//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrBuilder.h" #include "X86ISelLowering.h" #include "X86MachineFunctionInfo.h" #include "X86TargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; // FIXME: temporary. static cl::opt EnableFastCC("enable-x86-fastcc", cl::Hidden, cl::desc("Enable fastcc on X86")); X86TargetLowering::X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) { Subtarget = &TM.getSubtarget(); X86ScalarSSE = Subtarget->hasSSE2(); X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; // Set up the TargetLowering object. // X86 is weird, it always uses i8 for shift amounts and setcc results. setShiftAmountType(MVT::i8); setSetCCResultType(MVT::i8); setSetCCResultContents(ZeroOrOneSetCCResult); setSchedulingPreference(SchedulingForRegPressure); setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 setStackPointerRegisterToSaveRestore(X86StackPtr); if (Subtarget->isTargetDarwin()) { // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(false); setUseUnderscoreLongJmp(false); } else if (Subtarget->isTargetMingw()) { // MS runtime is weird: it exports _setjmp, but longjmp! setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(false); } else { setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); } // Add legal addressing mode scale values. addLegalAddressScale(8); addLegalAddressScale(4); addLegalAddressScale(2); // Enter the ones which require both scale + index last. These are more // expensive. addLegalAddressScale(9); addLegalAddressScale(5); addLegalAddressScale(3); // Set up the register classes. addRegisterClass(MVT::i8, X86::GR8RegisterClass); addRegisterClass(MVT::i16, X86::GR16RegisterClass); addRegisterClass(MVT::i32, X86::GR32RegisterClass); if (Subtarget->is64Bit()) addRegisterClass(MVT::i64, X86::GR64RegisterClass); setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand); // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this // operation. setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); } else { if (X86ScalarSSE) // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); else setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); } // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); // SSE has no i16 to fp conversion, only i32 if (X86ScalarSSE) setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } if (!Subtarget->is64Bit()) { // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode. setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); } // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have // this operation. setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); if (X86ScalarSSE) { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } // Handle FP_TO_UINT by promoting the destination to a larger signed // conversion. setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); } else { if (X86ScalarSSE && !Subtarget->hasSSE3()) // Expand FP_TO_UINT into a select. // FIXME: We would like to use a Custom expander here eventually to do // the optimal thing for SSE vs. the default expansion in the legalizer. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); else // With SSE3 we can use fisttpll to convert to a signed i64. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); } // TODO: when we have SSE, these could be more efficient, by using movd/movq. if (!X86ScalarSSE) { setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); } setOperationAction(ISD::BR_JT , MVT::Other, Expand); setOperationAction(ISD::BRCOND , MVT::Other, Custom); setOperationAction(ISD::BR_CC , MVT::Other, Expand); setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::CTPOP , MVT::i8 , Expand); setOperationAction(ISD::CTTZ , MVT::i8 , Expand); setOperationAction(ISD::CTLZ , MVT::i8 , Expand); setOperationAction(ISD::CTPOP , MVT::i16 , Expand); setOperationAction(ISD::CTTZ , MVT::i16 , Expand); setOperationAction(ISD::CTLZ , MVT::i16 , Expand); setOperationAction(ISD::CTPOP , MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::CTLZ , MVT::i32 , Expand); if (Subtarget->is64Bit()) { setOperationAction(ISD::CTPOP , MVT::i64 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Expand); setOperationAction(ISD::CTLZ , MVT::i64 , Expand); } setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); setOperationAction(ISD::BSWAP , MVT::i16 , Expand); // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); setOperationAction(ISD::SELECT , MVT::i8 , Promote); // X86 wants to expand cmov itself. setOperationAction(ISD::SELECT , MVT::i16 , Custom); setOperationAction(ISD::SELECT , MVT::i32 , Custom); setOperationAction(ISD::SELECT , MVT::f32 , Custom); setOperationAction(ISD::SELECT , MVT::f64 , Custom); setOperationAction(ISD::SETCC , MVT::i8 , Custom); setOperationAction(ISD::SETCC , MVT::i16 , Custom); setOperationAction(ISD::SETCC , MVT::i32 , Custom); setOperationAction(ISD::SETCC , MVT::f32 , Custom); setOperationAction(ISD::SETCC , MVT::f64 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SELECT , MVT::i64 , Custom); setOperationAction(ISD::SETCC , MVT::i64 , Custom); } // X86 ret instruction may pop stack. setOperationAction(ISD::RET , MVT::Other, Custom); // Darwin ABI issue. setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); setOperationAction(ISD::JumpTable , MVT::i32 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); setOperationAction(ISD::JumpTable , MVT::i64 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); } // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); // X86 wants to expand memset / memcpy itself. setOperationAction(ISD::MEMSET , MVT::Other, Custom); setOperationAction(ISD::MEMCPY , MVT::Other, Custom); // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); // FIXME - use subtarget debug flags if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() && !Subtarget->isTargetCygMing()) setOperationAction(ISD::LABEL, MVT::Other, Expand); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); // Use the default implementation. setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); if (X86ScalarSSE) { // Set up the FP register classes. addRegisterClass(MVT::f32, X86::FR32RegisterClass); addRegisterClass(MVT::f64, X86::FR64RegisterClass); // Use ANDPD to simulate FABS. setOperationAction(ISD::FABS , MVT::f64, Custom); setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f64, Custom); setOperationAction(ISD::FNEG , MVT::f32, Custom); // Use ANDPD and ORPD to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); addLegalFPImmediate(+0.0); // xorps / xorpd } else { // Set up the FP register classes. addRegisterClass(MVT::f64, X86::RFPRegisterClass); setOperationAction(ISD::UNDEF, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); if (!UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64 , Expand); setOperationAction(ISD::FCOS , MVT::f64 , Expand); } setOperationAction(ISD::ConstantFP, MVT::f64, Expand); addLegalFPImmediate(+0.0); // FLD0 addLegalFPImmediate(+1.0); // FLD1 addLegalFPImmediate(-0.0); // FLD0/FCHS addLegalFPImmediate(-1.0); // FLD1/FCHS } // First set operation action for all vector types to expand. Then we // will selectively turn on ones that can be effectively codegen'd. for (unsigned VT = (unsigned)MVT::Vector + 1; VT != (unsigned)MVT::LAST_VALUETYPE; VT++) { setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand); setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand); setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); } if (Subtarget->hasMMX()) { addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); // FIXME: add MMX packed arithmetics setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Expand); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Expand); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Expand); } if (Subtarget->hasSSE1()) { addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); setOperationAction(ISD::FADD, MVT::v4f32, Legal); setOperationAction(ISD::FSUB, MVT::v4f32, Legal); setOperationAction(ISD::FMUL, MVT::v4f32, Legal); setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::LOAD, MVT::v4f32, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::SELECT, MVT::v4f32, Custom); } if (Subtarget->hasSSE2()) { addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); setOperationAction(ISD::ADD, MVT::v16i8, Legal); setOperationAction(ISD::ADD, MVT::v8i16, Legal); setOperationAction(ISD::ADD, MVT::v4i32, Legal); setOperationAction(ISD::SUB, MVT::v16i8, Legal); setOperationAction(ISD::SUB, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v4i32, Legal); setOperationAction(ISD::MUL, MVT::v8i16, Legal); setOperationAction(ISD::FADD, MVT::v2f64, Legal); setOperationAction(ISD::FSUB, MVT::v2f64, Legal); setOperationAction(ISD::FMUL, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); // Custom lower build_vector, vector_shuffle, and extract_vector_elt. for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom); } setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); } // Custom lower v2i64 and v2f64 selects. setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::LOAD, MVT::v2i64, Legal); setOperationAction(ISD::SELECT, MVT::v2f64, Custom); setOperationAction(ISD::SELECT, MVT::v2i64, Custom); } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::SELECT); computeRegisterProperties(); // FIXME: These should be based on subtarget info. Plus, the values should // be smaller when we are in optimizing for size mode. maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores allowUnalignedMemoryAccesses = true; // x86 supports it! } //===----------------------------------------------------------------------===// // C & StdCall Calling Convention implementation //===----------------------------------------------------------------------===// // StdCall calling convention seems to be standard for many Windows' API // routines and around. It differs from C calling convention just a little: // callee should clean up the stack, not caller. Symbols should be also // decorated in some fancy way :) It doesn't support any vector arguments. /// AddLiveIn - This helper function adds the specified physical register to the /// MachineFunction as a live in value. It also creates a corresponding virtual /// register for it. static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) { assert(RC->contains(PReg) && "Not the correct regclass!"); unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); MF.addLiveIn(PReg, VReg); return VReg; } /// HowToPassArgument - Returns how an formal argument of the specified type /// should be passed. If it is through stack, returns the size of the stack /// slot; if it is through integer or XMM register, returns the number of /// integer or XMM registers are needed. static void HowToPassCallArgument(MVT::ValueType ObjectVT, bool ArgInReg, unsigned NumIntRegs, unsigned NumXMMRegs, unsigned MaxNumIntRegs, unsigned &ObjSize, unsigned &ObjIntRegs, unsigned &ObjXMMRegs, bool AllowVectors = true) { ObjSize = 0; ObjIntRegs = 0; ObjXMMRegs = 0; if (MaxNumIntRegs>3) { // We don't have too much registers on ia32! :) MaxNumIntRegs = 3; } switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i8: if (ArgInReg && (NumIntRegs < MaxNumIntRegs)) ObjIntRegs = 1; else ObjSize = 1; break; case MVT::i16: if (ArgInReg && (NumIntRegs < MaxNumIntRegs)) ObjIntRegs = 1; else ObjSize = 2; break; case MVT::i32: if (ArgInReg && (NumIntRegs < MaxNumIntRegs)) ObjIntRegs = 1; else ObjSize = 4; break; case MVT::i64: if (ArgInReg && (NumIntRegs+2 <= MaxNumIntRegs)) { ObjIntRegs = 2; } else if (ArgInReg && (NumIntRegs+1 <= MaxNumIntRegs)) { ObjIntRegs = 1; ObjSize = 4; } else ObjSize = 8; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = 8; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: if (AllowVectors) { if (NumXMMRegs < 4) ObjXMMRegs = 1; else ObjSize = 16; break; } else assert(0 && "Unhandled argument type [vector]!"); } } SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG, bool isStdCall) { unsigned NumArgs = Op.Val->getNumValues() - 1; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); SDOperand Root = Op.getOperand(0); std::vector ArgValues; bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; // Add DAG nodes to load the arguments... On entry to a function on the X86, // the stack frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first argument (leftmost lexically) // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size // ... // unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot unsigned NumSRetBytes= 0; // How much bytes on stack used for struct return unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. unsigned NumIntRegs = 0; // Integer regs used for parameter passing static const unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 }; static const unsigned GPRArgRegs[][3] = { { X86::AL, X86::DL, X86::CL }, { X86::AX, X86::DX, X86::CX }, { X86::EAX, X86::EDX, X86::ECX } }; static const TargetRegisterClass* GPRClasses[3] = { X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass }; // Handle regparm attribute std::vector ArgInRegs(NumArgs, false); std::vector SRetArgs(NumArgs, false); if (!isVarArg) { for (unsigned i = 0; i(Op.getOperand(3+i))->getValue(); ArgInRegs[i] = (Flags >> 1) & 1; SRetArgs[i] = (Flags >> 2) & 1; } } for (unsigned i = 0; i < NumArgs; ++i) { MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); unsigned ArgIncrement = 4; unsigned ObjSize = 0; unsigned ObjXMMRegs = 0; unsigned ObjIntRegs = 0; unsigned Reg = 0; SDOperand ArgValue; HowToPassCallArgument(ObjectVT, ArgInRegs[i], NumIntRegs, NumXMMRegs, 3, ObjSize, ObjIntRegs, ObjXMMRegs, !isStdCall); if (ObjSize > 4) ArgIncrement = ObjSize; if (ObjIntRegs || ObjXMMRegs) { switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i8: case MVT::i16: case MVT::i32: { unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][NumIntRegs]; Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]); ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); break; } case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: assert(!isStdCall && "Unhandled argument type!"); Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); break; } NumIntRegs += ObjIntRegs; NumXMMRegs += ObjXMMRegs; } if (ObjSize) { // XMM arguments have to be aligned on 16-byte boundary. if (ObjSize == 16) ArgOffset = ((ArgOffset + 15) / 16) * 16; // Create the SelectionDAG nodes corresponding to a load from this // parameter. int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); ArgOffset += ArgIncrement; // Move on to the next argument. if (SRetArgs[i]) NumSRetBytes += ArgIncrement; } ArgValues.push_back(ArgValue); } ArgValues.push_back(Root); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); if (isStdCall && !isVarArg) { BytesToPopOnReturn = ArgOffset; // Callee pops everything.. BytesCallerReserves = 0; } else { BytesToPopOnReturn = NumSRetBytes; // Callee pops hidden struct pointer. BytesCallerReserves = ArgOffset; } RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. ReturnAddrIndex = 0; // No return address slot generated yet. MF.getInfo()->setBytesToPopOnReturn(BytesToPopOnReturn); // Return the new list of results. std::vector RetVTs(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); } SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG, bool isStdCall) { SDOperand Chain = Op.getOperand(0); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; bool isTailCall = cast(Op.getOperand(3))->getValue() != 0; SDOperand Callee = Op.getOperand(4); MVT::ValueType RetVT= Op.Val->getValueType(0); unsigned NumOps = (Op.getNumOperands() - 5) / 2; static const unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 }; static const unsigned GPR32ArgRegs[] = { X86::EAX, X86::EDX, X86::ECX }; // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; // Keep track of the number of integer regs passed so far. unsigned NumIntRegs = 0; // Keep track of the number of XMM regs passed so far. unsigned NumXMMRegs = 0; // How much bytes on stack used for struct return unsigned NumSRetBytes= 0; // Handle regparm attribute std::vector ArgInRegs(NumOps, false); std::vector SRetArgs(NumOps, false); for (unsigned i = 0; i(Op.getOperand(5+2*i+1))->getValue(); ArgInRegs[i] = (Flags >> 1) & 1; SRetArgs[i] = (Flags >> 2) & 1; } // Calculate stack frame size for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); unsigned ArgIncrement = 4; unsigned ObjSize = 0; unsigned ObjIntRegs = 0; unsigned ObjXMMRegs = 0; HowToPassCallArgument(Arg.getValueType(), ArgInRegs[i], NumIntRegs, NumXMMRegs, 3, ObjSize, ObjIntRegs, ObjXMMRegs, !isStdCall); if (ObjSize > 4) ArgIncrement = ObjSize; NumIntRegs += ObjIntRegs; NumXMMRegs += ObjXMMRegs; if (ObjSize) { // XMM arguments have to be aligned on 16-byte boundary. if (ObjSize == 16) NumBytes = ((NumBytes + 15) / 16) * 16; NumBytes += ArgIncrement; } } Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; NumXMMRegs = 0; NumIntRegs = 0; std::vector > RegsToPass; std::vector MemOpChains; SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy()); for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); unsigned ArgIncrement = 4; unsigned ObjSize = 0; unsigned ObjIntRegs = 0; unsigned ObjXMMRegs = 0; HowToPassCallArgument(Arg.getValueType(), ArgInRegs[i], NumIntRegs, NumXMMRegs, 3, ObjSize, ObjIntRegs, ObjXMMRegs, !isStdCall); if (ObjSize > 4) ArgIncrement = ObjSize; if (Arg.getValueType() == MVT::i8 || Arg.getValueType() == MVT::i16) { // Promote the integer to 32 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. unsigned Flags = cast(Op.getOperand(5+2*i+1))->getValue(); unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Arg = DAG.getNode(ExtOp, MVT::i32, Arg); } if (ObjIntRegs || ObjXMMRegs) { switch (Arg.getValueType()) { default: assert(0 && "Unhandled argument type!"); case MVT::i32: RegsToPass.push_back(std::make_pair(GPR32ArgRegs[NumIntRegs], Arg)); break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: assert(!isStdCall && "Unhandled argument type!"); RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); break; } NumIntRegs += ObjIntRegs; NumXMMRegs += ObjXMMRegs; } if (ObjSize) { // XMM arguments have to be aligned on 16-byte boundary. if (ObjSize == 16) ArgOffset = ((ArgOffset + 15) / 16) * 16; SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); ArgOffset += ArgIncrement; // Move on to the next argument. if (SRetArgs[i]) NumSRetBytes += ArgIncrement; } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDOperand InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()) { Chain = DAG.getCopyToReg(Chain, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { // We should use extra load for direct calls to dllimported functions in // non-JIT mode. if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), getTargetMachine(), true)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.Val) Ops.push_back(InFlag); Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. unsigned NumBytesForCalleeToPush = 0; if (isStdCall) { if (isVarArg) { NumBytesForCalleeToPush = NumSRetBytes; } else { NumBytesForCalleeToPush = NumBytes; } } else { // If this is is a call to a struct-return function, the callee // pops the hidden struct pointer, so we have to push it back. // This is common for Darwin/X86, Linux & Mingw32 targets. NumBytesForCalleeToPush = NumSRetBytes; } NodeTys.clear(); NodeTys.push_back(MVT::Other); // Returns a chain if (RetVT != MVT::Other) NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy())); Ops.push_back(InFlag); Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); if (RetVT != MVT::Other) InFlag = Chain.getValue(1); std::vector ResultVals; NodeTys.clear(); switch (RetVT) { default: assert(0 && "Unknown value type to return!"); case MVT::Other: break; case MVT::i8: Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i8); break; case MVT::i16: Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i16); break; case MVT::i32: if (Op.Val->getValueType(1) == MVT::i32) { Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32, Chain.getValue(2)).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i32); } else { Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); } NodeTys.push_back(MVT::i32); break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: assert(!isStdCall && "Unknown value type to return!"); Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(RetVT); break; case MVT::f32: case MVT::f64: { std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(InFlag); SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, &Ops[0], Ops.size()); Chain = RetVal.getValue(1); InFlag = RetVal.getValue(2); if (X86ScalarSSE) { // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys.clear(); Tys.push_back(MVT::Other); Ops.clear(); Ops.push_back(Chain); Ops.push_back(RetVal); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(RetVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0); Chain = RetVal.getValue(1); } if (RetVT == MVT::f32 && !X86ScalarSSE) // FIXME: we would really like to remember that this FP_ROUND // operation is okay to eliminate if we allow excess FP precision. RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); ResultVals.push_back(RetVal); NodeTys.push_back(RetVT); break; } } // If the function returns void, just return the chain. if (ResultVals.empty()) return Chain; // Otherwise, merge everything together with a MERGE_VALUES node. NodeTys.push_back(MVT::Other); ResultVals.push_back(Chain); SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0], ResultVals.size()); return Res.getValue(Op.ResNo); } //===----------------------------------------------------------------------===// // X86-64 C Calling Convention implementation //===----------------------------------------------------------------------===// /// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified /// type should be passed. If it is through stack, returns the size of the stack /// slot; if it is through integer or XMM register, returns the number of /// integer or XMM registers are needed. static void HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT, unsigned NumIntRegs, unsigned NumXMMRegs, unsigned &ObjSize, unsigned &ObjIntRegs, unsigned &ObjXMMRegs) { ObjSize = 0; ObjIntRegs = 0; ObjXMMRegs = 0; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: if (NumIntRegs < 6) ObjIntRegs = 1; else { switch (ObjectVT) { default: break; case MVT::i8: ObjSize = 1; break; case MVT::i16: ObjSize = 2; break; case MVT::i32: ObjSize = 4; break; case MVT::i64: ObjSize = 8; break; } } break; case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: if (NumXMMRegs < 8) ObjXMMRegs = 1; else { switch (ObjectVT) { default: break; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = 8; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: ObjSize = 16; break; } break; } } } SDOperand X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) { unsigned NumArgs = Op.Val->getNumValues() - 1; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); SDOperand Root = Op.getOperand(0); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; std::vector ArgValues; // Add DAG nodes to load the arguments... On entry to a function on the X86, // the stack frame looks like this: // // [RSP] -- return address // [RSP + 8] -- first nonreg argument (leftmost lexically) // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size // ... // unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot unsigned NumIntRegs = 0; // Int regs used for parameter passing. unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. static const unsigned GPR8ArgRegs[] = { X86::DIL, X86::SIL, X86::DL, X86::CL, X86::R8B, X86::R9B }; static const unsigned GPR16ArgRegs[] = { X86::DI, X86::SI, X86::DX, X86::CX, X86::R8W, X86::R9W }; static const unsigned GPR32ArgRegs[] = { X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D }; static const unsigned GPR64ArgRegs[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 }; static const unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; for (unsigned i = 0; i < NumArgs; ++i) { MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); unsigned ArgIncrement = 8; unsigned ObjSize = 0; unsigned ObjIntRegs = 0; unsigned ObjXMMRegs = 0; // FIXME: __int128 and long double support? HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs, ObjSize, ObjIntRegs, ObjXMMRegs); if (ObjSize > 8) ArgIncrement = ObjSize; unsigned Reg = 0; SDOperand ArgValue; if (ObjIntRegs || ObjXMMRegs) { switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: { TargetRegisterClass *RC = NULL; switch (ObjectVT) { default: break; case MVT::i8: RC = X86::GR8RegisterClass; Reg = GPR8ArgRegs[NumIntRegs]; break; case MVT::i16: RC = X86::GR16RegisterClass; Reg = GPR16ArgRegs[NumIntRegs]; break; case MVT::i32: RC = X86::GR32RegisterClass; Reg = GPR32ArgRegs[NumIntRegs]; break; case MVT::i64: RC = X86::GR64RegisterClass; Reg = GPR64ArgRegs[NumIntRegs]; break; } Reg = AddLiveIn(MF, Reg, RC); ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); break; } case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: { TargetRegisterClass *RC= (ObjectVT == MVT::f32) ? X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ? X86::FR64RegisterClass : X86::VR128RegisterClass); Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC); ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); break; } } NumIntRegs += ObjIntRegs; NumXMMRegs += ObjXMMRegs; } else if (ObjSize) { // XMM arguments have to be aligned on 16-byte boundary. if (ObjSize == 16) ArgOffset = ((ArgOffset + 15) / 16) * 16; // Create the SelectionDAG nodes corresponding to a load from this // parameter. int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); ArgOffset += ArgIncrement; // Move on to the next argument. } ArgValues.push_back(ArgValue); } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { // For X86-64, if there are vararg parameters that are passed via // registers, then we must store them to their spots on the stack so they // may be loaded by deferencing the result of va_next. VarArgsGPOffset = NumIntRegs * 8; VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16; VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16); // Store the integer parameter registers. std::vector MemOps; SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, DAG.getConstant(VarArgsGPOffset, getPointerTy())); for (; NumIntRegs != 6; ++NumIntRegs) { unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], X86::GR64RegisterClass); SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getConstant(8, getPointerTy())); } // Now store the XMM (fp + vector) parameter registers. FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, DAG.getConstant(VarArgsFPOffset, getPointerTy())); for (; NumXMMRegs != 8; ++NumXMMRegs) { unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getConstant(16, getPointerTy())); } if (!MemOps.empty()) Root = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); } ArgValues.push_back(Root); ReturnAddrIndex = 0; // No return address slot generated yet. BytesToPopOnReturn = 0; // Callee pops nothing. BytesCallerReserves = ArgOffset; // Return the new list of results. std::vector RetVTs(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); } SDOperand X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) { SDOperand Chain = Op.getOperand(0); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; bool isTailCall = cast(Op.getOperand(3))->getValue() != 0; SDOperand Callee = Op.getOperand(4); MVT::ValueType RetVT= Op.Val->getValueType(0); unsigned NumOps = (Op.getNumOperands() - 5) / 2; // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; unsigned NumIntRegs = 0; // Int regs used for parameter passing. unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. static const unsigned GPR8ArgRegs[] = { X86::DIL, X86::SIL, X86::DL, X86::CL, X86::R8B, X86::R9B }; static const unsigned GPR16ArgRegs[] = { X86::DI, X86::SI, X86::DX, X86::CX, X86::R8W, X86::R9W }; static const unsigned GPR32ArgRegs[] = { X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D }; static const unsigned GPR64ArgRegs[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 }; static const unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); MVT::ValueType ArgVT = Arg.getValueType(); switch (ArgVT) { default: assert(0 && "Unknown value type!"); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: if (NumIntRegs < 6) ++NumIntRegs; else NumBytes += 8; break; case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: if (NumXMMRegs < 8) NumXMMRegs++; else if (ArgVT == MVT::f32 || ArgVT == MVT::f64) NumBytes += 8; else { // XMM arguments have to be aligned on 16-byte boundary. NumBytes = ((NumBytes + 15) / 16) * 16; NumBytes += 16; } break; } } Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; NumIntRegs = 0; NumXMMRegs = 0; std::vector > RegsToPass; std::vector MemOpChains; SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy()); for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); MVT::ValueType ArgVT = Arg.getValueType(); switch (ArgVT) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: if (NumIntRegs < 6) { unsigned Reg = 0; switch (ArgVT) { default: break; case MVT::i8: Reg = GPR8ArgRegs[NumIntRegs]; break; case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break; case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break; case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break; } RegsToPass.push_back(std::make_pair(Reg, Arg)); ++NumIntRegs; } else { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); ArgOffset += 8; } break; case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: if (NumXMMRegs < 8) { RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); NumXMMRegs++; } else { if (ArgVT != MVT::f32 && ArgVT != MVT::f64) { // XMM arguments have to be aligned on 16-byte boundary. ArgOffset = ((ArgOffset + 15) / 16) * 16; } SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); if (ArgVT == MVT::f32 || ArgVT == MVT::f64) ArgOffset += 8; else ArgOffset += 16; } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDOperand InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (isVarArg) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. Chain = DAG.getCopyToReg(Chain, X86::AL, DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { // We should use extra load for direct calls to dllimported functions in // non-JIT mode. if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), getTargetMachine(), true)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.Val) Ops.push_back(InFlag); // FIXME: Do not generate X86ISD::TAILCALL for now. Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); // Returns a chain if (RetVT != MVT::Other) NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); Ops.push_back(DAG.getConstant(0, getPointerTy())); Ops.push_back(InFlag); Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); if (RetVT != MVT::Other) InFlag = Chain.getValue(1); std::vector ResultVals; NodeTys.clear(); switch (RetVT) { default: assert(0 && "Unknown value type to return!"); case MVT::Other: break; case MVT::i8: Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i8); break; case MVT::i16: Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i16); break; case MVT::i32: Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i32); break; case MVT::i64: if (Op.Val->getValueType(1) == MVT::i64) { // FIXME: __int128 support? Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64, Chain.getValue(2)).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i64); } else { Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); } NodeTys.push_back(MVT::i64); break; case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: // FIXME: long double support? Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(RetVT); break; } // If the function returns void, just return the chain. if (ResultVals.empty()) return Chain; // Otherwise, merge everything together with a MERGE_VALUES node. NodeTys.push_back(MVT::Other); ResultVals.push_back(Chain); SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0], ResultVals.size()); return Res.getValue(Op.ResNo); } //===----------------------------------------------------------------------===// // Fast & FastCall Calling Convention implementation //===----------------------------------------------------------------------===// // // The X86 'fast' calling convention passes up to two integer arguments in // registers (an appropriate portion of EAX/EDX), passes arguments in C order, // and requires that the callee pop its arguments off the stack (allowing proper // tail calls), and has the same return value conventions as C calling convs. // // This calling convention always arranges for the callee pop value to be 8n+4 // bytes, which is needed for tail recursion elimination and stack alignment // reasons. // // Note that this can be enhanced in the future to pass fp vals in registers // (when we have a global fp allocator) and do other tricks. // //===----------------------------------------------------------------------===// // The X86 'fastcall' calling convention passes up to two integer arguments in // registers (an appropriate portion of ECX/EDX), passes arguments in C order, // and requires that the callee pop its arguments off the stack (allowing proper // tail calls), and has the same return value conventions as C calling convs. // // This calling convention always arranges for the callee pop value to be 8n+4 // bytes, which is needed for tail recursion elimination and stack alignment // reasons. SDOperand X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG, bool isFastCall) { unsigned NumArgs = Op.Val->getNumValues()-1; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); SDOperand Root = Op.getOperand(0); std::vector ArgValues; // Add DAG nodes to load the arguments... On entry to a function the stack // frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first nonreg argument (leftmost lexically) // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size // ... unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot // Keep track of the number of integer regs passed so far. This can be either // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX // are both used). unsigned NumIntRegs = 0; unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. static const unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 }; static const unsigned GPRArgRegs[][2][2] = { {{ X86::AL, X86::DL }, { X86::CL, X86::DL }}, {{ X86::AX, X86::DX }, { X86::CX, X86::DX }}, {{ X86::EAX, X86::EDX }, { X86::ECX, X86::EDX }} }; static const TargetRegisterClass* GPRClasses[3] = { X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass }; unsigned GPRInd = (isFastCall ? 1 : 0); for (unsigned i = 0; i < NumArgs; ++i) { MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); unsigned ArgIncrement = 4; unsigned ObjSize = 0; unsigned ObjXMMRegs = 0; unsigned ObjIntRegs = 0; unsigned Reg = 0; SDOperand ArgValue; HowToPassCallArgument(ObjectVT, true, // Use as much registers as possible NumIntRegs, NumXMMRegs, (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS), ObjSize, ObjIntRegs, ObjXMMRegs, !isFastCall); if (ObjSize > 4) ArgIncrement = ObjSize; if (ObjIntRegs || ObjXMMRegs) { switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i8: case MVT::i16: case MVT::i32: { unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][GPRInd][NumIntRegs]; Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]); ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); break; } case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: { assert(!isFastCall && "Unhandled argument type!"); Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); break; } } NumIntRegs += ObjIntRegs; NumXMMRegs += ObjXMMRegs; } if (ObjSize) { // XMM arguments have to be aligned on 16-byte boundary. if (ObjSize == 16) ArgOffset = ((ArgOffset + 15) / 16) * 16; // Create the SelectionDAG nodes corresponding to a load from this // parameter. int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); ArgOffset += ArgIncrement; // Move on to the next argument. } ArgValues.push_back(ArgValue); } ArgValues.push_back(Root); // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((ArgOffset & 7) == 0) ArgOffset += 4; VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. ReturnAddrIndex = 0; // No return address slot generated yet. BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. BytesCallerReserves = 0; MF.getInfo()->setBytesToPopOnReturn(BytesToPopOnReturn); // Finally, inform the code generator which regs we return values in. switch (getValueType(MF.getFunction()->getReturnType())) { default: assert(0 && "Unknown type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: MF.addLiveOut(X86::EAX); break; case MVT::i64: MF.addLiveOut(X86::EAX); MF.addLiveOut(X86::EDX); break; case MVT::f32: case MVT::f64: MF.addLiveOut(X86::ST0); break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: assert(!isFastCall && "Unknown result type"); MF.addLiveOut(X86::XMM0); break; } // Return the new list of results. std::vector RetVTs(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); } SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG, bool isFastCall) { SDOperand Chain = Op.getOperand(0); bool isTailCall = cast(Op.getOperand(3))->getValue() != 0; SDOperand Callee = Op.getOperand(4); MVT::ValueType RetVT= Op.Val->getValueType(0); unsigned NumOps = (Op.getNumOperands() - 5) / 2; // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; // Keep track of the number of integer regs passed so far. This can be either // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX // are both used). unsigned NumIntRegs = 0; unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. static const unsigned GPRArgRegs[][2][2] = { {{ X86::AL, X86::DL }, { X86::CL, X86::DL }}, {{ X86::AX, X86::DX }, { X86::CX, X86::DX }}, {{ X86::EAX, X86::EDX }, { X86::ECX, X86::EDX }} }; static const unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 }; unsigned GPRInd = (isFastCall ? 1 : 0); for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); switch (Arg.getValueType()) { default: assert(0 && "Unknown value type!"); case MVT::i8: case MVT::i16: case MVT::i32: { unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS); if (NumIntRegs < MaxNumIntRegs) { ++NumIntRegs; break; } } // Fall through case MVT::f32: NumBytes += 4; break; case MVT::f64: NumBytes += 8; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: assert(!isFastCall && "Unknown value type!"); if (NumXMMRegs < 4) NumXMMRegs++; else { // XMM arguments have to be aligned on 16-byte boundary. NumBytes = ((NumBytes + 15) / 16) * 16; NumBytes += 16; } break; } } // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((NumBytes & 7) == 0) NumBytes += 4; Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; NumIntRegs = 0; std::vector > RegsToPass; std::vector MemOpChains; SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy()); for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); switch (Arg.getValueType()) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i8: case MVT::i16: case MVT::i32: { unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS); if (NumIntRegs < MaxNumIntRegs) { unsigned RegToUse = GPRArgRegs[Arg.getValueType()-MVT::i8][GPRInd][NumIntRegs]; RegsToPass.push_back(std::make_pair(RegToUse, Arg)); ++NumIntRegs; break; } } // Fall through case MVT::f32: { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); ArgOffset += 4; break; } case MVT::f64: { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); ArgOffset += 8; break; } case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: assert(!isFastCall && "Unexpected ValueType for argument!"); if (NumXMMRegs < 4) { RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); NumXMMRegs++; } else { // XMM arguments have to be aligned on 16-byte boundary. ArgOffset = ((ArgOffset + 15) / 16) * 16; SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); ArgOffset += 16; } break; } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDOperand InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { // We should use extra load for direct calls to dllimported functions in // non-JIT mode. if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), getTargetMachine(), true)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()) { Chain = DAG.getCopyToReg(Chain, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), InFlag); InFlag = Chain.getValue(1); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.Val) Ops.push_back(InFlag); // FIXME: Do not generate X86ISD::TAILCALL for now. Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); // Returns a chain if (RetVT != MVT::Other) NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); Ops.push_back(InFlag); Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); if (RetVT != MVT::Other) InFlag = Chain.getValue(1); std::vector ResultVals; NodeTys.clear(); switch (RetVT) { default: assert(0 && "Unknown value type to return!"); case MVT::Other: break; case MVT::i8: Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i8); break; case MVT::i16: Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i16); break; case MVT::i32: if (Op.Val->getValueType(1) == MVT::i32) { Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32, Chain.getValue(2)).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i32); } else { Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); } NodeTys.push_back(MVT::i32); break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: if (isFastCall) { assert(0 && "Unknown value type to return!"); } else { Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(RetVT); } break; case MVT::f32: case MVT::f64: { std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(InFlag); SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, &Ops[0], Ops.size()); Chain = RetVal.getValue(1); InFlag = RetVal.getValue(2); if (X86ScalarSSE) { // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys.clear(); Tys.push_back(MVT::Other); Ops.clear(); Ops.push_back(Chain); Ops.push_back(RetVal); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(RetVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0); Chain = RetVal.getValue(1); } if (RetVT == MVT::f32 && !X86ScalarSSE) // FIXME: we would really like to remember that this FP_ROUND // operation is okay to eliminate if we allow excess FP precision. RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); ResultVals.push_back(RetVal); NodeTys.push_back(RetVT); break; } } // If the function returns void, just return the chain. if (ResultVals.empty()) return Chain; // Otherwise, merge everything together with a MERGE_VALUES node. NodeTys.push_back(MVT::Other); ResultVals.push_back(Chain); SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0], ResultVals.size()); return Res.getValue(Op.ResNo); } SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. MachineFunction &MF = DAG.getMachineFunction(); if (Subtarget->is64Bit()) ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8); else ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); } return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); } /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 /// specific condition code. It returns a false if it cannot do a direct /// translation. X86CC is the translated CondCode. LHS/RHS are modified as /// needed. static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, unsigned &X86CC, SDOperand &LHS, SDOperand &RHS, SelectionDAG &DAG) { X86CC = X86::COND_INVALID; if (!isFP) { if (ConstantSDNode *RHSC = dyn_cast(RHS)) { if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { // X > -1 -> X == 0, jump !sign. RHS = DAG.getConstant(0, RHS.getValueType()); X86CC = X86::COND_NS; return true; } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { // X < 0 -> X == 0, jump on sign. X86CC = X86::COND_S; return true; } } switch (SetCCOpcode) { default: break; case ISD::SETEQ: X86CC = X86::COND_E; break; case ISD::SETGT: X86CC = X86::COND_G; break; case ISD::SETGE: X86CC = X86::COND_GE; break; case ISD::SETLT: X86CC = X86::COND_L; break; case ISD::SETLE: X86CC = X86::COND_LE; break; case ISD::SETNE: X86CC = X86::COND_NE; break; case ISD::SETULT: X86CC = X86::COND_B; break; case ISD::SETUGT: X86CC = X86::COND_A; break; case ISD::SETULE: X86CC = X86::COND_BE; break; case ISD::SETUGE: X86CC = X86::COND_AE; break; } } else { // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered bool Flip = false; switch (SetCCOpcode) { default: break; case ISD::SETUEQ: case ISD::SETEQ: X86CC = X86::COND_E; break; case ISD::SETOLT: Flip = true; // Fallthrough case ISD::SETOGT: case ISD::SETGT: X86CC = X86::COND_A; break; case ISD::SETOLE: Flip = true; // Fallthrough case ISD::SETOGE: case ISD::SETGE: X86CC = X86::COND_AE; break; case ISD::SETUGT: Flip = true; // Fallthrough case ISD::SETULT: case ISD::SETLT: X86CC = X86::COND_B; break; case ISD::SETUGE: Flip = true; // Fallthrough case ISD::SETULE: case ISD::SETLE: X86CC = X86::COND_BE; break; case ISD::SETONE: case ISD::SETNE: X86CC = X86::COND_NE; break; case ISD::SETUO: X86CC = X86::COND_P; break; case ISD::SETO: X86CC = X86::COND_NP; break; } if (Flip) std::swap(LHS, RHS); } return X86CC != X86::COND_INVALID; } /// hasFPCMov - is there a floating point cmov for the specific X86 condition /// code. Current x86 isa includes the following FP cmov instructions: /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. static bool hasFPCMov(unsigned X86CC) { switch (X86CC) { default: return false; case X86::COND_B: case X86::COND_BE: case X86::COND_E: case X86::COND_P: case X86::COND_A: case X86::COND_AE: case X86::COND_NE: case X86::COND_NP: return true; } } /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if its value falls within the specified range (L, H]. static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { if (Op.getOpcode() == ISD::UNDEF) return true; unsigned Val = cast(Op)->getValue(); return (Val >= Low && Val < Hi); } /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if its value equal to the specified value. static bool isUndefOrEqual(SDOperand Op, unsigned Val) { if (Op.getOpcode() == ISD::UNDEF) return true; return cast(Op)->getValue() == Val; } /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool X86::isPSHUFDMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Check if the value doesn't reference the second vector. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); if (cast(Arg)->getValue() >= 4) return false; } return true; } /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFHW. bool X86::isPSHUFHWMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 8) return false; // Lower quadword copied in order. for (unsigned i = 0; i != 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); if (cast(Arg)->getValue() != i) return false; } // Upper quadword shuffled. for (unsigned i = 4; i != 8; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val < 4 || Val > 7) return false; } return true; } /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFLW. bool X86::isPSHUFLWMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 8) return false; // Upper quadword copied in order. for (unsigned i = 4; i != 8; ++i) if (!isUndefOrEqual(N->getOperand(i), i)) return false; // Lower quadword shuffled. for (unsigned i = 0; i != 4; ++i) if (!isUndefOrInRange(N->getOperand(i), 0, 4)) return false; return true; } /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to SHUFP*. static bool isSHUFPMask(std::vector &N) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4) return false; unsigned Half = NumElems / 2; for (unsigned i = 0; i < Half; ++i) if (!isUndefOrInRange(N[i], 0, NumElems)) return false; for (unsigned i = Half; i < NumElems; ++i) if (!isUndefOrInRange(N[i], NumElems, NumElems*2)) return false; return true; } bool X86::isSHUFPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isSHUFPMask(Ops); } /// isCommutedSHUFP - Returns true if the shuffle mask is except /// the reverse of what x86 shuffles want. x86 shuffles requires the lower /// half elements to come from vector 1 (which would equal the dest.) and /// the upper half to come from vector 2. static bool isCommutedSHUFP(std::vector &Ops) { unsigned NumElems = Ops.size(); if (NumElems != 2 && NumElems != 4) return false; unsigned Half = NumElems / 2; for (unsigned i = 0; i < Half; ++i) if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2)) return false; for (unsigned i = Half; i < NumElems; ++i) if (!isUndefOrInRange(Ops[i], 0, NumElems)) return false; return true; } static bool isCommutedSHUFP(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return isCommutedSHUFP(Ops); } /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHLPS. bool X86::isMOVHLPSMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 return isUndefOrEqual(N->getOperand(0), 6) && isUndefOrEqual(N->getOperand(1), 7) && isUndefOrEqual(N->getOperand(2), 2) && isUndefOrEqual(N->getOperand(3), 3); } /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, /// <2, 3, 2, 3> bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 return isUndefOrEqual(N->getOperand(0), 2) && isUndefOrEqual(N->getOperand(1), 3) && isUndefOrEqual(N->getOperand(2), 2) && isUndefOrEqual(N->getOperand(3), 3); } /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. bool X86::isMOVLPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); unsigned NumElems = N->getNumOperands(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0; i < NumElems/2; ++i) if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) return false; for (unsigned i = NumElems/2; i < NumElems; ++i) if (!isUndefOrEqual(N->getOperand(i), i)) return false; return true; } /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} /// and MOVLHPS. bool X86::isMOVHPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); unsigned NumElems = N->getNumOperands(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0; i < NumElems/2; ++i) if (!isUndefOrEqual(N->getOperand(i), i)) return false; for (unsigned i = 0; i < NumElems/2; ++i) { SDOperand Arg = N->getOperand(i + NumElems/2); if (!isUndefOrEqual(Arg, i + NumElems)) return false; } return true; } /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. bool static isUNPCKLMask(std::vector &N, bool V2IsSplat = false) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { SDOperand BitI = N[i]; SDOperand BitI1 = N[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (V2IsSplat) { if (isUndefOrEqual(BitI1, NumElems)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElems)) return false; } } return true; } bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isUNPCKLMask(Ops, V2IsSplat); } /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. bool static isUNPCKHMask(std::vector &N, bool V2IsSplat = false) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { SDOperand BitI = N[i]; SDOperand BitI1 = N[i+1]; if (!isUndefOrEqual(BitI, j + NumElems/2)) return false; if (V2IsSplat) { if (isUndefOrEqual(BitI1, NumElems)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems)) return false; } } return true; } bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isUNPCKHMask(Ops, V2IsSplat); } /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); unsigned NumElems = N->getNumOperands(); if (NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { SDOperand BitI = N->getOperand(i); SDOperand BitI1 = N->getOperand(i+1); if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } return true; } /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSS, /// MOVSD, and MOVD, i.e. setting the lowest element. static bool isMOVLMask(std::vector &N) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; if (!isUndefOrEqual(N[0], NumElems)) return false; for (unsigned i = 1; i < NumElems; ++i) { SDOperand Arg = N[i]; if (!isUndefOrEqual(Arg, i)) return false; } return true; } bool X86::isMOVLMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isMOVLMask(Ops); } /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse /// of what x86 movss want. X86 movs requires the lowest element to be lowest /// element of vector 2 and the other elements to come from vector 1 in order. static bool isCommutedMOVL(std::vector &Ops, bool V2IsSplat = false, bool V2IsUndef = false) { unsigned NumElems = Ops.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; if (!isUndefOrEqual(Ops[0], 0)) return false; for (unsigned i = 1; i < NumElems; ++i) { SDOperand Arg = Ops[i]; if (!(isUndefOrEqual(Arg, i+NumElems) || (V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) || (V2IsSplat && isUndefOrEqual(Arg, NumElems)))) return false; } return true; } static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, bool V2IsUndef = false) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef); } /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. bool X86::isMOVSHDUPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Expect 1, 1, 3, 3 for (unsigned i = 0; i < 2; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 1) return false; } bool HasHi = false; for (unsigned i = 2; i < 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 3) return false; HasHi = true; } // Don't use movshdup if it can be done with a shufps. return HasHi; } /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. bool X86::isMOVSLDUPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Expect 0, 0, 2, 2 for (unsigned i = 0; i < 2; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 0) return false; } bool HasHi = false; for (unsigned i = 2; i < 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 2) return false; HasHi = true; } // Don't use movshdup if it can be done with a shufps. return HasHi; } /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies /// a splat of a single element. static bool isSplatMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); // This is a splat operation if each element of the permute is the same, and // if the value doesn't reference the second vector. unsigned NumElems = N->getNumOperands(); SDOperand ElementBase; unsigned i = 0; for (; i != NumElems; ++i) { SDOperand Elt = N->getOperand(i); if (isa(Elt)) { ElementBase = Elt; break; } } if (!ElementBase.Val) return false; for (; i != NumElems; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); if (Arg != ElementBase) return false; } // Make sure it is a splat of the first vector operand. return cast(ElementBase)->getValue() < NumElems; } /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies /// a splat of a single element and it's a 2 or 4 element mask. bool X86::isSplatMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); // We can only splat 64-bit, and 32-bit quantities with a single instruction. if (N->getNumOperands() != 4 && N->getNumOperands() != 2) return false; return ::isSplatMask(N); } /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of zero element. bool X86::isSplatLoMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) if (!isUndefOrEqual(N->getOperand(i), 0)) return false; return true; } /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* /// instructions. unsigned X86::getShuffleSHUFImmediate(SDNode *N) { unsigned NumOperands = N->getNumOperands(); unsigned Shift = (NumOperands == 4) ? 2 : 1; unsigned Mask = 0; for (unsigned i = 0; i < NumOperands; ++i) { unsigned Val = 0; SDOperand Arg = N->getOperand(NumOperands-i-1); if (Arg.getOpcode() != ISD::UNDEF) Val = cast(Arg)->getValue(); if (Val >= NumOperands) Val -= NumOperands; Mask |= Val; if (i != NumOperands - 1) Mask <<= Shift; } return Mask; } /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW /// instructions. unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { unsigned Mask = 0; // 8 nodes, but we only care about the last 4. for (unsigned i = 7; i >= 4; --i) { unsigned Val = 0; SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() != ISD::UNDEF) Val = cast(Arg)->getValue(); Mask |= (Val - 4); if (i != 4) Mask <<= 2; } return Mask; } /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW /// instructions. unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { unsigned Mask = 0; // 8 nodes, but we only care about the first 4. for (int i = 3; i >= 0; --i) { unsigned Val = 0; SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() != ISD::UNDEF) Val = cast(Arg)->getValue(); Mask |= Val; if (i != 0) Mask <<= 2; } return Mask; } /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand /// specifies a 8 element shuffle that can be broken into a pair of /// PSHUFHW and PSHUFLW. static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 8) return false; // Lower quadword shuffled. for (unsigned i = 0; i != 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val > 4) return false; } // Upper quadword shuffled. for (unsigned i = 4; i != 8; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val < 4 || Val > 7) return false; } return true; } /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as /// values in ther permute mask. static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1, SDOperand &V2, SDOperand &Mask, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); MVT::ValueType MaskVT = Mask.getValueType(); MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT); unsigned NumElems = Mask.getNumOperands(); std::vector MaskVec; for (unsigned i = 0; i != NumElems; ++i) { SDOperand Arg = Mask.getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) { MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); continue; } assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val < NumElems) MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); else MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); } std::swap(V1, V2); Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); } /// ShouldXformToMOVHLPS - Return true if the node should be transformed to /// match movhlps. The lower half elements should come from upper half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). static bool ShouldXformToMOVHLPS(SDNode *Mask) { unsigned NumElems = Mask->getNumOperands(); if (NumElems != 4) return false; for (unsigned i = 0, e = 2; i != e; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i+2)) return false; for (unsigned i = 2; i != 4; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i+4)) return false; return true; } /// isScalarLoadToVector - Returns true if the node is a scalar load that /// is promoted to a vector. static inline bool isScalarLoadToVector(SDNode *N) { if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { N = N->getOperand(0).Val; return ISD::isNON_EXTLoad(N); } return false; } /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to /// match movlp{s|d}. The lower half elements should come from lower half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). And since V1 will become the source of the /// MOVLP, it must be either a vector load or a scalar load to vector. static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) return false; // Is V2 is a vector load, don't do this transformation. We will try to use // load folding shufps op. if (ISD::isNON_EXTLoad(V2)) return false; unsigned NumElems = Mask->getNumOperands(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i)) return false; for (unsigned i = NumElems/2; i != NumElems; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) return false; return true; } /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are /// all the same. static bool isSplatVector(SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; SDOperand SplatValue = N->getOperand(0); for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i) != SplatValue) return false; return true; } /// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved /// to an undef. static bool isUndefShuffle(SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; SDOperand V1 = N->getOperand(0); SDOperand V2 = N->getOperand(1); SDOperand Mask = N->getOperand(2); unsigned NumElems = Mask.getNumOperands(); for (unsigned i = 0; i != NumElems; ++i) { SDOperand Arg = Mask.getOperand(i); if (Arg.getOpcode() != ISD::UNDEF) { unsigned Val = cast(Arg)->getValue(); if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) return false; else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) return false; } } return true; } /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements /// that point to V2 points to its first element. static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { assert(Mask.getOpcode() == ISD::BUILD_VECTOR); bool Changed = false; std::vector MaskVec; unsigned NumElems = Mask.getNumOperands(); for (unsigned i = 0; i != NumElems; ++i) { SDOperand Arg = Mask.getOperand(i); if (Arg.getOpcode() != ISD::UNDEF) { unsigned Val = cast(Arg)->getValue(); if (Val > NumElems) { Arg = DAG.getConstant(NumElems, Arg.getValueType()); Changed = true; } } MaskVec.push_back(Arg); } if (Changed) Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), &MaskVec[0], MaskVec.size()); return Mask; } /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd /// operation of specified width. static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); for (unsigned i = 1; i != NumElems; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); } /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation /// of specified width. static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; for (unsigned i = 0, e = NumElems/2; i != e; ++i) { MaskVec.push_back(DAG.getConstant(i, BaseVT)); MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); } return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); } /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation /// of specified width. static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); unsigned Half = NumElems/2; std::vector MaskVec; for (unsigned i = 0; i != Half; ++i) { MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); } return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); } /// getZeroVector - Returns a vector of specified type with all zero elements. /// static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { assert(MVT::isVector(VT) && "Expected a vector type"); unsigned NumElems = getVectorNumElements(VT); MVT::ValueType EVT = MVT::getVectorBaseType(VT); bool isFP = MVT::isFloatingPoint(EVT); SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT); std::vector ZeroVec(NumElems, Zero); return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size()); } /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. /// static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { SDOperand V1 = Op.getOperand(0); SDOperand Mask = Op.getOperand(2); MVT::ValueType VT = Op.getValueType(); unsigned NumElems = Mask.getNumOperands(); Mask = getUnpacklMask(NumElems, DAG); while (NumElems != 4) { V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); NumElems >>= 1; } V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); Mask = getZeroVector(MaskVT, DAG); SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); } /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. static inline bool isZeroNode(SDOperand Elt) { return ((isa(Elt) && cast(Elt)->getValue() == 0) || (isa(Elt) && cast(Elt)->isExactlyValue(0.0))); } /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified /// vector and zero or undef vector. static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT, unsigned NumElems, unsigned Idx, bool isZero, SelectionDAG &DAG) { SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); SDOperand Zero = DAG.getConstant(0, EVT); std::vector MaskVec(NumElems, Zero); MaskVec[Idx] = DAG.getConstant(NumElems, EVT); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); } /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. /// static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, TargetLowering &TLI) { if (NumNonZero > 8) return SDOperand(); SDOperand V(0, 0); bool First = true; for (unsigned i = 0; i < 16; ++i) { bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; if (ThisIsNonZero && First) { if (NumZero) V = getZeroVector(MVT::v8i16, DAG); else V = DAG.getNode(ISD::UNDEF, MVT::v8i16); First = false; } if ((i & 1) != 0) { SDOperand ThisElt(0, 0), LastElt(0, 0); bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; if (LastIsNonZero) { LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); } if (ThisIsNonZero) { ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); ThisElt = DAG.getNode(ISD::SHL, MVT::i16, ThisElt, DAG.getConstant(8, MVT::i8)); if (LastIsNonZero) ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); } else ThisElt = LastElt; if (ThisElt.Val) V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, DAG.getConstant(i/2, TLI.getPointerTy())); } } return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); } /// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16. /// static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, TargetLowering &TLI) { if (NumNonZero > 4) return SDOperand(); SDOperand V(0, 0); bool First = true; for (unsigned i = 0; i < 8; ++i) { bool isNonZero = (NonZeros & (1 << i)) != 0; if (isNonZero) { if (First) { if (NumZero) V = getZeroVector(MVT::v8i16, DAG); else V = DAG.getNode(ISD::UNDEF, MVT::v8i16); First = false; } V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), DAG.getConstant(i, TLI.getPointerTy())); } } return V; } SDOperand X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { // All zero's are handled with pxor. if (ISD::isBuildVectorAllZeros(Op.Val)) return Op; // All one's are handled with pcmpeqd. if (ISD::isBuildVectorAllOnes(Op.Val)) return Op; MVT::ValueType VT = Op.getValueType(); MVT::ValueType EVT = MVT::getVectorBaseType(VT); unsigned EVTBits = MVT::getSizeInBits(EVT); unsigned NumElems = Op.getNumOperands(); unsigned NumZero = 0; unsigned NumNonZero = 0; unsigned NonZeros = 0; std::set Values; for (unsigned i = 0; i < NumElems; ++i) { SDOperand Elt = Op.getOperand(i); if (Elt.getOpcode() != ISD::UNDEF) { Values.insert(Elt); if (isZeroNode(Elt)) NumZero++; else { NonZeros |= (1 << i); NumNonZero++; } } } if (NumNonZero == 0) // Must be a mix of zero and undef. Return a zero vector. return getZeroVector(VT, DAG); // Splat is obviously ok. Let legalizer expand it to a shuffle. if (Values.size() == 1) return SDOperand(); // Special case for single non-zero element. if (NumNonZero == 1) { unsigned Idx = CountTrailingZeros_32(NonZeros); SDOperand Item = Op.getOperand(Idx); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); if (Idx == 0) // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx, NumZero > 0, DAG); if (EVTBits == 32) { // Turn it into a shuffle of zero and zero-extended scalar to vector. Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0, DAG); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; for (unsigned i = 0; i < NumElems; i++) MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, DAG.getNode(ISD::UNDEF, VT), Mask); } } // Let legalizer expand 2-wide build_vector's. if (EVTBits == 64) return SDOperand(); // If element VT is < 32 bits, convert it to inserts into a zero vector. if (EVTBits == 8) { SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, *this); if (V.Val) return V; } if (EVTBits == 16) { SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, *this); if (V.Val) return V; } // If element VT is == 32 bits, turn it into a number of shuffles. std::vector V(NumElems); if (NumElems == 4 && NumZero > 0) { for (unsigned i = 0; i < 4; ++i) { bool isZero = !(NonZeros & (1 << i)); if (isZero) V[i] = getZeroVector(VT, DAG); else V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); } for (unsigned i = 0; i < 2; ++i) { switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { default: break; case 0: V[i] = V[i*2]; // Must be a zero vector. break; case 1: V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], getMOVLMask(NumElems, DAG)); break; case 2: V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], getMOVLMask(NumElems, DAG)); break; case 3: V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], getUnpacklMask(NumElems, DAG)); break; } } // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd) // clears the upper bits. // FIXME: we can do the same for v4f32 case when we know both parts of // the lower half come from scalar_to_vector (loadf32). We should do // that in post legalizer dag combiner with target specific hooks. if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) return V[0]; MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; bool Reverse = (NonZeros & 0x3) == 2; for (unsigned i = 0; i < 2; ++i) if (Reverse) MaskVec.push_back(DAG.getConstant(1-i, EVT)); else MaskVec.push_back(DAG.getConstant(i, EVT)); Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; for (unsigned i = 0; i < 2; ++i) if (Reverse) MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); else MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); } if (Values.size() > 2) { // Expand into a number of unpckl*. // e.g. for v4f32 // Step 1: unpcklps 0, 2 ==> X: // : unpcklps 1, 3 ==> Y: // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); for (unsigned i = 0; i < NumElems; ++i) V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); NumElems >>= 1; while (NumElems != 0) { for (unsigned i = 0; i < NumElems; ++i) V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], UnpckMask); NumElems >>= 1; } return V[0]; } return SDOperand(); } SDOperand X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { SDOperand V1 = Op.getOperand(0); SDOperand V2 = Op.getOperand(1); SDOperand PermMask = Op.getOperand(2); MVT::ValueType VT = Op.getValueType(); unsigned NumElems = PermMask.getNumOperands(); bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; bool V1IsSplat = false; bool V2IsSplat = false; if (isUndefShuffle(Op.Val)) return DAG.getNode(ISD::UNDEF, VT); if (isSplatMask(PermMask.Val)) { if (NumElems <= 4) return Op; // Promote it to a v4i32 splat. return PromoteSplat(Op, DAG); } if (X86::isMOVLMask(PermMask.Val)) return (V1IsUndef) ? V2 : Op; if (X86::isMOVSHDUPMask(PermMask.Val) || X86::isMOVSLDUPMask(PermMask.Val) || X86::isMOVHLPSMask(PermMask.Val) || X86::isMOVHPMask(PermMask.Val) || X86::isMOVLPMask(PermMask.Val)) return Op; if (ShouldXformToMOVHLPS(PermMask.Val) || ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val)) return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); bool Commuted = false; V1IsSplat = isSplatVector(V1.Val); V2IsSplat = isSplatVector(V2.Val); if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); std::swap(V1IsSplat, V2IsSplat); std::swap(V1IsUndef, V2IsUndef); Commuted = true; } if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) { if (V2IsUndef) return V1; Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); if (V2IsSplat) { // V2 is a splat, so the mask may be malformed. That is, it may point // to any V2 element. The instruction selectior won't like this. Get // a corrected mask and commute to form a proper MOVS{S|D}. SDOperand NewMask = getMOVLMask(NumElems, DAG); if (NewMask.Val != PermMask.Val) Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); } return Op; } if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || X86::isUNPCKLMask(PermMask.Val) || X86::isUNPCKHMask(PermMask.Val)) return Op; if (V2IsSplat) { // Normalize mask so all entries that point to V2 points to its first // element then try to match unpck{h|l} again. If match, return a // new vector_shuffle with the corrected mask. SDOperand NewMask = NormalizeMask(PermMask, DAG); if (NewMask.Val != PermMask.Val) { if (X86::isUNPCKLMask(PermMask.Val, true)) { SDOperand NewMask = getUnpacklMask(NumElems, DAG); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); } else if (X86::isUNPCKHMask(PermMask.Val, true)) { SDOperand NewMask = getUnpackhMask(NumElems, DAG); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); } } } // Normalize the node to match x86 shuffle ops if needed if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val)) Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); if (Commuted) { // Commute is back and try unpck* again. Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || X86::isUNPCKLMask(PermMask.Val) || X86::isUNPCKHMask(PermMask.Val)) return Op; } // If VT is integer, try PSHUF* first, then SHUFP*. if (MVT::isInteger(VT)) { if (X86::isPSHUFDMask(PermMask.Val) || X86::isPSHUFHWMask(PermMask.Val) || X86::isPSHUFLWMask(PermMask.Val)) { if (V2.getOpcode() != ISD::UNDEF) return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); return Op; } if (X86::isSHUFPMask(PermMask.Val)) return Op; // Handle v8i16 shuffle high / low shuffle node pair. if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; for (unsigned i = 0; i != 4; ++i) MaskVec.push_back(PermMask.getOperand(i)); for (unsigned i = 4; i != 8; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); MaskVec.clear(); for (unsigned i = 0; i != 4; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); for (unsigned i = 4; i != 8; ++i) MaskVec.push_back(PermMask.getOperand(i)); Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size()); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); } } else { // Floating point cases in the other order. if (X86::isSHUFPMask(PermMask.Val)) return Op; if (X86::isPSHUFDMask(PermMask.Val) || X86::isPSHUFHWMask(PermMask.Val) || X86::isPSHUFLWMask(PermMask.Val)) { if (V2.getOpcode() != ISD::UNDEF) return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); return Op; } } if (NumElems == 4) { MVT::ValueType MaskVT = PermMask.getValueType(); MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); std::vector > Locs; Locs.reserve(NumElems); std::vector Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); std::vector Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); unsigned NumHi = 0; unsigned NumLo = 0; // If no more than two elements come from either vector. This can be // implemented with two shuffles. First shuffle gather the elements. // The second shuffle, which takes the first shuffle as both of its // vector operands, put the elements into the right order. for (unsigned i = 0; i != NumElems; ++i) { SDOperand Elt = PermMask.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) { Locs[i] = std::make_pair(-1, -1); } else { unsigned Val = cast(Elt)->getValue(); if (Val < NumElems) { Locs[i] = std::make_pair(0, NumLo); Mask1[NumLo] = Elt; NumLo++; } else { Locs[i] = std::make_pair(1, NumHi); if (2+NumHi < NumElems) Mask1[2+NumHi] = Elt; NumHi++; } } } if (NumLo <= 2 && NumHi <= 2) { V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], Mask1.size())); for (unsigned i = 0; i != NumElems; ++i) { if (Locs[i].first == -1) continue; else { unsigned Idx = (i < NumElems/2) ? 0 : NumElems; Idx += Locs[i].first * (NumElems/2) + Locs[i].second; Mask2[i] = DAG.getConstant(Idx, MaskEVT); } } return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask2[0], Mask2.size())); } // Break it into (shuffle shuffle_hi, shuffle_lo). Locs.clear(); std::vector LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); std::vector HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); std::vector *MaskPtr = &LoMask; unsigned MaskIdx = 0; unsigned LoIdx = 0; unsigned HiIdx = NumElems/2; for (unsigned i = 0; i != NumElems; ++i) { if (i == NumElems/2) { MaskPtr = &HiMask; MaskIdx = 1; LoIdx = 0; HiIdx = NumElems/2; } SDOperand Elt = PermMask.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) { Locs[i] = std::make_pair(-1, -1); } else if (cast(Elt)->getValue() < NumElems) { Locs[i] = std::make_pair(MaskIdx, LoIdx); (*MaskPtr)[LoIdx] = Elt; LoIdx++; } else { Locs[i] = std::make_pair(MaskIdx, HiIdx); (*MaskPtr)[HiIdx] = Elt; HiIdx++; } } SDOperand LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &LoMask[0], LoMask.size())); SDOperand HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &HiMask[0], HiMask.size())); std::vector MaskOps; for (unsigned i = 0; i != NumElems; ++i) { if (Locs[i].first == -1) { MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); } else { unsigned Idx = Locs[i].first * NumElems + Locs[i].second; MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); } } return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskOps[0], MaskOps.size())); } return SDOperand(); } SDOperand X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { if (!isa(Op.getOperand(1))) return SDOperand(); MVT::ValueType VT = Op.getValueType(); // TODO: handle v16i8. if (MVT::getSizeInBits(VT) == 16) { // Transform it so it match pextrw which produces a 32-bit result. MVT::ValueType EVT = (MVT::ValueType)(VT+1); SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, Op.getOperand(0), Op.getOperand(1)); SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, VT, Assert); } else if (MVT::getSizeInBits(VT) == 32) { SDOperand Vec = Op.getOperand(0); unsigned Idx = cast(Op.getOperand(1))->getValue(); if (Idx == 0) return Op; // SHUFPS the element to the lowest double word, then movss. MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); std::vector IdxVec; IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &IdxVec[0], IdxVec.size()); Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, DAG.getConstant(0, getPointerTy())); } else if (MVT::getSizeInBits(VT) == 64) { SDOperand Vec = Op.getOperand(0); unsigned Idx = cast(Op.getOperand(1))->getValue(); if (Idx == 0) return Op; // UNPCKHPD the element to the lowest double word, then movsd. // Note if the lower 64 bits of the result of the UNPCKHPD is then stored // to a f64mem, the whole operation is folded into a single MOVHPDmr. MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); std::vector IdxVec; IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &IdxVec[0], IdxVec.size()); Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, DAG.getConstant(0, getPointerTy())); } return SDOperand(); } SDOperand X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { // Transform it so it match pinsrw which expects a 16-bit value in a GR32 // as its second argument. MVT::ValueType VT = Op.getValueType(); MVT::ValueType BaseVT = MVT::getVectorBaseType(VT); SDOperand N0 = Op.getOperand(0); SDOperand N1 = Op.getOperand(1); SDOperand N2 = Op.getOperand(2); if (MVT::getSizeInBits(BaseVT) == 16) { if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getConstant(cast(N2)->getValue(), MVT::i32); return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); } else if (MVT::getSizeInBits(BaseVT) == 32) { unsigned Idx = cast(N2)->getValue(); if (Idx == 0) { // Use a movss. N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; MaskVec.push_back(DAG.getConstant(4, BaseVT)); for (unsigned i = 1; i <= 3; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size())); } else { // Use two pinsrw instructions to insert a 32 bit value. Idx <<= 1; if (MVT::isFloatingPoint(N1.getValueType())) { if (ISD::isNON_EXTLoad(N1.Val)) { // Just load directly from f32mem to GR32. LoadSDNode *LD = cast(N1); N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), LD->getSrcValueOffset()); } else { N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1); N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1); N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1, DAG.getConstant(0, getPointerTy())); } } N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0); N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, DAG.getConstant(Idx, getPointerTy())); N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8)); N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, DAG.getConstant(Idx+1, getPointerTy())); return DAG.getNode(ISD::BIT_CONVERT, VT, N0); } } return SDOperand(); } SDOperand X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOV32ri. SDOperand X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { ConstantPoolSDNode *CP = cast(Op); SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), CP->getAlignment()); Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && !Subtarget->isPICStyleRIPRel()) { Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); } return Result; } SDOperand X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { GlobalValue *GV = cast(Op)->getGlobal(); SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && !Subtarget->isPICStyleRIPRel()) { Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); } // For Darwin & Mingw32, external and weak symbols are indirect, so we want to // load the value at address GV, not the value of GV itself. This means that // the GlobalAddress must be in the base or index register of the address, not // the GV offset field. Platform check is inside GVRequiresExtraLoad() call // The same applies for external symbols during PIC codegen if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0); return Result; } SDOperand X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { const char *Sym = cast(Op)->getSymbol(); SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && !Subtarget->isPICStyleRIPRel()) { Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); } return Result; } SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { JumpTableSDNode *JT = cast(Op); SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && !Subtarget->isPICStyleRIPRel()) { Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); } return Result; } SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && "Not an i64 shift!"); bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; SDOperand ShOpLo = Op.getOperand(0); SDOperand ShOpHi = Op.getOperand(1); SDOperand ShAmt = Op.getOperand(2); SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) : DAG.getConstant(0, MVT::i32); SDOperand Tmp2, Tmp3; if (Op.getOpcode() == ISD::SHL_PARTS) { Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); } else { Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); } const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, DAG.getConstant(32, MVT::i8)); SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)}; SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1); SDOperand Hi, Lo; SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8); VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag); SmallVector Ops; if (Op.getOpcode() == ISD::SHL_PARTS) { Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(CC); Ops.push_back(InFlag); Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); InFlag = Hi.getValue(1); Ops.clear(); Ops.push_back(Tmp3); Ops.push_back(Tmp1); Ops.push_back(CC); Ops.push_back(InFlag); Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); } else { Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(CC); Ops.push_back(InFlag); Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); InFlag = Lo.getValue(1); Ops.clear(); Ops.push_back(Tmp3); Ops.push_back(Tmp1); Ops.push_back(CC); Ops.push_back(InFlag); Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); } VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32); Ops.clear(); Ops.push_back(Lo); Ops.push_back(Hi); return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size()); } SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { assert(Op.getOperand(0).getValueType() <= MVT::i64 && Op.getOperand(0).getValueType() >= MVT::i16 && "Unknown SINT_TO_FP to lower!"); SDOperand Result; MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); unsigned Size = MVT::getSizeInBits(SrcVT)/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), StackSlot, NULL, 0); // Build the FILD std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); if (X86ScalarSSE) Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(SrcVT)); Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, Tys, &Ops[0], Ops.size()); if (X86ScalarSSE) { Chain = Result.getValue(1); SDOperand InFlag = Result.getValue(2); // FIXME: Currently the FST is flagged to the FILD_FLAG. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); std::vector Tys; Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(Result); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(Op.getValueType())); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0); } return Result; } SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && "Unknown FP_TO_SINT to lower!"); // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary // stack slot. MachineFunction &MF = DAG.getMachineFunction(); unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); unsigned Opc; switch (Op.getValueType()) { default: assert(0 && "Invalid FP_TO_SINT to lower!"); case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; } SDOperand Chain = DAG.getEntryNode(); SDOperand Value = Op.getOperand(0); if (X86ScalarSSE) { assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0); std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size()); Chain = Value.getValue(1); SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); } // Build the FP_TO_INT*_IN_MEM std::vector Ops; Ops.push_back(Chain); Ops.push_back(Value); Ops.push_back(StackSlot); SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size()); // Load the result. return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); } SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); const Type *OpNTy = MVT::getTypeForValueType(VT); std::vector CV; if (VT == MVT::f64) { CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } else { CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } Constant *CS = ConstantStruct::get(CV); SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); std::vector Tys; Tys.push_back(VT); Tys.push_back(MVT::Other); SmallVector Ops; Ops.push_back(DAG.getEntryNode()); Ops.push_back(CPIdx); Ops.push_back(DAG.getSrcValue(NULL)); SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size()); return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); } SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); const Type *OpNTy = MVT::getTypeForValueType(VT); std::vector CV; if (VT == MVT::f64) { CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } else { CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } Constant *CS = ConstantStruct::get(CV); SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); std::vector Tys; Tys.push_back(VT); Tys.push_back(MVT::Other); SmallVector Ops; Ops.push_back(DAG.getEntryNode()); Ops.push_back(CPIdx); Ops.push_back(DAG.getSrcValue(NULL)); SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size()); return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); } SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) { SDOperand Op0 = Op.getOperand(0); SDOperand Op1 = Op.getOperand(1); MVT::ValueType VT = Op.getValueType(); MVT::ValueType SrcVT = Op1.getValueType(); const Type *SrcTy = MVT::getTypeForValueType(SrcVT); // If second operand is smaller, extend it first. if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) { Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1); SrcVT = VT; } // First get the sign bit of second operand. std::vector CV; if (SrcVT == MVT::f64) { CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63))); CV.push_back(ConstantFP::get(SrcTy, 0.0)); } else { CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31))); CV.push_back(ConstantFP::get(SrcTy, 0.0)); CV.push_back(ConstantFP::get(SrcTy, 0.0)); CV.push_back(ConstantFP::get(SrcTy, 0.0)); } Constant *CS = ConstantStruct::get(CV); SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); std::vector Tys; Tys.push_back(SrcVT); Tys.push_back(MVT::Other); SmallVector Ops; Ops.push_back(DAG.getEntryNode()); Ops.push_back(CPIdx); Ops.push_back(DAG.getSrcValue(NULL)); SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size()); SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1); // Shift sign bit right or left if the two operands have different types. if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) { // Op0 is MVT::f32, Op1 is MVT::f64. SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit); SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit, DAG.getConstant(32, MVT::i32)); SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit); SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit, DAG.getConstant(0, getPointerTy())); } // Clear first operand sign bit. CV.clear(); if (VT == MVT::f64) { CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63)))); CV.push_back(ConstantFP::get(SrcTy, 0.0)); } else { CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31)))); CV.push_back(ConstantFP::get(SrcTy, 0.0)); CV.push_back(ConstantFP::get(SrcTy, 0.0)); CV.push_back(ConstantFP::get(SrcTy, 0.0)); } CS = ConstantStruct::get(CV); CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); Tys.clear(); Tys.push_back(VT); Tys.push_back(MVT::Other); Ops.clear(); Ops.push_back(DAG.getEntryNode()); Ops.push_back(CPIdx); Ops.push_back(DAG.getSrcValue(NULL)); SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size()); SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2); // Or the value with the sign bit. return DAG.getNode(X86ISD::FOR, VT, Val, SignBit); } SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG, SDOperand Chain) { assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); SDOperand Cond; SDOperand Op0 = Op.getOperand(0); SDOperand Op1 = Op.getOperand(1); SDOperand CC = Op.getOperand(2); ISD::CondCode SetCCOpcode = cast(CC)->get(); const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag); bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); unsigned X86CC; if (translateX86CC(cast(CC)->get(), isFP, X86CC, Op0, Op1, DAG)) { SDOperand Ops1[] = { Chain, Op0, Op1 }; Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1); SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond }; return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); } assert(isFP && "Illegal integer SetCC!"); SDOperand COps[] = { Chain, Op0, Op1 }; Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1); switch (SetCCOpcode) { default: assert(false && "Illegal floating point SetCC!"); case ISD::SETOEQ: { // !PF & ZF SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond }; SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2); SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8), Tmp1.getValue(1) }; SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); } case ISD::SETUNE: { // PF | !ZF SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond }; SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2); SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8), Tmp1.getValue(1) }; SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); } } } SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { bool addTest = true; SDOperand Chain = DAG.getEntryNode(); SDOperand Cond = Op.getOperand(0); SDOperand CC; const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); if (Cond.getOpcode() == ISD::SETCC) Cond = LowerSETCC(Cond, DAG, Chain); if (Cond.getOpcode() == X86ISD::SETCC) { CC = Cond.getOperand(0); // If condition flag is set by a X86ISD::CMP, then make a copy of it // (since flag operand cannot be shared). Use it as the condition setting // operand in place of the X86ISD::SETCC. // If the X86ISD::SETCC has more than one use, then perhaps it's better // to use a test instead of duplicating the X86ISD::CMP (for register // pressure reason)? SDOperand Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); bool IllegalFPCMov = !X86ScalarSSE && MVT::isFloatingPoint(Op.getValueType()) && !hasFPCMov(cast(CC)->getSignExtended()); if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) && !IllegalFPCMov) { SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) }; Cond = DAG.getNode(Opc, VTs, 2, Ops, 3); addTest = false; } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, MVT::i8); SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) }; Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3); } VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag); SmallVector Ops; // X86ISD::CMOV means set the result (which is operand 1) to the RHS if // condition is true. Ops.push_back(Op.getOperand(2)); Ops.push_back(Op.getOperand(1)); Ops.push_back(CC); Ops.push_back(Cond.getValue(1)); return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); } SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { bool addTest = true; SDOperand Chain = Op.getOperand(0); SDOperand Cond = Op.getOperand(1); SDOperand Dest = Op.getOperand(2); SDOperand CC; const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); if (Cond.getOpcode() == ISD::SETCC) Cond = LowerSETCC(Cond, DAG, Chain); if (Cond.getOpcode() == X86ISD::SETCC) { CC = Cond.getOperand(0); // If condition flag is set by a X86ISD::CMP, then make a copy of it // (since flag operand cannot be shared). Use it as the condition setting // operand in place of the X86ISD::SETCC. // If the X86ISD::SETCC has more than one use, then perhaps it's better // to use a test instead of duplicating the X86ISD::CMP (for register // pressure reason)? SDOperand Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) { SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) }; Cond = DAG.getNode(Opc, VTs, 2, Ops, 3); addTest = false; } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, MVT::i8); SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) }; Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3); } return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), Cond, Op.getOperand(2), CC, Cond.getValue(1)); } SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { unsigned CallingConv= cast(Op.getOperand(1))->getValue(); if (Subtarget->is64Bit()) return LowerX86_64CCCCallTo(Op, DAG); else switch (CallingConv) { default: assert(0 && "Unsupported calling convention"); case CallingConv::Fast: if (EnableFastCC) { return LowerFastCCCallTo(Op, DAG); } // Falls through case CallingConv::C: return LowerCCCCallTo(Op, DAG); case CallingConv::X86_StdCall: return LowerCCCCallTo(Op, DAG, true); case CallingConv::X86_FastCall: return LowerFastCCCallTo(Op, DAG, true); } } SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { SDOperand Copy; switch(Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: // ret void. return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); case 3: { MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); if (MVT::isVector(ArgVT) || (Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) { // Integer or FP vector result -> XMM0. if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(X86::XMM0); Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1), SDOperand()); } else if (MVT::isInteger(ArgVT)) { // Integer result -> EAX / RAX. // The C calling convention guarantees the return value has been // promoted to at least MVT::i32. The X86-64 ABI doesn't require the // value to be promoted MVT::i64. So we don't have to extend it to // 64-bit. Return the value in EAX, but mark RAX as liveout. unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(Reg); Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX; Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1), SDOperand()); } else if (!X86ScalarSSE) { // FP return with fp-stack value. if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(X86::ST0); std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Op.getOperand(0)); Ops.push_back(Op.getOperand(1)); Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size()); } else { // FP return with ScalarSSE (return on fp-stack). if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(X86::ST0); SDOperand MemLoc; SDOperand Chain = Op.getOperand(0); SDOperand Value = Op.getOperand(1); if (ISD::isNON_EXTLoad(Value.Val) && (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { Chain = Value.getOperand(0); MemLoc = Value.getOperand(1); } else { // Spill the value to memory and reload it into top of stack. unsigned Size = MVT::getSizeInBits(ArgVT)/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0); } std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(MemLoc); Ops.push_back(DAG.getValueType(ArgVT)); Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size()); Tys.clear(); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); Ops.clear(); Ops.push_back(Copy.getValue(1)); Ops.push_back(Copy); Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size()); } break; } case 5: { unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX; unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX; if (DAG.getMachineFunction().liveout_empty()) { DAG.getMachineFunction().addLiveOut(Reg1); DAG.getMachineFunction().addLiveOut(Reg2); } Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3), SDOperand()); Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1)); break; } } return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), Copy.getValue(1)); } SDOperand X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); const Function* Fn = MF.getFunction(); if (Fn->hasExternalLinkage() && Subtarget->isTargetCygMing() && Fn->getName() == "main") MF.getInfo()->setForceFramePointer(true); unsigned CC = cast(Op.getOperand(1))->getValue(); if (Subtarget->is64Bit()) return LowerX86_64CCCArguments(Op, DAG); else switch(CC) { default: assert(0 && "Unsupported calling convention"); case CallingConv::Fast: if (EnableFastCC) { return LowerFastCCArguments(Op, DAG); } // Falls through case CallingConv::C: return LowerCCCArguments(Op, DAG); case CallingConv::X86_StdCall: MF.getInfo()->setDecorationStyle(StdCall); return LowerCCCArguments(Op, DAG, true); case CallingConv::X86_FastCall: MF.getInfo()->setDecorationStyle(FastCall); return LowerFastCCArguments(Op, DAG, true); } } SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { SDOperand InFlag(0, 0); SDOperand Chain = Op.getOperand(0); unsigned Align = (unsigned)cast(Op.getOperand(4))->getValue(); if (Align == 0) Align = 1; ConstantSDNode *I = dyn_cast(Op.getOperand(3)); // If not DWORD aligned, call memset if size is less than the threshold. // It knows how to align to the right boundary first. if ((Align & 3) != 0 || (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { MVT::ValueType IntPtr = getPointerTy(); const Type *IntPtrTy = getTargetData()->getIntPtrType(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Op.getOperand(1); Entry.Ty = IntPtrTy; Entry.isSigned = false; Entry.isInReg = false; Entry.isSRet = false; Args.push_back(Entry); // Extend the unsigned i8 argument to be an int value for the call. Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); Entry.Ty = IntPtrTy; Entry.isSigned = false; Entry.isInReg = false; Entry.isSRet = false; Args.push_back(Entry); Entry.Node = Op.getOperand(3); Args.push_back(Entry); std::pair CallResult = LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG); return CallResult.second; } MVT::ValueType AVT; SDOperand Count; ConstantSDNode *ValC = dyn_cast(Op.getOperand(2)); unsigned BytesLeft = 0; bool TwoRepStos = false; if (ValC) { unsigned ValReg; uint64_t Val = ValC->getValue() & 255; // If the value is a constant, then we can potentially use larger sets. switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; ValReg = X86::AX; Val = (Val << 8) | Val; break; case 0: // DWORD aligned AVT = MVT::i32; ValReg = X86::EAX; Val = (Val << 8) | Val; Val = (Val << 16) | Val; if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned AVT = MVT::i64; ValReg = X86::RAX; Val = (Val << 32) | Val; } break; default: // Byte aligned AVT = MVT::i8; ValReg = X86::AL; Count = Op.getOperand(3); break; } if (AVT > MVT::i8) { if (I) { unsigned UBytes = MVT::getSizeInBits(AVT) / 8; Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy()); BytesLeft = I->getValue() % UBytes; } else { assert(AVT >= MVT::i32 && "Do not use rep;stos if not at least DWORD aligned"); Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), Op.getOperand(3), DAG.getConstant(2, MVT::i8)); TwoRepStos = true; } } Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), InFlag); InFlag = Chain.getValue(1); } else { AVT = MVT::i8; Count = Op.getOperand(3); Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); InFlag = Chain.getValue(1); } Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, Op.getOperand(1), InFlag); InFlag = Chain.getValue(1); std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(DAG.getValueType(AVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); if (TwoRepStos) { InFlag = Chain.getValue(1); Count = Op.getOperand(3); MVT::ValueType CVT = Count.getValueType(); SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, Left, InFlag); InFlag = Chain.getValue(1); Tys.clear(); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getValueType(MVT::i8)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); } else if (BytesLeft) { // Issue stores for the last 1 - 7 bytes. SDOperand Value; unsigned Val = ValC->getValue() & 255; unsigned Offset = I->getValue() - BytesLeft; SDOperand DstAddr = Op.getOperand(1); MVT::ValueType AddrVT = DstAddr.getValueType(); if (BytesLeft >= 4) { Val = (Val << 8) | Val; Val = (Val << 16) | Val; Value = DAG.getConstant(Val, MVT::i32); Chain = DAG.getStore(Chain, Value, DAG.getNode(ISD::ADD, AddrVT, DstAddr, DAG.getConstant(Offset, AddrVT)), NULL, 0); BytesLeft -= 4; Offset += 4; } if (BytesLeft >= 2) { Value = DAG.getConstant((Val << 8) | Val, MVT::i16); Chain = DAG.getStore(Chain, Value, DAG.getNode(ISD::ADD, AddrVT, DstAddr, DAG.getConstant(Offset, AddrVT)), NULL, 0); BytesLeft -= 2; Offset += 2; } if (BytesLeft == 1) { Value = DAG.getConstant(Val, MVT::i8); Chain = DAG.getStore(Chain, Value, DAG.getNode(ISD::ADD, AddrVT, DstAddr, DAG.getConstant(Offset, AddrVT)), NULL, 0); } } return Chain; } SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { SDOperand Chain = Op.getOperand(0); unsigned Align = (unsigned)cast(Op.getOperand(4))->getValue(); if (Align == 0) Align = 1; ConstantSDNode *I = dyn_cast(Op.getOperand(3)); // If not DWORD aligned, call memcpy if size is less than the threshold. // It knows how to align to the right boundary first. if ((Align & 3) != 0 || (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { MVT::ValueType IntPtr = getPointerTy(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = getTargetData()->getIntPtrType(); Entry.isSigned = false; Entry.isInReg = false; Entry.isSRet = false; Entry.Node = Op.getOperand(1); Args.push_back(Entry); Entry.Node = Op.getOperand(2); Args.push_back(Entry); Entry.Node = Op.getOperand(3); Args.push_back(Entry); std::pair CallResult = LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false, DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); return CallResult.second; } MVT::ValueType AVT; SDOperand Count; unsigned BytesLeft = 0; bool TwoRepMovs = false; switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; break; case 0: // DWORD aligned AVT = MVT::i32; if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned AVT = MVT::i64; break; default: // Byte aligned AVT = MVT::i8; Count = Op.getOperand(3); break; } if (AVT > MVT::i8) { if (I) { unsigned UBytes = MVT::getSizeInBits(AVT) / 8; Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy()); BytesLeft = I->getValue() % UBytes; } else { assert(AVT >= MVT::i32 && "Do not use rep;movs if not at least DWORD aligned"); Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), Op.getOperand(3), DAG.getConstant(2, MVT::i8)); TwoRepMovs = true; } } SDOperand InFlag(0, 0); Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, Op.getOperand(1), InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, Op.getOperand(2), InFlag); InFlag = Chain.getValue(1); std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(DAG.getValueType(AVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); if (TwoRepMovs) { InFlag = Chain.getValue(1); Count = Op.getOperand(3); MVT::ValueType CVT = Count.getValueType(); SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, Left, InFlag); InFlag = Chain.getValue(1); Tys.clear(); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getValueType(MVT::i8)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); } else if (BytesLeft) { // Issue loads and stores for the last 1 - 7 bytes. unsigned Offset = I->getValue() - BytesLeft; SDOperand DstAddr = Op.getOperand(1); MVT::ValueType DstVT = DstAddr.getValueType(); SDOperand SrcAddr = Op.getOperand(2); MVT::ValueType SrcVT = SrcAddr.getValueType(); SDOperand Value; if (BytesLeft >= 4) { Value = DAG.getLoad(MVT::i32, Chain, DAG.getNode(ISD::ADD, SrcVT, SrcAddr, DAG.getConstant(Offset, SrcVT)), NULL, 0); Chain = Value.getValue(1); Chain = DAG.getStore(Chain, Value, DAG.getNode(ISD::ADD, DstVT, DstAddr, DAG.getConstant(Offset, DstVT)), NULL, 0); BytesLeft -= 4; Offset += 4; } if (BytesLeft >= 2) { Value = DAG.getLoad(MVT::i16, Chain, DAG.getNode(ISD::ADD, SrcVT, SrcAddr, DAG.getConstant(Offset, SrcVT)), NULL, 0); Chain = Value.getValue(1); Chain = DAG.getStore(Chain, Value, DAG.getNode(ISD::ADD, DstVT, DstAddr, DAG.getConstant(Offset, DstVT)), NULL, 0); BytesLeft -= 2; Offset += 2; } if (BytesLeft == 1) { Value = DAG.getLoad(MVT::i8, Chain, DAG.getNode(ISD::ADD, SrcVT, SrcAddr, DAG.getConstant(Offset, SrcVT)), NULL, 0); Chain = Value.getValue(1); Chain = DAG.getStore(Chain, Value, DAG.getNode(ISD::ADD, DstVT, DstAddr, DAG.getConstant(Offset, DstVT)), NULL, 0); } } return Chain; } SDOperand X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) { std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Op.getOperand(0)); SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size()); Ops.clear(); if (Subtarget->is64Bit()) { SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX, MVT::i64, Copy1.getValue(2)); SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2, DAG.getConstant(32, MVT::i8)); Ops.push_back(DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp)); Ops.push_back(Copy2.getValue(1)); Tys[0] = MVT::i64; Tys[1] = MVT::Other; } else { SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX, MVT::i32, Copy1.getValue(2)); Ops.push_back(Copy1); Ops.push_back(Copy2); Ops.push_back(Copy2.getValue(1)); Tys[0] = Tys[1] = MVT::i32; Tys.push_back(MVT::Other); } return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size()); } SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { SrcValueSDNode *SV = cast(Op.getOperand(2)); if (!Subtarget->is64Bit()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(), SV->getOffset()); } // __va_list_tag: // gp_offset (0 - 6 * 8) // fp_offset (48 - 48 + 8 * 16) // overflow_arg_area (point to parameters coming in memory). // reg_save_area std::vector MemOps; SDOperand FIN = Op.getOperand(1); // Store gp_offset SDOperand Store = DAG.getStore(Op.getOperand(0), DAG.getConstant(VarArgsGPOffset, MVT::i32), FIN, SV->getValue(), SV->getOffset()); MemOps.push_back(Store); // Store fp_offset FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getConstant(4, getPointerTy())); Store = DAG.getStore(Op.getOperand(0), DAG.getConstant(VarArgsFPOffset, MVT::i32), FIN, SV->getValue(), SV->getOffset()); MemOps.push_back(Store); // Store ptr to overflow_arg_area FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getConstant(4, getPointerTy())); SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(), SV->getOffset()); MemOps.push_back(Store); // Store ptr to reg_save_area. FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getConstant(8, getPointerTy())); SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(), SV->getOffset()); MemOps.push_back(Store); return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); } SDOperand X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { unsigned IntNo = cast(Op.getOperand(0))->getValue(); switch (IntNo) { default: return SDOperand(); // Don't custom lower most intrinsics. // Comparison intrinsics. case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_comieq_sd: case Intrinsic::x86_sse2_comilt_sd: case Intrinsic::x86_sse2_comile_sd: case Intrinsic::x86_sse2_comigt_sd: case Intrinsic::x86_sse2_comige_sd: case Intrinsic::x86_sse2_comineq_sd: case Intrinsic::x86_sse2_ucomieq_sd: case Intrinsic::x86_sse2_ucomilt_sd: case Intrinsic::x86_sse2_ucomile_sd: case Intrinsic::x86_sse2_ucomigt_sd: case Intrinsic::x86_sse2_ucomige_sd: case Intrinsic::x86_sse2_ucomineq_sd: { unsigned Opc = 0; ISD::CondCode CC = ISD::SETCC_INVALID; switch (IntNo) { default: break; case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse2_comieq_sd: Opc = X86ISD::COMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse2_comilt_sd: Opc = X86ISD::COMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse2_comile_sd: Opc = X86ISD::COMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse2_comigt_sd: Opc = X86ISD::COMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse2_comige_sd: Opc = X86ISD::COMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse2_comineq_sd: Opc = X86ISD::COMI; CC = ISD::SETNE; break; case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse2_ucomieq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse2_ucomilt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse2_ucomile_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse2_ucomigt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse2_ucomige_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_ucomineq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETNE; break; } unsigned X86CC; SDOperand LHS = Op.getOperand(1); SDOperand RHS = Op.getOperand(2); translateX86CC(CC, true, X86CC, LHS, RHS, DAG); const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS }; SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3); VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag); SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond }; SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2); return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); } } } SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) { // Depths > 0 not supported yet! if (cast(Op.getOperand(0))->getValue() > 0) return SDOperand(); // Just load the return address SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); } SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) { // Depths > 0 not supported yet! if (cast(Op.getOperand(0))->getValue() > 0) return SDOperand(); SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, DAG.getConstant(4, getPointerTy())); } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Should not custom lower this!"); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: return LowerShift(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FABS: return LowerFABS(Op, DAG); case ISD::FNEG: return LowerFNEG(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode()); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::CALL: return LowerCALL(Op, DAG); case ISD::RET: return LowerRET(Op, DAG); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); case ISD::MEMSET: return LowerMEMSET(Op, DAG); case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); } } const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return NULL; case X86ISD::SHLD: return "X86ISD::SHLD"; case X86ISD::SHRD: return "X86ISD::SHRD"; case X86ISD::FAND: return "X86ISD::FAND"; case X86ISD::FOR: return "X86ISD::FOR"; case X86ISD::FXOR: return "X86ISD::FXOR"; case X86ISD::FSRL: return "X86ISD::FSRL"; case X86ISD::FILD: return "X86ISD::FILD"; case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; case X86ISD::FLD: return "X86ISD::FLD"; case X86ISD::FST: return "X86ISD::FST"; case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; case X86ISD::CALL: return "X86ISD::CALL"; case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; case X86ISD::CMP: return "X86ISD::CMP"; case X86ISD::COMI: return "X86ISD::COMI"; case X86ISD::UCOMI: return "X86ISD::UCOMI"; case X86ISD::SETCC: return "X86ISD::SETCC"; case X86ISD::CMOV: return "X86ISD::CMOV"; case X86ISD::BRCOND: return "X86ISD::BRCOND"; case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK"; case X86ISD::LOAD_UA: return "X86ISD::LOAD_UA"; case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; case X86ISD::Wrapper: return "X86ISD::Wrapper"; case X86ISD::S2VEC: return "X86ISD::S2VEC"; case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; case X86ISD::PINSRW: return "X86ISD::PINSRW"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMIN: return "X86ISD::FMIN"; } } /// isLegalAddressImmediate - Return true if the integer value or /// GlobalValue can be used as the offset of the target addressing mode. bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const { // X86 allows a sign-extended 32-bit immediate field. return (V > -(1LL << 32) && V < (1LL << 32)-1); } bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement // field unless we are in small code model. if (Subtarget->is64Bit() && getTargetMachine().getCodeModel() != CodeModel::Small) return false; return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { // Only do shuffles on 128-bit vector types for now. if (MVT::getSizeInBits(VT) == 64) return false; return (Mask.Val->getNumOperands() <= 4 || isSplatMask(Mask.Val) || isPSHUFHW_PSHUFLWMask(Mask.Val) || X86::isUNPCKLMask(Mask.Val) || X86::isUNPCKL_v_undef_Mask(Mask.Val) || X86::isUNPCKHMask(Mask.Val)); } bool X86TargetLowering::isVectorClearMaskLegal(std::vector &BVOps, MVT::ValueType EVT, SelectionDAG &DAG) const { unsigned NumElts = BVOps.size(); // Only do shuffles on 128-bit vector types for now. if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; if (NumElts == 2) return true; if (NumElts == 4) { return (isMOVLMask(BVOps) || isCommutedMOVL(BVOps, true) || isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps)); } return false; } //===----------------------------------------------------------------------===// // X86 Scheduler Hooks //===----------------------------------------------------------------------===// MachineBasicBlock * X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *BB) { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case X86::CMOV_FR32: case X86::CMOV_FR64: case X86::CMOV_V4F32: case X86::CMOV_V2F64: case X86::CMOV_V2I64: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); unsigned Opc = X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } case X86::FP_TO_INT16_IN_MEM: case X86::FP_TO_INT32_IN_MEM: case X86::FP_TO_INT64_IN_MEM: { // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. MachineFunction *F = BB->getParent(); int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass); addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); // Set the high part to be round to zero... addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) .addImm(0xC7F); // Reload the modified control word now... addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) .addReg(OldCW); // Get the X86 opcode to use. unsigned Opc; switch (MI->getOpcode()) { default: assert(0 && "illegal opcode!"); case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; } X86AddressMode AM; MachineOperand &Op = MI->getOperand(0); if (Op.isRegister()) { AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = Op.getReg(); } else { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = Op.getFrameIndex(); } Op = MI->getOperand(1); if (Op.isImmediate()) AM.Scale = Op.getImm(); Op = MI->getOperand(2); if (Op.isImmediate()) AM.IndexReg = Op.getImm(); Op = MI->getOperand(3); if (Op.isGlobalAddress()) { AM.GV = Op.getGlobal(); } else { AM.Disp = Op.getImm(); } addFullAddress(BuildMI(BB, TII->get(Opc)), AM) .addReg(MI->getOperand(4).getReg()); // Reload the original control word now. addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); delete MI; // The pseudo instruction is gone now. return BB; } } } //===----------------------------------------------------------------------===// // X86 Optimization Hooks //===----------------------------------------------------------------------===// void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) const { unsigned Opc = Op.getOpcode(); assert((Opc >= ISD::BUILTIN_OP_END || Opc == ISD::INTRINSIC_WO_CHAIN || Opc == ISD::INTRINSIC_W_CHAIN || Opc == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = 0; // Don't know anything. switch (Opc) { default: break; case X86ISD::SETCC: KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); break; } } /// getShuffleScalarElt - Returns the scalar element that will make up the ith /// element of the result of the vector shuffle. static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) { MVT::ValueType VT = N->getValueType(0); SDOperand PermMask = N->getOperand(2); unsigned NumElems = PermMask.getNumOperands(); SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1); i %= NumElems; if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) { return (i == 0) ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT)); } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) { SDOperand Idx = PermMask.getOperand(i); if (Idx.getOpcode() == ISD::UNDEF) return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT)); return getShuffleScalarElt(V.Val,cast(Idx)->getValue(),DAG); } return SDOperand(); } /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + an offset. static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) { unsigned Opc = N->getOpcode(); if (Opc == X86ISD::Wrapper) { if (dyn_cast(N->getOperand(0))) { GA = cast(N->getOperand(0))->getGlobal(); return true; } } else if (Opc == ISD::ADD) { SDOperand N1 = N->getOperand(0); SDOperand N2 = N->getOperand(1); if (isGAPlusOffset(N1.Val, GA, Offset)) { ConstantSDNode *V = dyn_cast(N2); if (V) { Offset += V->getSignExtended(); return true; } } else if (isGAPlusOffset(N2.Val, GA, Offset)) { ConstantSDNode *V = dyn_cast(N1); if (V) { Offset += V->getSignExtended(); return true; } } } return false; } /// isConsecutiveLoad - Returns true if N is loading from an address of Base /// + Dist * Size. static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size, MachineFrameInfo *MFI) { if (N->getOperand(0).Val != Base->getOperand(0).Val) return false; SDOperand Loc = N->getOperand(1); SDOperand BaseLoc = Base->getOperand(1); if (Loc.getOpcode() == ISD::FrameIndex) { if (BaseLoc.getOpcode() != ISD::FrameIndex) return false; int FI = dyn_cast(Loc)->getIndex(); int BFI = dyn_cast(BaseLoc)->getIndex(); int FS = MFI->getObjectSize(FI); int BFS = MFI->getObjectSize(BFI); if (FS != BFS || FS != Size) return false; return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size); } else { GlobalValue *GV1 = NULL; GlobalValue *GV2 = NULL; int64_t Offset1 = 0; int64_t Offset2 = 0; bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1); bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2); if (isGA1 && isGA2 && GV1 == GV2) return Offset1 == (Offset2 + Dist*Size); } return false; } static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI, const X86Subtarget *Subtarget) { GlobalValue *GV; int64_t Offset; if (isGAPlusOffset(Base, GV, Offset)) return (GV->getAlignment() >= 16 && (Offset % 16) == 0); else { assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!"); int BFI = dyn_cast(Base)->getIndex(); if (BFI < 0) // Fixed objects do not specify alignment, however the offsets are known. return ((Subtarget->getStackAlignment() % 16) == 0 && (MFI->getObjectOffset(BFI) % 16) == 0); else return MFI->getObjectAlignment(BFI) >= 16; } return false; } /// PerformShuffleCombine - Combine a vector_shuffle that is equal to /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load /// if the load addresses are consecutive, non-overlapping, and in the right /// order. static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MVT::ValueType VT = N->getValueType(0); MVT::ValueType EVT = MVT::getVectorBaseType(VT); SDOperand PermMask = N->getOperand(2); int NumElems = (int)PermMask.getNumOperands(); SDNode *Base = NULL; for (int i = 0; i < NumElems; ++i) { SDOperand Idx = PermMask.getOperand(i); if (Idx.getOpcode() == ISD::UNDEF) { if (!Base) return SDOperand(); } else { SDOperand Arg = getShuffleScalarElt(N, cast(Idx)->getValue(), DAG); if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val)) return SDOperand(); if (!Base) Base = Arg.Val; else if (!isConsecutiveLoad(Arg.Val, Base, i, MVT::getSizeInBits(EVT)/8,MFI)) return SDOperand(); } } bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget); if (isAlign16) { LoadSDNode *LD = cast(Base); return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), LD->getSrcValueOffset()); } else { // Just use movups, it's shorter. std::vector Tys; Tys.push_back(MVT::v4f32); Tys.push_back(MVT::Other); SmallVector Ops; Ops.push_back(Base->getOperand(0)); Ops.push_back(Base->getOperand(1)); Ops.push_back(Base->getOperand(2)); return DAG.getNode(ISD::BIT_CONVERT, VT, DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size())); } } /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDOperand Cond = N->getOperand(0); // If we have SSE[12] support, try to form min/max nodes. if (Subtarget->hasSSE2() && (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { if (Cond.getOpcode() == ISD::SETCC) { // Get the LHS/RHS of the select. SDOperand LHS = N->getOperand(1); SDOperand RHS = N->getOperand(2); ISD::CondCode CC = cast(Cond.getOperand(2))->get(); unsigned Opcode = 0; if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { switch (CC) { default: break; case ISD::SETOLE: // (X <= Y) ? X : Y -> min case ISD::SETULE: case ISD::SETLE: if (!UnsafeFPMath) break; // FALL THROUGH. case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min case ISD::SETLT: Opcode = X86ISD::FMIN; break; case ISD::SETOGT: // (X > Y) ? X : Y -> max case ISD::SETUGT: case ISD::SETGT: if (!UnsafeFPMath) break; // FALL THROUGH. case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max case ISD::SETGE: Opcode = X86ISD::FMAX; break; } } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { switch (CC) { default: break; case ISD::SETOGT: // (X > Y) ? Y : X -> min case ISD::SETUGT: case ISD::SETGT: if (!UnsafeFPMath) break; // FALL THROUGH. case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min case ISD::SETGE: Opcode = X86ISD::FMIN; break; case ISD::SETOLE: // (X <= Y) ? Y : X -> max case ISD::SETULE: case ISD::SETLE: if (!UnsafeFPMath) break; // FALL THROUGH. case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max case ISD::SETLT: Opcode = X86ISD::FMAX; break; } } if (Opcode) return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); } } return SDOperand(); } SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget); case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); } return SDOperand(); } //===----------------------------------------------------------------------===// // X86 Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. X86TargetLowering::ConstraintType X86TargetLowering::getConstraintType(char ConstraintLetter) const { switch (ConstraintLetter) { case 'A': case 'r': case 'R': case 'l': case 'q': case 'Q': case 'x': case 'Y': return C_RegisterClass; default: return TargetLowering::getConstraintType(ConstraintLetter); } } /// isOperandValidForConstraint - Return the specified operand (possibly /// modified) if the specified SDOperand is valid for the specified target /// constraint letter, otherwise return null. SDOperand X86TargetLowering:: isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) { switch (Constraint) { default: break; case 'i': // Literal immediates are always ok. if (isa(Op)) return Op; // If we are in non-pic codegen mode, we allow the address of a global to // be used with 'i'. if (GlobalAddressSDNode *GA = dyn_cast(Op)) { if (getTargetMachine().getRelocationModel() == Reloc::PIC_) return SDOperand(0, 0); if (GA->getOpcode() != ISD::TargetGlobalAddress) Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), GA->getOffset()); return Op; } // Otherwise, not valid for this mode. return SDOperand(0, 0); } return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG); } std::vector X86TargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() == 1) { // FIXME: not handling fp-stack yet! // FIXME: not handling MMX registers yet ('y' constraint). switch (Constraint[0]) { // GCC X86 Constraint Letters default: break; // Unknown constraint letter case 'A': // EAX/EDX if (VT == MVT::i32 || VT == MVT::i64) return make_vector(X86::EAX, X86::EDX, 0); break; case 'r': // GENERAL_REGS case 'R': // LEGACY_REGS if (VT == MVT::i64 && Subtarget->is64Bit()) return make_vector(X86::RAX, X86::RDX, X86::RCX, X86::RBX, X86::RSI, X86::RDI, X86::RBP, X86::RSP, X86::R8, X86::R9, X86::R10, X86::R11, X86::R12, X86::R13, X86::R14, X86::R15, 0); if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, X86::SI, X86::DI, X86::BP, X86::SP, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::BL, 0); break; case 'l': // INDEX_REGS if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, X86::ESI, X86::EDI, X86::EBP, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, X86::SI, X86::DI, X86::BP, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::DL, 0); break; case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) case 'Q': // Q_REGS if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::DL, 0); break; case 'x': // SSE_REGS if SSE1 allowed if (Subtarget->hasSSE1()) return make_vector(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, 0); return std::vector(); case 'Y': // SSE_REGS if SSE2 allowed if (Subtarget->hasSSE2()) return make_vector(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, 0); return std::vector(); } } return std::vector(); } std::pair X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair Res; Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); // Not found as a standard register? if (Res.second == 0) { // GCC calls "st(0)" just plain "st". if (StringsEqualNoCase("{st}", Constraint)) { Res.first = X86::ST0; Res.second = X86::RSTRegisterClass; } return Res; } // Otherwise, check to see if this is a register class of the wrong value // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to // turn into {ax},{dx}. if (Res.second->hasType(VT)) return Res; // Correct type already, nothing to do. // All of the single-register GCC register classes map their values onto // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we // really want an 8-bit or 32-bit register, map to the appropriate register // class and return the appropriate register. if (Res.second != X86::GR16RegisterClass) return Res; if (VT == MVT::i8) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::AL; break; case X86::DX: DestReg = X86::DL; break; case X86::CX: DestReg = X86::CL; break; case X86::BX: DestReg = X86::BL; break; } if (DestReg) { Res.first = DestReg; Res.second = Res.second = X86::GR8RegisterClass; } } else if (VT == MVT::i32) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::EAX; break; case X86::DX: DestReg = X86::EDX; break; case X86::CX: DestReg = X86::ECX; break; case X86::BX: DestReg = X86::EBX; break; case X86::SI: DestReg = X86::ESI; break; case X86::DI: DestReg = X86::EDI; break; case X86::BP: DestReg = X86::EBP; break; case X86::SP: DestReg = X86::ESP; break; } if (DestReg) { Res.first = DestReg; Res.second = Res.second = X86::GR32RegisterClass; } } else if (VT == MVT::i64) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::RAX; break; case X86::DX: DestReg = X86::RDX; break; case X86::CX: DestReg = X86::RCX; break; case X86::BX: DestReg = X86::RBX; break; case X86::SI: DestReg = X86::RSI; break; case X86::DI: DestReg = X86::RDI; break; case X86::BP: DestReg = X86::RBP; break; case X86::SP: DestReg = X86::RSP; break; } if (DestReg) { Res.first = DestReg; Res.second = Res.second = X86::GR64RegisterClass; } } return Res; }