU, Flags); } /// \brief Assign an abbreviation numer to \p Abbrev. /// /// Our DIEs get freed after every DebugMapObject has been processed, /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to /// the instances hold by the DIEs. When we encounter an abbreviation /// that we don't know, we create a permanent copy of it. void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) { // Check the set for priors. FoldingSetNodeID ID; Abbrev.Profile(ID); void *InsertToken; DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken); // If it's newly added. if (InSet) { // Assign existing abbreviation number. Abbrev.setNumber(InSet->getNumber()); } else { // Add to abbreviation list. Abbreviations.push_back( new DIEAbbrev(Abbrev.getTag(), Abbrev.hasChildren())); for (const auto &Attr : Abbrev.getData()) Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm()); AbbreviationsSet.InsertNode(Abbreviations.back(), InsertToken); // Assign the unique abbreviation number. Abbrev.setNumber(Abbreviations.size()); Abbreviations.back()->setNumber(Abbreviations.size()); } } /// \brief Clone a string attribute described by \p AttrSpec and add /// it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const DWARFUnit &U) { // Switch everything to out of line strings. const char *String = *Val.getAsCString(&U); unsigned Offset = StringPool.getStringOffset(String); Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp, DIEInteger(Offset)); return 4; } /// \brief Clone an attribute referencing another DIE and add /// it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneDieReferenceAttribute( DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val, CompileUnit &Unit) { const DWARFUnit &U = Unit.getOrigUnit(); uint32_t Ref = *Val.getAsReference(&U); DIE *NewRefDie = nullptr; CompileUnit *RefUnit = nullptr; DeclContext *Ctxt = nullptr; const DWARFDebugInfoEntryMinimal *RefDie = resolveDIEReference(Val, U, InputDIE, RefUnit); // If the referenced DIE is not found, drop the attribute. if (!RefDie) return 0; unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie); CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx); // If we already have emitted an equivalent DeclContext, just point // at it. if (isODRAttribute(AttrSpec.Attr)) { Ctxt = RefInfo.Ctxt; if (Ctxt && Ctxt->getCanonicalDIEOffset()) { DIEInteger Attr(Ctxt->getCanonicalDIEOffset()); Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, Attr); return getRefAddrSize(U); } } if (!RefInfo.Clone) { assert(Ref > InputDIE.getOffset()); // We haven't cloned this DIE yet. Just create an empty one and // store it. It'll get really cloned when we process it. RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie->getTag())); } NewRefDie = RefInfo.Clone; if (AttrSpec.Form == dwarf::DW_FORM_ref_addr || (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) { // We cannot currently rely on a DIEEntry to emit ref_addr // references, because the implementation calls back to DwarfDebug // to find the unit offset. (We don't have a DwarfDebug) // FIXME: we should be able to design DIEEntry reliance on // DwarfDebug away. uint64_t Attr; if (Ref < InputDIE.getOffset()) { // We must have already cloned that DIE. uint32_t NewRefOffset = RefUnit->getStartOffset() + NewRefDie->getOffset(); Attr = NewRefOffset; Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, DIEInteger(Attr)); } else { // A forward reference. Note and fixup later. Attr = 0xBADDEF; Unit.noteForwardReference( NewRefDie, RefUnit, Ctxt, Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, DIEInteger(Attr))); } return getRefAddrSize(U); } Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie)); return AttrSize; } /// \brief Clone an attribute of block form (locations, constants) and add /// it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize) { DIEValueList *Attr; DIEValue Value; DIELoc *Loc = nullptr; DIEBlock *Block = nullptr; // Just copy the block data over. if (AttrSpec.Form == dwarf::DW_FORM_exprloc) { Loc = new (DIEAlloc) DIELoc; DIELocs.push_back(Loc); } else { Block = new (DIEAlloc) DIEBlock; DIEBlocks.push_back(Block); } Attr = Loc ? static_cast(Loc) : static_cast(Block); if (Loc) Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), Loc); else Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), Block); ArrayRef Bytes = *Val.getAsBlock(); for (auto Byte : Bytes) Attr->addValue(DIEAlloc, static_cast(0), dwarf::DW_FORM_data1, DIEInteger(Byte)); // FIXME: If DIEBlock and DIELoc just reuses the Size field of // the DIE class, this if could be replaced by // Attr->setSize(Bytes.size()). if (Streamer) { if (Loc) Loc->ComputeSize(&Streamer->getAsmPrinter()); else Block->ComputeSize(&Streamer->getAsmPrinter()); } Die.addValue(DIEAlloc, Value); return AttrSize; } /// \brief Clone an address attribute and add it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const CompileUnit &Unit, AttributesInfo &Info) { uint64_t Addr = *Val.getAsAddress(&Unit.getOrigUnit()); if (AttrSpec.Attr == dwarf::DW_AT_low_pc) { if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine || Die.getTag() == dwarf::DW_TAG_lexical_block) // The low_pc of a block or inline subroutine might get // relocated because it happens to match the low_pc of the // enclosing subprogram. To prevent issues with that, always use // the low_pc from the input DIE if relocations have been applied. Addr = (Info.OrigLowPc != UINT64_MAX ? Info.OrigLowPc : Addr) + Info.PCOffset; else if (Die.getTag() == dwarf::DW_TAG_compile_unit) { Addr = Unit.getLowPc(); if (Addr == UINT64_MAX) return 0; } Info.HasLowPc = true; } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) { if (Die.getTag() == dwarf::DW_TAG_compile_unit) { if (uint64_t HighPc = Unit.getHighPc()) Addr = HighPc; else return 0; } else // If we have a high_pc recorded for the input DIE, use // it. Otherwise (when no relocations where applied) just use the // one we just decoded. Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset; } Die.addValue(DIEAlloc, static_cast(AttrSpec.Attr), static_cast(AttrSpec.Form), DIEInteger(Addr)); return Unit.getOrigUnit().getAddressByteSize(); } /// \brief Clone a scalar attribute and add it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneScalarAttribute( DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize, AttributesInfo &Info) { uint64_t Value; if (AttrSpec.Attr == dwarf::DW_AT_high_pc && Die.getTag() == dwarf::DW_TAG_compile_unit) { if (Unit.getLowPc() == -1ULL) return 0; // Dwarf >= 4 high_pc is an size, not an address. Value = Unit.getHighPc() - Unit.getLowPc(); } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset) Value = *Val.getAsSectionOffset(); else if (AttrSpec.Form == dwarf::DW_FORM_sdata) Value = *Val.getAsSignedConstant(); else if (auto OptionalValue = Val.getAsUnsignedConstant()) Value = *OptionalValue; else { reportWarning("Unsupported scalar attribute form. Dropping attribute.", &Unit.getOrigUnit(), &InputDIE); return 0; } PatchLocation Patch = Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEInteger(Value)); if (AttrSpec.Attr == dwarf::DW_AT_ranges) Unit.noteRangeAttribute(Die, Patch); // A more generic way to check for location attributes would be // nice, but it's very unlikely that any other attribute needs a // location list. else if (AttrSpec.Attr == dwarf::DW_AT_location || AttrSpec.Attr == dwarf::DW_AT_frame_base) Unit.noteLocationAttribute(Patch, Info.PCOffset); else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) Info.IsDeclaration = true; return AttrSize; } /// \brief Clone \p InputDIE's attribute described by \p AttrSpec with /// value \p Val, and add it to \p Die. /// \returns the size of the cloned attribute. unsigned DwarfLinker::cloneAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit, const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info) { const DWARFUnit &U = Unit.getOrigUnit(); switch (AttrSpec.Form) { case dwarf::DW_FORM_strp: case dwarf::DW_FORM_string: return cloneStringAttribute(Die, AttrSpec, Val, U); case dwarf::DW_FORM_ref_addr: case dwarf::DW_FORM_ref1: case dwarf::DW_FORM_ref2: case dwarf::DW_FORM_ref4: case dwarf::DW_FORM_ref8: return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, Unit); case dwarf::DW_FORM_block: case dwarf::DW_FORM_block1: case dwarf::DW_FORM_block2: case dwarf::DW_FORM_block4: case dwarf::DW_FORM_exprloc: return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize); case dwarf::DW_FORM_addr: return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info); case dwarf::DW_FORM_data1: case dwarf::DW_FORM_data2: case dwarf::DW_FORM_data4: case dwarf::DW_FORM_data8: case dwarf::DW_FORM_udata: case dwarf::DW_FORM_sdata: case dwarf::DW_FORM_sec_offset: case dwarf::DW_FORM_flag: case dwarf::DW_FORM_flag_present: return cloneScalarAttribute(Die, InputDIE, Unit, AttrSpec, Val, AttrSize, Info); default: reportWarning("Unsupported attribute form in cloneAttribute. Dropping.", &U, &InputDIE); } return 0; } /// \brief Apply the valid relocations found by findValidRelocs() to /// the buffer \p Data, taking into account that Data is at \p BaseOffset /// in the debug_info section. /// /// Like for findValidRelocs(), this function must be called with /// monotonic \p BaseOffset values. /// /// \returns wether any reloc has been applied. bool DwarfLinker::applyValidRelocs(MutableArrayRef Data, uint32_t BaseOffset, bool isLittleEndian) { assert((NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) && "BaseOffset should only be increasing."); if (NextValidReloc >= ValidRelocs.size()) return false; // Skip relocs that haven't been applied. while (NextValidReloc < ValidRelocs.size() && ValidRelocs[NextValidReloc].Offset < BaseOffset) ++NextValidReloc; bool Applied = false; uint64_t EndOffset = BaseOffset + Data.size(); while (NextValidReloc < ValidRelocs.size() && ValidRelocs[NextValidReloc].Offset >= BaseOffset && ValidRelocs[NextValidReloc].Offset < EndOffset) { const auto &ValidReloc = ValidRelocs[NextValidReloc++]; assert(ValidReloc.Offset - BaseOffset < Data.size()); assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size()); char Buf[8]; uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress; Value += ValidReloc.Addend; for (unsigned i = 0; i != ValidReloc.Size; ++i) { unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1); Buf[i] = uint8_t(Value >> (Index * 8)); } assert(ValidReloc.Size <= sizeof(Buf)); memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size); Applied = true; } return Applied; } static bool isTypeTag(uint16_t Tag) { switch (Tag) { case dwarf::DW_TAG_array_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_enumeration_type: case dwarf::DW_TAG_pointer_type: case dwarf::DW_TAG_reference_type: case dwarf::DW_TAG_string_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_typedef: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_ptr_to_member_type: case dwarf::DW_TAG_set_type: case dwarf::DW_TAG_subrange_type: case dwarf::DW_TAG_base_type: case dwarf::DW_TAG_const_type: case dwarf::DW_TAG_constant: case dwarf::DW_TAG_file_type: case dwarf::DW_TAG_namelist: case dwarf::DW_TAG_packed_type: case dwarf::DW_TAG_volatile_type: case dwarf::DW_TAG_restrict_type: case dwarf::DW_TAG_interface_type: case dwarf::DW_TAG_unspecified_type: case dwarf::DW_TAG_shared_type: return true; default: break; } return false; } static bool shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec, uint16_t Tag, bool InDebugMap, bool SkipPC, bool InFunctionScope) { switch (AttrSpec.Attr) { default: return false; case dwarf::DW_AT_low_pc: case dwarf::DW_AT_high_pc: case dwarf::DW_AT_ranges: return SkipPC; case dwarf::DW_AT_location: case dwarf::DW_AT_frame_base: // FIXME: for some reason dsymutil-classic keeps the location // attributes when they are of block type (ie. not location // lists). This is totally wrong for globals where we will keep a // wrong address. It is mostly harmless for locals, but there is // no point in keeping these anyway when the function wasn't linked. return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable && !InDebugMap)) && !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block); } } /// \brief Recursively clone \p InputDIE's subtrees that have been /// selected to appear in the linked output. /// /// \param OutOffset is the Offset where the newly created DIE will /// lie in the linked compile unit. /// /// \returns the cloned DIE object or null if nothing was selected. DIE *DwarfLinker::cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit, int64_t PCOffset, uint32_t OutOffset, unsigned Flags) { DWARFUnit &U = Unit.getOrigUnit(); unsigned Idx = U.getDIEIndex(&InputDIE); CompileUnit::DIEInfo &Info = Unit.getInfo(Idx); // Should the DIE appear in the output? if (!Unit.getInfo(Idx).Keep) return nullptr; uint32_t Offset = InputDIE.getOffset(); // The DIE might have been already created by a forward reference // (see cloneDieReferenceAttribute()). DIE *Die = Info.Clone; if (!Die) Die = Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag())); assert(Die->getTag() == InputDIE.getTag()); Die->setOffset(OutOffset); if (Unit.hasODR() && Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt && Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt && !Info.Ctxt->getCanonicalDIEOffset()) { // We are about to emit a DIE that is the root of its own valid // DeclContext tree. Make the current offset the canonical offset // for this context. Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset()); } // Extract and clone every attribute. DataExtractor Data = U.getDebugInfoExtractor(); uint32_t NextOffset = U.getDIEAtIndex(Idx + 1)->getOffset(); AttributesInfo AttrInfo; // We could copy the data only if we need to aply a relocation to // it. After testing, it seems there is no performance downside to // doing the copy unconditionally, and it makes the code simpler. SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset)); Data = DataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize()); // Modify the copy with relocated addresses. if (applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) { // If we applied relocations, we store the value of high_pc that was // potentially stored in the input DIE. If high_pc is an address // (Dwarf version == 2), then it might have been relocated to a // totally unrelated value (because the end address in the object // file might be start address of another function which got moved // independantly by the linker). The computation of the actual // high_pc value is done in cloneAddressAttribute(). AttrInfo.OrigHighPc = InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_high_pc, 0); // Also store the low_pc. It might get relocated in an // inline_subprogram that happens at the beginning of its // inlining function. AttrInfo.OrigLowPc = InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_low_pc, UINT64_MAX); } // Reset the Offset to 0 as we will be working on the local copy of // the data. Offset = 0; const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr(); Offset += getULEB128Size(Abbrev->getCode()); // We are entering a subprogram. Get and propagate the PCOffset. if (Die->getTag() == dwarf::DW_TAG_subprogram) PCOffset = Info.AddrAdjust; AttrInfo.PCOffset = PCOffset; if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) { Flags |= TF_InFunctionScope; if (!Info.InDebugMap) Flags |= TF_SkipPC; } bool Copied = false; for (const auto &AttrSpec : Abbrev->attributes()) { if (shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap, Flags & TF_SkipPC, Flags & TF_InFunctionScope)) { DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &U); // FIXME: dsymutil-classic keeps the old abbreviation around // even if it's not used. We can remove this (and the copyAbbrev // helper) as soon as bit-for-bit compatibility is not a goal anymore. if (!Copied) { copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR()); Copied = true; } continue; } DWARFFormValue Val(AttrSpec.Form); uint32_t AttrSize = Offset; Val.extractValue(Data, &Offset, &U); AttrSize = Offset - AttrSize; OutOffset += cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize, AttrInfo); } // Look for accelerator entries. uint16_t Tag = InputDIE.getTag(); // FIXME: This is slightly wrong. An inline_subroutine without a // low_pc, but with AT_ranges might be interesting to get into the // accelerator tables too. For now stick with dsymutil's behavior. if ((Info.InDebugMap || AttrInfo.HasLowPc) && Tag != dwarf::DW_TAG_compile_unit && getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) { if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name) Unit.addNameAccelerator(Die, AttrInfo.MangledName, AttrInfo.MangledNameOffset, Tag == dwarf::DW_TAG_inlined_subroutine); if (AttrInfo.Name) Unit.addNameAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset, Tag == dwarf::DW_TAG_inlined_subroutine); } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration && getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) { Unit.addTypeAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset); } DIEAbbrev NewAbbrev = Die->generateAbbrev(); // If a scope DIE is kept, we must have kept at least one child. If // it's not the case, we'll just be emitting one wasteful end of // children marker, but things won't break. if (InputDIE.hasChildren()) NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes); // Assign a permanent abbrev number AssignAbbrev(NewAbbrev); Die->setAbbrevNumber(NewAbbrev.getNumber()); // Add the size of the abbreviation number to the output offset. OutOffset += getULEB128Size(Die->getAbbrevNumber()); if (!Abbrev->hasChildren()) { // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } // Recursively clone children. for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL(); Child = Child->getSibling()) { if (DIE *Clone = cloneDIE(*Child, Unit, PCOffset, OutOffset, Flags)) { Die->addChild(Clone); OutOffset = Clone->getOffset() + Clone->getSize(); } } // Account for the end of children marker. OutOffset += sizeof(int8_t); // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } /// \brief Patch the input object file relevant debug_ranges entries /// and emit them in the output file. Update the relevant attributes /// to point at the new entries. void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit, DWARFContext &OrigDwarf) const { DWARFDebugRangeList RangeList; const auto &FunctionRanges = Unit.getFunctionRanges(); unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); DataExtractor RangeExtractor(OrigDwarf.getRangeSection(), OrigDwarf.isLittleEndian(), AddressSize); auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; DWARFUnit &OrigUnit = Unit.getOrigUnit(); const auto *OrigUnitDie = OrigUnit.getUnitDIE(false); uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress( &OrigUnit, dwarf::DW_AT_low_pc, -1ULL); // Ranges addresses are based on the unit's low_pc. Compute the // offset we need to apply to adapt to the the new unit's low_pc. int64_t UnitPcOffset = 0; if (OrigLowPc != -1ULL) UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc(); for (const auto &RangeAttribute : Unit.getRangesAttributes()) { uint32_t Offset = RangeAttribute.get(); RangeAttribute.set(Streamer->getRangesSectionSize()); RangeList.extract(RangeExtractor, &Offset); const auto &Entries = RangeList.getEntries(); if (!Entries.empty()) { const DWARFDebugRangeList::RangeListEntry &First = Entries.front(); if (CurrRange == InvalidRange || First.StartAddress + OrigLowPc < CurrRange.start() || First.StartAddress + OrigLowPc >= CurrRange.stop()) { CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc); if (CurrRange == InvalidRange || CurrRange.start() > First.StartAddress + OrigLowPc) { reportWarning("no mapping for range."); continue; } } } Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries, AddressSize); } } /// \brief Generate the debug_aranges entries for \p Unit and if the /// unit has a DW_AT_ranges attribute, also emit the debug_ranges /// contribution for this attribute. /// FIXME: this could actually be done right in patchRangesForUnit, /// but for the sake of initial bit-for-bit compatibility with legacy /// dsymutil, we have to do it in a delayed pass. void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const { auto Attr = Unit.getUnitRangesAttribute(); if (Attr) Attr->set(Streamer->getRangesSectionSize()); Streamer->emitUnitRangesEntries(Unit, static_cast(Attr)); } /// \brief Insert the new line info sequence \p Seq into the current /// set of already linked line info \p Rows. static void insertLineSequence(std::vector &Seq, std::vector &Rows) { if (Seq.empty()) return; if (!Rows.empty() && Rows.back().Address < Seq.front().Address) { Rows.insert(Rows.end(), Seq.begin(), Seq.end()); Seq.clear(); return; } auto InsertPoint = std::lower_bound( Rows.begin(), Rows.end(), Seq.front(), [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) { return LHS.Address < RHS.Address; }); // FIXME: this only removes the unneeded end_sequence if the // sequences have been inserted in order. using a global sort like // described in patchLineTableForUnit() and delaying the end_sequene // elimination to emitLineTableForUnit() we can get rid of all of them. if (InsertPoint != Rows.end() && InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) { *InsertPoint = Seq.front(); Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end()); } else { Rows.insert(InsertPoint, Seq.begin(), Seq.end()); } Seq.clear(); } static void patchStmtList(DIE &Die, DIEInteger Offset) { for (auto &V : Die.values()) if (V.getAttribute() == dwarf::DW_AT_stmt_list) { V = DIEValue(V.getAttribute(), V.getForm(), Offset); return; } llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!"); } /// \brief Extract the line table for \p Unit from \p OrigDwarf, and /// recreate a relocated version of these for the address ranges that /// are present in the binary. void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf) { const DWARFDebugInfoEntryMinimal *CUDie = Unit.getOrigUnit().getUnitDIE(); uint64_t StmtList = CUDie->getAttributeValueAsSectionOffset( &Unit.getOrigUnit(), dwarf::DW_AT_stmt_list, -1ULL); if (StmtList == -1ULL) return; // Update the cloned DW_AT_stmt_list with the correct debug_line offset. if (auto *OutputDIE = Unit.getOutputUnitDIE()) patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize())); // Parse the original line info for the unit. DWARFDebugLine::LineTable LineTable; uint32_t StmtOffset = StmtList; StringRef LineData = OrigDwarf.getLineSection().Data; DataExtractor LineExtractor(LineData, OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize()); LineTable.parse(LineExtractor, &OrigDwarf.getLineSection().Relocs, &StmtOffset); // This vector is the output line table. std::vector NewRows; NewRows.reserve(LineTable.Rows.size()); // Current sequence of rows being extracted, before being inserted // in NewRows. std::vector Seq; const auto &FunctionRanges = Unit.getFunctionRanges(); auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; // FIXME: This logic is meant to generate exactly the same output as // Darwin's classic dsynutil. There is a nicer way to implement this // by simply putting all the relocated line info in NewRows and simply // sorting NewRows before passing it to emitLineTableForUnit. This // should be correct as sequences for a function should stay // together in the sorted output. There are a few corner cases that // look suspicious though, and that required to implement the logic // this way. Revisit that once initial validation is finished. // Iterate over the object file line info and extract the sequences // that correspond to linked functions. for (auto &Row : LineTable.Rows) { // Check wether we stepped out of the range. The range is // half-open, but consider accept the end address of the range if // it is marked as end_sequence in the input (because in that // case, the relocation offset is accurate and that entry won't // serve as the start of another function). if (CurrRange == InvalidRange || Row.Address < CurrRange.start() || Row.Address > CurrRange.stop() || (Row.Address == CurrRange.stop() && !Row.EndSequence)) { // We just stepped out of a known range. Insert a end_sequence // corresponding to the end of the range. uint64_t StopAddress = CurrRange != InvalidRange ? CurrRange.stop() + CurrRange.value() : -1ULL; CurrRange = FunctionRanges.find(Row.Address); bool CurrRangeValid = CurrRange != InvalidRange && CurrRange.start() <= Row.Address; if (!CurrRangeValid) { CurrRange = InvalidRange; if (StopAddress != -1ULL) { // Try harder by looking in the DebugMapObject function // ranges map. There are corner cases where this finds a // valid entry. It's unclear if this is right or wrong, but // for now do as dsymutil. // FIXME: Understand exactly what cases this addresses and // potentially remove it along with the Ranges map. auto Range = Ranges.lower_bound(Row.Address); if (Range != Ranges.begin() && Range != Ranges.end()) --Range; if (Range != Ranges.end() && Range->first <= Row.Address && Range->second.first >= Row.Address) { StopAddress = Row.Address + Range->second.second; } } } if (StopAddress != -1ULL && !Seq.empty()) { // Insert end sequence row with the computed end address, but // the same line as the previous one. auto NextLine = Seq.back(); NextLine.Address = StopAddress; NextLine.EndSequence = 1; NextLine.PrologueEnd = 0; NextLine.BasicBlock = 0; NextLine.EpilogueBegin = 0; Seq.push_back(NextLine); insertLineSequence(Seq, NewRows); } if (!CurrRangeValid) continue; } // Ignore empty sequences. if (Row.EndSequence && Seq.empty()) continue; // Relocate row address and add it to the current sequence. Row.Address += CurrRange.value(); Seq.emplace_back(Row); if (Row.EndSequence) insertLineSequence(Seq, NewRows); } // Finished extracting, now emit the line tables. uint32_t PrologueEnd = StmtList + 10 + LineTable.Prologue.PrologueLength; // FIXME: LLVM hardcodes it's prologue values. We just copy the // prologue over and that works because we act as both producer and // consumer. It would be nicer to have a real configurable line // table emitter. if (LineTable.Prologue.Version != 2 || LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT || LineTable.Prologue.OpcodeBase > 13) reportWarning("line table paramters mismatch. Cannot emit."); else { MCDwarfLineTableParams Params; Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase; Params.DWARF2LineBase = LineTable.Prologue.LineBase; Params.DWARF2LineRange = LineTable.Prologue.LineRange; Streamer->emitLineTableForUnit(Params, LineData.slice(StmtList + 4, PrologueEnd), LineTable.Prologue.MinInstLength, NewRows, Unit.getOrigUnit().getAddressByteSize()); } } void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) { Streamer->emitPubNamesForUnit(Unit); Streamer->emitPubTypesForUnit(Unit); } /// \brief Read the frame info stored in the object, and emit the /// patched frame descriptions for the linked binary. /// /// This is actually pretty easy as the data of the CIEs and FDEs can /// be considered as black boxes and moved as is. The only thing to do /// is to patch the addresses in the headers. void DwarfLinker::patchFrameInfoForObject(const DebugMapObject &DMO, DWARFContext &OrigDwarf, unsigned AddrSize) { StringRef FrameData = OrigDwarf.getDebugFrameSection(); if (FrameData.empty()) return; DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0); uint32_t InputOffset = 0; // Store the data of the CIEs defined in this object, keyed by their // offsets. DenseMap LocalCIES; while (Data.isValidOffset(InputOffset)) { uint32_t EntryOffset = InputOffset; uint32_t InitialLength = Data.getU32(&InputOffset); if (InitialLength == 0xFFFFFFFF) return reportWarning("Dwarf64 bits no supported"); uint32_t CIEId = Data.getU32(&InputOffset); if (CIEId == 0xFFFFFFFF) { // This is a CIE, store it. StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4); LocalCIES[EntryOffset] = CIEData; // The -4 is to account for the CIEId we just read. InputOffset += InitialLength - 4; continue; } uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize); // Some compilers seem to emit frame info that doesn't start at // the function entry point, thus we can't just lookup the address // in the debug map. Use the linker's range map to see if the FDE // describes something that we can relocate. auto Range = Ranges.upper_bound(Loc); if (Range != Ranges.begin()) --Range; if (Range == Ranges.end() || Range->first > Loc || Range->second.first <= Loc) { // The +4 is to account for the size of the InitialLength field itself. InputOffset = EntryOffset + InitialLength + 4; continue; } // This is an FDE, and we have a mapping. // Have we already emitted a corresponding CIE? StringRef CIEData = LocalCIES[CIEId]; if (CIEData.empty()) return reportWarning("Inconsistent debug_frame content. Dropping."); // Look if we already emitted a CIE that corresponds to the // referenced one (the CIE data is the key of that lookup). auto IteratorInserted = EmittedCIEs.insert( std::make_pair(CIEData, Streamer->getFrameSectionSize())); // If there is no CIE yet for this ID, emit it. if (IteratorInserted.second || // FIXME: dsymutil-classic only caches the last used CIE for // reuse. Mimic that behavior for now. Just removing that // second half of the condition and the LastCIEOffset variable // makes the code DTRT. LastCIEOffset != IteratorInserted.first->getValue()) { LastCIEOffset = Streamer->getFrameSectionSize(); IteratorInserted.first->getValue() = LastCIEOffset; Streamer->emitCIE(CIEData); } // Emit the FDE with updated address and CIE pointer. // (4 + AddrSize) is the size of the CIEId + initial_location // fields that will get reconstructed by emitFDE(). unsigned FDERemainingBytes = InitialLength - (4 + AddrSize); Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize, Loc + Range->second.second, FrameData.substr(InputOffset, FDERemainingBytes)); InputOffset += FDERemainingBytes; } } void DwarfLinker::copyAbbrev(const DWARFAbbreviationDeclaration &Abbrev, bool hasODR) { DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()), dwarf::Form(Abbrev.hasChildren())); for (const auto &Attr : Abbrev.attributes()) { uint16_t Form = Attr.Form; if (hasODR && isODRAttribute(Attr.Attr)) Form = dwarf::DW_FORM_ref_addr; Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form)); } AssignAbbrev(Copy); } ErrorOr DwarfLinker::loadObject(BinaryHolder &BinaryHolder, DebugMapObject &Obj, const DebugMap &Map) { auto ErrOrObjs = BinaryHolder.GetObjectFiles(Obj.getObjectFilename(), Obj.getTimestamp()); if (std::error_code EC = ErrOrObjs.getError()) { reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message()); return EC; } auto ErrOrObj = BinaryHolder.Get(Map.getTriple()); if (std::error_code EC = ErrOrObj.getError()) reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message()); return ErrOrObj; } bool DwarfLinker::link(const DebugMap &Map) { if (!createStreamer(Map.getTriple(), OutputFilename)) return false; // Size of the DIEs (and headers) generated for the linked output. uint64_t OutputDebugInfoSize = 0; // A unique ID that identifies each compile unit. unsigned UnitID = 0; for (const auto &Obj : Map.objects()) { CurrentDebugObject = Obj.get(); if (Options.Verbose) outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n"; auto ErrOrObj = loadObject(BinHolder, *Obj, Map); if (!ErrOrObj) continue; // Look for relocations that correspond to debug map entries. if (!findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) { if (Options.Verbose) outs() << "No valid relocations found. Skipping.\n"; continue; } // Setup access to the debug info. DWARFContextInMemory DwarfContext(*ErrOrObj); startDebugObject(DwarfContext, *Obj); // In a first phase, just read in the debug info and store the DIE // parent links that we will use during the next phase. for (const auto &CU : DwarfContext.compile_units()) { auto *CUDie = CU->getUnitDIE(false); if (Options.Verbose) { outs() << "Input compilation unit:"; CUDie->dump(outs(), CU.get(), 0); } Units.emplace_back(*CU, UnitID++, !Options.NoODR); gatherDIEParents(CUDie, 0, Units.back(), &ODRContexts.getRoot(), StringPool, ODRContexts); } // Then mark all the DIEs that need to be present in the linked // output and collect some information about them. Note that this // loop can not be merged with the previous one becaue cross-cu // references require the ParentIdx to be setup for every CU in // the object file before calling this. for (auto &CurrentUnit : Units) lookForDIEsToKeep(*CurrentUnit.getOrigUnit().getUnitDIE(), *Obj, CurrentUnit, 0); // The calls to applyValidRelocs inside cloneDIE will walk the // reloc array again (in the same way findValidRelocsInDebugInfo() // did). We need to reset the NextValidReloc index to the beginning. NextValidReloc = 0; // Construct the output DIE tree by cloning the DIEs we chose to // keep above. If there are no valid relocs, then there's nothing // to clone/emit. if (!ValidRelocs.empty()) for (auto &CurrentUnit : Units) { const auto *InputDIE = CurrentUnit.getOrigUnit().getUnitDIE(); CurrentUnit.setStartOffset(OutputDebugInfoSize); DIE *OutputDIE = cloneDIE(*InputDIE, CurrentUnit, 0 /* PCOffset */, 11 /* Unit Header size */, /* Flags =*/0); CurrentUnit.setOutputUnitDIE(OutputDIE); OutputDebugInfoSize = CurrentUnit.computeNextUnitOffset(); if (Options.NoOutput) continue; // FIXME: for compatibility with the classic dsymutil, we emit // an empty line table for the unit, even if the unit doesn't // actually exist in the DIE tree. patchLineTableForUnit(CurrentUnit, DwarfContext); if (!OutputDIE) continue; patchRangesForUnit(CurrentUnit, DwarfContext); Streamer->emitLocationsForUnit(CurrentUnit, DwarfContext); emitAcceleratorEntriesForUnit(CurrentUnit); } // Emit all the compile unit's debug information. if (!ValidRelocs.empty() && !Options.NoOutput) for (auto &CurrentUnit : Units) { generateUnitRanges(CurrentUnit); CurrentUnit.fixupForwardReferences(); Streamer->emitCompileUnitHeader(CurrentUnit); if (!CurrentUnit.getOutputUnitDIE()) continue; Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE()); } if (!ValidRelocs.empty() && !Options.NoOutput && !Units.empty()) patchFrameInfoForObject(*Obj, DwarfContext, Units[0].getOrigUnit().getAddressByteSize()); // Clean-up before starting working on the next object. endDebugObject(); } // Emit everything that's global. if (!Options.NoOutput) { Streamer->emitAbbrevs(Abbreviations); Streamer->emitStrings(StringPool); } return Options.NoOutput ? true : Streamer->finish(Map); } } /// \brief Get the offset of string \p S in the string table. This /// can insert a new element or return the offset of a preexisitng /// one. uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) { if (S.empty() && !Strings.empty()) return 0; std::pair Entry(0, nullptr); MapTy::iterator It; bool Inserted; // A non-empty string can't be at offset 0, so if we have an entry // with a 0 offset, it must be a previously interned string. std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry)); if (Inserted || It->getValue().first == 0) { // Set offset and chain at the end of the entries list. It->getValue().first = CurrentEndOffset; CurrentEndOffset += S.size() + 1; // +1 for the '\0'. Last->getValue().second = &*It; Last = &*It; } return It->getValue().first; } /// \brief Put \p S into the StringMap so that it gets permanent /// storage, but do not actually link it in the chain of elements /// that go into the output section. A latter call to /// getStringOffset() with the same string will chain it though. StringRef NonRelocatableStringpool::internString(StringRef S) { std::pair Entry(0, nullptr); auto InsertResult = Strings.insert(std::make_pair(S, Entry)); return InsertResult.first->getKey(); } void warn(const Twine &Warning, const Twine &Context) { errs() << Twine("while processing ") + Context + ":\n"; errs() << Twine("warning: ") + Warning + "\n"; } bool error(const Twine &Error, const Twine &Context) { errs() << Twine("while processing ") + Context + ":\n"; errs() << Twine("error: ") + Error + "\n"; return false; } bool linkDwarf(StringRef OutputFilename, const DebugMap &DM, const LinkOptions &Options) { DwarfLinker Linker(OutputFilename, Options); return Linker.link(DM); } } }